skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study

Abstract

The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5x10-7 mol L-1 and 5x10-6 mol L-1, respectively, that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > Michigan chlorite ≈ quartz > montmorillonite ≈ illite ≈ SPP1 GWF. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparisonmore » with literature data suggested that U(VI) exists primarily as inner-sphere U(VI) complexes with surface silanol groups on quartz while U(VI) on phyllosilicates was consistent with the formation of surface U(VI) tricarbonate complexes.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1012515
Report Number(s):
PNNL-SA-75951
Journal ID: ISSN 0016-7037; 34494; KP1702030; TRN: US201110%%129
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Geochimica et Cosmochimica Acta; Journal Volume: 75; Journal Issue: 10
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; ADSORPTION; AFFINITY; AQUIFERS; CHLORINE COMPOUNDS; CRYOGENICS; FLUORESCENCE; FLUORESCENCE SPECTROSCOPY; ILLITE; MONTMORILLONITE; OXYGEN COMPOUNDS; QUARTZ; SEDIMENTS; SPECTRA; Environmental Molecular Sciences Laboratory

Citation Formats

Wang, Zheming, Zachara, John M., Boily, Jean F., Xia, Yuanxian, Resch, Charles T., Moore, Dean A., and Liu, Chongxuan. Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study. United States: N. p., 2011. Web. doi:10.1016/j.gca.2011.03.008.
Wang, Zheming, Zachara, John M., Boily, Jean F., Xia, Yuanxian, Resch, Charles T., Moore, Dean A., & Liu, Chongxuan. Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study. United States. doi:10.1016/j.gca.2011.03.008.
Wang, Zheming, Zachara, John M., Boily, Jean F., Xia, Yuanxian, Resch, Charles T., Moore, Dean A., and Liu, Chongxuan. Sun . "Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study". United States. doi:10.1016/j.gca.2011.03.008.
@article{osti_1012515,
title = {Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study},
author = {Wang, Zheming and Zachara, John M. and Boily, Jean F. and Xia, Yuanxian and Resch, Charles T. and Moore, Dean A. and Liu, Chongxuan},
abstractNote = {The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5x10-7 mol L-1 and 5x10-6 mol L-1, respectively, that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > Michigan chlorite ≈ quartz > montmorillonite ≈ illite ≈ SPP1 GWF. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exists primarily as inner-sphere U(VI) complexes with surface silanol groups on quartz while U(VI) on phyllosilicates was consistent with the formation of surface U(VI) tricarbonate complexes.},
doi = {10.1016/j.gca.2011.03.008},
journal = {Geochimica et Cosmochimica Acta},
number = 10,
volume = 75,
place = {United States},
year = {Sun May 15 00:00:00 EDT 2011},
month = {Sun May 15 00:00:00 EDT 2011}
}
  • Time-resolved U(VI) laser fluorescence spectra (TRLFS) were recorded for a series of natural uranium-silicate minerals including boltwoodite, uranophane, soddyite, kasolite, sklodowskite, cuprosklodowskite, haiweeite, and weeksite, a synthetic boltwoodite, and four U(VI)-contaminated Hanford vadose zone sediments. Lowering the sample temperature from RT to {approx} 5.5 K significantly enhanced the fluorescence intensity and spectral resolution of both the minerals and sediments, offering improved possibilities for identifying uranyl species in environmental samples. At 5.5 K, all of the uranyl silicates showed unique, well-resolved fluorescence spectra. The symmetric O=U=O stretching frequency, as determined from the peak spacing of the vibronic bands in the emissionmore » spectra, were between 705 to 823 cm-1 for the uranyl silicates. These were lower than those reported for uranyl phosphate, carbonate, or oxy-hydroxides. The fluorescence emission spectra of all four sediment samples were similar to each other. Their spectra shifted minimally at different time delays or upon contact with basic Na/Ca-carbonate electrolyte solutions that dissolved up to 60 % of the precipitated U(VI) pool. The well-resolved vibronic peaks in the fluorescence spectra of the sediments indicated that the major fluorescence species was a crystalline uranyl mineral phase, while the peak spacing of the vibronic bands pointed to the likely presence of uranyl silicate. Although, an exact match was not found between the U(VI) fluorescence spectra of the sediments with that of any individual uranyl silicates, the major spectral characteristics indicated that the sediment U(VI) was a uranophane-type solid (uranophane, boltwoodite) or soddyite, as was concluded from microprobe, EXAFS, and solubility analyses.« less
  • Contaminated capillary fringe sediments are believed to function as long term source of U(VI) to Hanford’s 300 Area groundwater uranium plume that discharges to the Columbia River. The deep vadose zone at this site experiences seasonal water table elevation and water compositional changes in response to Columbia River stage. Batch and column desorption experiments of U(VI) were performed on two mildly contaminated sediments from this system that vary in hydrologic position to ascertain their U(VI) release behavior and factors controlling it. Solid phase characterization of the sediments was performed to identify mineralogic and chemical factors controlling U(VI) desorption. The desorptionmore » behavior of U(VI) was different from the two sediments in spite of similar chemical and textural characteristics, and non-carbonate mineralogy. Adsorption strength and sorbed U(VI) lability was higher in the near-river sediment 11D. Inland sediment 39B displayed low sorbed U(VI) lability (~ 10%) and measurable solid-phase carbonate content. Kinetic desorption was observed that was attributed to regeneration of labile U(VI) in 11D, and carbonate mineral dissolution in 39B. The desorption reaction was best described as an equilibrium surface complexation reaction. The noted differences in desorption behavior appear to result from U(VI) contamination and hydrologic history, as well as sediment carbonate content. Insights are provided on the dynamic adsorption/desorption behavior of contaminants in linked groundwater-river systems.« less
  • Time-resolved laser-induced fluorescence spectroscopy (TRLFS) and imaging spectromicroscopy (TRLFISM) were used to examine the chemical speciation of uranyl in contaminated subsurface sediments from the Hanford Site, Washington. Spectroscopic measurements for contaminant U(VI) were compared to those from a natural, uranyl-bearing calcite (NUC) that had been found via X-ray absorption spectroscopy (XAS) to include uranyl in the same coordination environment as calcium (1). Spectral deconvolution of TRLFS measurements on the NUC revealed the unexpected presence of two distinct chemical environments consistent with published spectra of U(VI)-substituted synthetic calcite and aragonite. Apparently, some U(VI) substitution sites in calcite distorted to exhibit amore » local, more energetically favorable aragonite structure. TRLFS measurements of the Hanford sediments were similar to the NUC in terms of peak positions and intensity, despite a small CaCO3 content (<0.1 to 3.2 mass%). Spectral deconvolution of the sediment measurements also revealed the presence of U(VI) in calcite and aragonite structural environments. TRLFISM measurements at multiple locations in the different sediments displayed only minor variation indicating a uniform speciation pattern. Collectively, the measurements implied that waste U(VI), long-resident beneath the sampled disposal pond (32 y), had co-precipitated within newly formed carbonates. These results have major implications for the solubility and fate of the contaminated U(VI).« less
  • In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to {approx}1 {micro}M and sulfate reduction ensued. Continued additionsmore » sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (<5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corre sponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped, aqueous U levels decreased, indicating adsorption to sediments. Changes in the sequence of carbonate and ethanol addition confirmed that carbonate-controlled desorption increased bioavailability of U(VI) for reduction.« less