Truncated multiGaussian fields and effective conductance of binary media.
- Massachusetts Institute of Technology, Cambridge, MA
- Sandia National Laboratories, Livermore CA
Truncated Gaussian fields provide a flexible model for defining binary media with dispersed (as opposed to layered) inclusions. General properties of excursion sets on these truncated fields are coupled with a distance-based upscaling algorithm and approximations of point process theory to develop an estimation approach for effective conductivity in two-dimensions. Estimation of effective conductivity is derived directly from knowledge of the kernel size used to create the multiGaussian field, defined as the full-width at half maximum (FWHM), the truncation threshold and conductance values of the two modes. Therefore, instantiation of the multiGaussian field is not necessary for estimation of the effective conductance. The critical component of the effective medium approximation developed here is the mean distance between high conductivity inclusions. This mean distance is characterized as a function of the FWHM, the truncation threshold and the ratio of the two modal conductivities. Sensitivity of the resulting effective conductivity to this mean distance is examined for two levels of contrast in the two modal conductances and different FWHM sizes. Results demonstrate that the FWHM is a robust measure of mean travel distance in the background medium. The resulting effective conductivities are accurate when compared to numerical results and results obtained from effective media theory, distance-based upscaling and numerical simulation.
- Research Organization:
- Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1011620
- Report Number(s):
- SAND2010-8903; TRN: US201109%%673
- Country of Publication:
- United States
- Language:
- English
Similar Records
Posterior predictive modeling using multi-scale stochastic inverse parameter estimates.
A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory