skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mimicking Natural Systems: Methane Hydrate Formation-Decomposition in Depleted Sediments

Journal Article · · Geological Society, London, Special Publications
DOI:https://doi.org/10.1144/SP319.10· OSTI ID:1020203

We have initiated a systematic study of sediment-hydrate interaction under subsurface-mimic conditions to initially focus on marine hydrates. A major obstacle to studying natural hydrate systems has been the absence of a sophisticated mimic apparatus in which the hydrate formation phenomenon can be reproduced with precision. We have designed and constructed a bench-top unit, namely flexible integrated study of hydrates (FISH), for this purpose. The unit is fully instrumented to precisely record temperatures, pressures and changes in gas volume during absorption/evolution. The Labview software allows rapid and continuous data collection during the hydrate formation/dissociation cycle. In our integrated approach, several host sediments collected from Blake Ridge, a well-researched hydrate site, were characterized using the computed microtomography technique at Beamline X-26A of the National Synchrotron Light Source at Brookhaven National Laboratory. The characterized depleted sediments were then used to study the hydrate formation/decomposition kinetics under various pressures in the FISH unit. We report two hydrate formation methods: one under continuous methane gas-flow conditions (dynamic mode) and the other in which hydrates are formed from the dissolved gas phase by diffusion (static mode). Also reported is a depressurization method, namely the step-down pressure method, to yield gas evolution data. Data from such runs with host sediment from the deepest site (667 metres) is presented. During hydrate formation, the data reveals a temperature signature that is consistent with an exothermic hydrate formation event. In the decomposition cycle, data at various pressures was analysed to yield curves with similar slopes, suggesting a zero-order dependence. The capabilities of the FISH unit and the implications of these runs in establishing a database of sediment-hydrate kinetics and pore saturation are discussed.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1020203
Report Number(s):
BNL-96053-2011-JA; TRN: US1103707
Journal Information:
Geological Society, London, Special Publications, Vol. 319, Issue 1; ISSN 0305-8719
Country of Publication:
United States
Language:
English