skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Development and Production of a Functionally Graded Composite for Pb-Bi Service

Abstract

A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extrudingmore » them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size core. This FGC represents an enabling technology for LBE cooled fast reactors.« less

Authors:
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE NE Office of Nuclear Reactor Technologies (NE-7)
OSTI Identifier:
1021169
Report Number(s):
DOE-ID14742
TRN: US201118%%778
DOE Contract Number:  
FC07-06ID14742
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 36 MATERIALS SCIENCE; ALLOYS; COOLANTS; CORROSION; CORROSION RESISTANCE; DESIGN; DIFFUSION; ELECTROCHEMICAL CORROSION; EUTECTICS; FAST REACTORS; HEAT AFFECTED ZONE; HEAT TREATMENTS; PERFORMANCE; POWER DENSITY; PRODUCTION; RADIATIONS; VELOCITY; WELDABILITY; Lead-Cooled Reactor, Functionally Graded Composite, Corrosion Resistance

Citation Formats

Ballinger, Ronald G. The Development and Production of a Functionally Graded Composite for Pb-Bi Service. United States: N. p., 2011. Web. doi:10.2172/1021169.
Ballinger, Ronald G. The Development and Production of a Functionally Graded Composite for Pb-Bi Service. United States. doi:10.2172/1021169.
Ballinger, Ronald G. Mon . "The Development and Production of a Functionally Graded Composite for Pb-Bi Service". United States. doi:10.2172/1021169. https://www.osti.gov/servlets/purl/1021169.
@article{osti_1021169,
title = {The Development and Production of a Functionally Graded Composite for Pb-Bi Service},
author = {Ballinger, Ronald G},
abstractNote = {A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size core. This FGC represents an enabling technology for LBE cooled fast reactors.},
doi = {10.2172/1021169},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2011},
month = {8}
}