skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genetic Engineering Workshop Report, 2010

Abstract

The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industriesmore » that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of the art. We also consciously chose to not dwell on matters of policy (for example, screening of commercial gene or oligo synthesis orders), as multiple other forums for policy discussion have taken place in recent years. We acknowledge that other workshops on topics relevant to genetic engineering should be held, some of which may need to take place at higher classification levels. The workshop moderators would like to acknowledge the enthusiastic participation of the attendees in the discussions. Special thanks are given to Sofi Ibrahim, for his extensive assistance on helping this report reach its final form. The genetic engineering workshop brought together a diverse mix of genetic engineering pioneers and experts, Federal agency representatives concerned with abuses of genetic engineering, TMT performers, bioinformatics experts, and representatives from industry involved with large-scale genetic engineering and synthetic biology. Several talks established the current range of genetic engineering capabilities and the relative difficulties of identifying and characterizing the results of their use. Extensive discussions established a number of recommendations to DTRA of how to direct future research investments so that any mis-use of genetic engineering techniques can be promptly identified and characterized.« less

Authors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1016982
Report Number(s):
LLNL-TR-463112
TRN: US201113%%367
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; BIOLOGY; CLASSIFICATION; DETECTION; GENES; GENETIC ENGINEERING; LAWRENCE LIVERMORE NATIONAL LABORATORY; MITIGATION; MODERATORS; PROGRAM MANAGEMENT; RECOMMENDATIONS; SYNTHESIS; TRANSFORMATIONS

Citation Formats

Allen, J, and Slezak, T. Genetic Engineering Workshop Report, 2010. United States: N. p., 2010. Web. doi:10.2172/1016982.
Allen, J, & Slezak, T. Genetic Engineering Workshop Report, 2010. United States. doi:10.2172/1016982.
Allen, J, and Slezak, T. Wed . "Genetic Engineering Workshop Report, 2010". United States. doi:10.2172/1016982. https://www.osti.gov/servlets/purl/1016982.
@article{osti_1016982,
title = {Genetic Engineering Workshop Report, 2010},
author = {Allen, J and Slezak, T},
abstractNote = {The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of the art. We also consciously chose to not dwell on matters of policy (for example, screening of commercial gene or oligo synthesis orders), as multiple other forums for policy discussion have taken place in recent years. We acknowledge that other workshops on topics relevant to genetic engineering should be held, some of which may need to take place at higher classification levels. The workshop moderators would like to acknowledge the enthusiastic participation of the attendees in the discussions. Special thanks are given to Sofi Ibrahim, for his extensive assistance on helping this report reach its final form. The genetic engineering workshop brought together a diverse mix of genetic engineering pioneers and experts, Federal agency representatives concerned with abuses of genetic engineering, TMT performers, bioinformatics experts, and representatives from industry involved with large-scale genetic engineering and synthetic biology. Several talks established the current range of genetic engineering capabilities and the relative difficulties of identifying and characterizing the results of their use. Extensive discussions established a number of recommendations to DTRA of how to direct future research investments so that any mis-use of genetic engineering techniques can be promptly identified and characterized.},
doi = {10.2172/1016982},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2010},
month = {11}
}

Technical Report:

Save / Share: