skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations

Abstract

Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Authors:
; ;
Publication Date:
Research Org.:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org.:
USDOE Office of Environmental Management (EM), Acquisition and Project Management (EM-50)
OSTI Identifier:
1021005
Report Number(s):
DOE/SC-ARM-P-07-006
TRN: US201120%%405
DOE Contract Number:
DE-AC05-7601830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CLIMATE MODELS; CLIMATES; CLOUDS; DEPOSITION; EVALUATION; LIFETIME; NUCLEATION; PERFORMANCE; SIMULATION; WATER; ATMOSPHERIC CHEMISTRY

Citation Formats

Liu, X, Ghan, SJ, and Xie, S. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations. United States: N. p., 2007. Web. doi:10.2172/1021005.
Liu, X, Ghan, SJ, & Xie, S. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations. United States. doi:10.2172/1021005.
Liu, X, Ghan, SJ, and Xie, S. Sun . "Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations". United States. doi:10.2172/1021005. https://www.osti.gov/servlets/purl/1021005.
@article{osti_1021005,
title = {Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations},
author = {Liu, X and Ghan, SJ and Xie, S},
abstractNote = {Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.},
doi = {10.2172/1021005},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was testedmore » against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.« less
  • Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensedmore » waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.« less
  • This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately,more » improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.« less
  • GFDL CM3 convective vertical velocities, parameterized because their scales are below those resolved in current climate models, have been compared with observations from DOE ARM. Single-column forcing has been used for this comparison for two time periods from TWP-ICE and three from MC3E. These are the first independent evaluations of the parameterized vertical velocities against observations. The results show that basic characteristics of the observations are captured by CM3 when forced with single-column observations and constrained to observed large-scale states. In many, but not all, cases, the parameterized vertical velocities exceed those observed, especially at higher levels in the clouds.more » Similar problems have been noted by others in cloud-resolving models. The results have important implications for cloud-aerosol interactions, which depend on vertical velocities, and likely pose constraints on entrainment by convection, which may be related to climate sensitivity.« less
  • By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007more » Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.« less