skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen sensor

Abstract

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Inventors:
 [1];  [1];  [2]
  1. (Los Alamos, NM)
  2. (Katy, TX)
Publication Date:
Research Org.:
Los Alamos National Security, LLC (Los Alamos, NM)
Sponsoring Org.:
USDOE
OSTI Identifier:
1014734
Patent Number(s):
7,839,499
Application Number:
US Patent Application 12/069,971
Assignee:
Los Alamos National Security, LLC (Los Alamos, NM) LANL
DOE Contract Number:
AC52-06NA25396
Resource Type:
Patent
Country of Publication:
United States
Language:
English

Citation Formats

Duan, Yixiang, Jia, Quanxi, and Cao, Wenqing. Hydrogen sensor. United States: N. p., 2010. Web.
Duan, Yixiang, Jia, Quanxi, & Cao, Wenqing. Hydrogen sensor. United States.
Duan, Yixiang, Jia, Quanxi, and Cao, Wenqing. Tue . "Hydrogen sensor". United States. doi:. https://www.osti.gov/servlets/purl/1014734.
@article{osti_1014734,
title = {Hydrogen sensor},
author = {Duan, Yixiang and Jia, Quanxi and Cao, Wenqing},
abstractNote = {A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 23 00:00:00 EST 2010},
month = {Tue Nov 23 00:00:00 EST 2010}
}

Patent:

Save / Share:
  • A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.
  • A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.
  • The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer ofmore » semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.« less
  • A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.
  • An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometermore » at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.« less