skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Melting behavior of the iron-sulfur system and chemical convection in iron-rich planetary cores

Conference ·
OSTI ID:1009063

We present experimental data on the high-pressure melting behavior of the Fe-S system from a synchrotron x-ray radiography study using the large volume press, with implications for the role of chemical convection in sulfur-bearing planetary cores. At present, Earth, Mercury and Ganymede are the only three solid bodies in the Solar System that possess intrinsic global magnetic fields. Dynamo simulation reveal that chemical buoyancy force associated with the formation of a solid inner core is critical for sustaining the Earth's magnetic field. Fluid motions in Mercury and Ganymede may be partially driven by chemical buoyancy force as well. The style of chemical convection and its influence on the thermal and chemical state and evolution of iron-rich cores are determined in part by the melting behavior of potential core-forming materials. Sulfur is widely accepted as a candidate light element in iron-rich planetary cores. In order to understand the role of chemical convection in sulfur-bearing cores, we studied the high-pressure melting behavior of Fe-S mixtures containing 9 wt% sulfur using the synchrotron x-ray radiographic method in a large volume press.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1009063
Resource Relation:
Conference: Lunar and Planetary Science XXXX;March 23-27, 2009;The Woodlands, TX
Country of Publication:
United States
Language:
ENGLISH