skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Protection against radiation-induced mutations at the hprt locus by spermine and N,N{double_prime}-(dithiodi-2,1-ethanediyl)bis-1,3-propanediamine (WR-33278). WR-33278 and spermine protect against mutation induction

Technical Report ·
DOI:https://doi.org/10.2172/10172494· OSTI ID:10172494

The polyamine spermine and the disulfide N,N{double_prime}-(dithiodi-2,1-ethanediyl)bis-1,3-propanediamine (WR-33278) are structurally similar agents capable of binding to DNA. WR-33278 is the disulfide moiety of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). Because of their reported structural and functional similarities, it was of interest to characterize and compare their radioprotective properties using the endpoints of cell survival and mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in Chinese hamster AA8 cells. In order to facilitate both the uptake of WR-33278 into cells and the direct comparison between the protective properties of WR-33278 and spermine, these agents (at concentrations of 0.01 mM and 0.001 mM) were electroporated into cells. The exposure of cells to both electroporation and irradiation gave rise to enhanced cell killing and mutation induction, with the sequence of irradiation followed 3 h later by electroporation being the more toxic protocol. Enhanced cell survival was observed following electroporation of 0.01 mM of spermine and WR-33278 30 min prior to irradiation; protection factors (PF) of 1.3 and 1.8, respectively. Neither agent was protective at a concentration of 0.001 mM. Protection against radiation-induced hprt mutations was observed for both spermine and WR-33278 under all experimental conditions tested. These data suggest that the properties of radioprotection and chemoprevention exhibited by the phosphorothioate (WR-2721) and associated aminothiol (WR-1065) and disulfide (WR-33278) metabolites may be mediated via endogenous spermine-like polyamine processes. Such a mechanism would have important implications with respect to the design and development of new generation drugs for use in radioprotection and chemoprevention.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States); Department of Health and Human Services, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10172494
Report Number(s):
ANL/BIM/PP-78778; ON: DE94016383; CNN: Grant CA-37435; TRN: 94:015586
Resource Relation:
Other Information: PBD: [1994]
Country of Publication:
United States
Language:
English