skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature pyrolysis mechanisms of coal model compounds. 1990 annual report

Abstract

The degradation of the carboxylic acid group has been examined with respect to potential pretreatment strategies for fossil fuel conversion processes. In one potential pretreatment strategy involving cation exchange of the carboxylic acid group, a series of benzoic acid and stearic acid salts have been chosen to model the ``tight`` carboxylic acids of immature fossil fuel feedstocks and have been pyrolyzed with an entrained flow reactor. Our preliminary results indicate that Group I and II salts yield primarily the parent acid. Benzoate salts also yield small amounts of benzene while the stearic acid salts give no other detectable products. In two alternative treatment strategies, esterification and anhydride preparation have also been accomplished with these compounds being subjected to the entrained flow reactor conditions. The benzoate esters give a number of products, such as benzaldehyde, benzene, and low MW gases. The formation of these compounds is extremely dependent on pyrolysis conditions and alkoxy chain length. A xenon flashlamp and an entrained flow reactor have been used to heat organic substrates to varying temperatures using different heating rates. Ultrarapid flashlamp pyrolysis (heating rate>10{sup 50}C/s) has been performed. Since the ultrarapid pyrolysis products differ from those observed with traditional heating techniques and differmore » from the products formed photochemically, the flashlamp pyrolysis products are attributed to high temperature thermal activation.« less

Authors:
;
Publication Date:
Research Org.:
West Virginia Univ., Morgantown, WV (United States). Dept. of Chemistry
Sponsoring Org.:
USDOE, Washington, DC (United States)
OSTI Identifier:
10184732
Report Number(s):
DOE/MC/24207-2994
ON: DE91002075
DOE Contract Number:
FC21-87MC24207
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: Jan 1991
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; COAL; STRUCTURAL MODELS; PYROLYSIS; PYROLYSIS PRODUCTS; CARBOXYLIC ACIDS; PROGRESS REPORT; EXPERIMENTAL DATA; HEATING RATE; BENZOIC ACID; 010409; PYROLYSIS AND CARBONIZATION

Citation Formats

Penn, J.H., and Owens, W.H.. High-temperature pyrolysis mechanisms of coal model compounds. 1990 annual report. United States: N. p., 1991. Web. doi:10.2172/10184732.
Penn, J.H., & Owens, W.H.. High-temperature pyrolysis mechanisms of coal model compounds. 1990 annual report. United States. doi:10.2172/10184732.
Penn, J.H., and Owens, W.H.. 1991. "High-temperature pyrolysis mechanisms of coal model compounds. 1990 annual report". United States. doi:10.2172/10184732. https://www.osti.gov/servlets/purl/10184732.
@article{osti_10184732,
title = {High-temperature pyrolysis mechanisms of coal model compounds. 1990 annual report},
author = {Penn, J.H. and Owens, W.H.},
abstractNote = {The degradation of the carboxylic acid group has been examined with respect to potential pretreatment strategies for fossil fuel conversion processes. In one potential pretreatment strategy involving cation exchange of the carboxylic acid group, a series of benzoic acid and stearic acid salts have been chosen to model the ``tight`` carboxylic acids of immature fossil fuel feedstocks and have been pyrolyzed with an entrained flow reactor. Our preliminary results indicate that Group I and II salts yield primarily the parent acid. Benzoate salts also yield small amounts of benzene while the stearic acid salts give no other detectable products. In two alternative treatment strategies, esterification and anhydride preparation have also been accomplished with these compounds being subjected to the entrained flow reactor conditions. The benzoate esters give a number of products, such as benzaldehyde, benzene, and low MW gases. The formation of these compounds is extremely dependent on pyrolysis conditions and alkoxy chain length. A xenon flashlamp and an entrained flow reactor have been used to heat organic substrates to varying temperatures using different heating rates. Ultrarapid flashlamp pyrolysis (heating rate>10{sup 50}C/s) has been performed. Since the ultrarapid pyrolysis products differ from those observed with traditional heating techniques and differ from the products formed photochemically, the flashlamp pyrolysis products are attributed to high temperature thermal activation.},
doi = {10.2172/10184732},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1991,
month = 1
}

Technical Report:

Save / Share:
  • The degradation of the carboxylic acid group has been examined with respect to potential pretreatment strategies for fossil fuel conversion processes. In one potential pretreatment strategy involving cation exchange of the carboxylic acid group, a series of benzoic acid and stearic acid salts have been chosen to model the tight'' carboxylic acids of immature fossil fuel feedstocks and have been pyrolyzed with an entrained flow reactor. Our preliminary results indicate that Group I and II salts yield primarily the parent acid. Benzoate salts also yield small amounts of benzene while the stearic acid salts give no other detectable products. Inmore » two alternative treatment strategies, esterification and anhydride preparation have also been accomplished with these compounds being subjected to the entrained flow reactor conditions. The benzoate esters give a number of products, such as benzaldehyde, benzene, and low MW gases. The formation of these compounds is extremely dependent on pyrolysis conditions and alkoxy chain length. A xenon flashlamp and an entrained flow reactor have been used to heat organic substrates to varying temperatures using different heating rates. Ultrarapid flashlamp pyrolysis (heating rate>10{sup 50}C/s) has been performed. Since the ultrarapid pyrolysis products differ from those observed with traditional heating techniques and differ from the products formed photochemically, the flashlamp pyrolysis products are attributed to high temperature thermal activation.« less
  • We made considerable progress towards completing the development of a thermogravimetric reactor with video microscopy imaging capabilities (TGA/VMI). The video micrOSCOPY components were designed, installed and are currently under testing. With the newly developed TGA/VNH apparatus we can directly observe macroscopic changes in the morphology of pyrolyzing particles and thermal ignitions of burning particles while simultaneously monitoring the weight of pyrolyzing or reacting samples. The systematic investigation on the effects of pyrolysis conditions and char macropore structure on char reactivity continued. Pyrolysis and gasification experiments were performed consecutively in our TGA reactor and the char reactivity patterns were measured formore » a wide range of temperatures (400--600{degrees}C). These conditions cover both the kinetic and the diffusion limited regimes. Our results show conclusively that chars produced at high pyrolysis heating rates (and, therefore, having a more open cellular macropore structure) are more reactive and ignite more easily than chars pyrolyzed at low heating rates. These results have been explained using theoretical models. We also investigated for the first time the effect of coal particle size and external mass transfer limitations on the reactivity patterns and ignition behavior of char particles combusted in air. Finally, we used our hot stage reactor to monitor the structural transformations occurring during pyrolysis via a video microscopy system. Pyrolysis experiments were videotaped and particle swelling and the particle ignitions were determined and analyzed using digitized images from these experiments.« less
  • The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thkmore » project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.« less
  • It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependantmore » parameters to find out which model and what kind of temperature dependant parameters should be used.« less
  • The enthalpy of a fluid measured with respect to some reference temperature and pressure (enthalpy increment or Cp) is required for many engineering designs. Different techniques for determining enthalpy increments include direct measurement, integration of heat capacity as a function of temperature at constant pressure, and calculation from accurate density measurements as a function of temperature and pressure with ideal-gas enthalpies. Techniques have been developed for measurement of heat capacities using differential scanning calorimeters, but routine measurements with a precision better than 3% are rare. For thermodynamic model development, excess enthalpies or enthalpies of mixing of binary and ternary systemsmore » are generally required. Although these data can be calculated from measured values of incremental enthalpies of mixtures and corresponding pure components, the method of calculation involves subtraction of large numbers, and it is impossible to obtain accurate results from relatively accurate incremental enthalpy data. Directly measured heats of mixing provide better data for model development. In what follows, we give a brief literature survey of experimental methods available for measurement of incremental enthalpies as well as heats of mixing.« less