skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recent advances in the development of high average power induction accelerators for industrial and environmental applications

Abstract

Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

Authors:
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Org.:
USDOE, Washington, DC (United States)
OSTI Identifier:
10182740
Report Number(s):
SAND-94-2352C; CONF-940908-1
ON: DE94018734; TRN: 94:008394
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: 9. international meeting on radiation processing: dedicated to the dissemination and advancement of the technology of industrial radiation processing,Istanbul (Turkey),11-16 Sep 1994; Other Information: PBD: [1994]
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; 36 MATERIALS SCIENCE; ACCELERATORS; EVALUATION; ORGANIC WASTES; WASTE PROCESSING; MATERIALS; SURFACE TREATMENTS; ELECTRON BEAMS; ION BEAMS; 430100; 360101; 360201; DESIGN, DEVELOPMENT, AND OPERATION; PREPARATION AND FABRICATION

Citation Formats

Neau, E.L. Recent advances in the development of high average power induction accelerators for industrial and environmental applications. United States: N. p., 1994. Web.
Neau, E.L. Recent advances in the development of high average power induction accelerators for industrial and environmental applications. United States.
Neau, E.L. Thu . "Recent advances in the development of high average power induction accelerators for industrial and environmental applications". United States. doi:. https://www.osti.gov/servlets/purl/10182740.
@article{osti_10182740,
title = {Recent advances in the development of high average power induction accelerators for industrial and environmental applications},
author = {Neau, E.L.},
abstractNote = {Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Short-pulse accelerator technology developed during time period from the early 60`s through the late 80`s is now being extended to high average power systems capable of being used in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput may require systems with beam power levels from several hundreds of kilowatts to megawatts. Processes may include chemical waste mitigation, flue gas cleanup, food pasteurization, and new forms of materials preparation and treatment. This paper will address the present status of high average power systems now in operation that use combinations of semiconductor and saturable core magnetic switchesmore » with inductive voltage adders to achieve MeV beams of electrons or x-rays over areas of 10,000 cm{sup 2} or more. Similar high average power technology is also being used below 1 MeV to drive repetitive ion beam sources for treatment of material surfaces.« less
  • The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 Mev/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.
  • There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at anmore » average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.« less
  • CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less
  • For industrial applications of high-average power Nd:YAG-lasers the laser power is usually transmitted through all-silica optical fibers. The transmission properties of different types of step index and graded-index fibers are investigated, using a multimode high-power Nd:YAG rod laser with 2000 W output power in CW and Q-switch mode. The fibers are step index and graded-index fibers with 400 and 600 {mu}m core diameters, different cladding to core ratios and different types of coating materials. The dependence of the output beam parameters, waist diameter and divergence, and the resulting power transmission are given. The upper limits for the maximum beam parametersmore » and maximum laser powers which can be coupled into fibers without loss, as well as the dependence of the output beam profiles upon the intensity distribution at the fiber input are briefly discussed. The end faces of polished and cleaved fibers are compared. Different setups for coupling several laser beams into one fiber, in order to increase the maximum laser power to be transmitted, are discussed. By these means more than 6 kW laser power could be transmitted.« less