skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge XANES Measurements

Abstract

Knowledge of the oxidation state of W over a wide range of fO{sub 2} is critical to understanding the oxidation state of the mantle and core formation processes. W occurs as W6+ above {approx}IW-1. The transition between W{sup 4+} and W{sup 6+} occurs just below IW-1. Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted {approx} 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies (Fig. 1) are inconsistent on whether W occurs as W4+ or W{sup 6+}. It is assumed that W{sup 4+} is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO{sub 2} is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over themore » range of fO{sub 2} most relevant to core formation, around IW-2.« less

Authors:
; ; ; ;  [1];  [2]
  1. (UofC)
  2. (
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE
OSTI Identifier:
1009018
Resource Type:
Conference
Resource Relation:
Conference: Lunar and Planetary Science XXXVIII;March 12-16, 2007;Houston, Texas
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 58 GEOSCIENCES; CHONDRITES; IRON; SENSITIVITY; METALLIC GLASSES; SILICATES; SOLUBILITY; TUNGSTEN; VALENCE; EARTH MANTLE; EARTH CORE

Citation Formats

Danielson, L.R., Righter, K., Sutton, S., Newville, M., Le, L., and NASA). The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge XANES Measurements. United States: N. p., 2007. Web.
Danielson, L.R., Righter, K., Sutton, S., Newville, M., Le, L., & NASA). The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge XANES Measurements. United States.
Danielson, L.R., Righter, K., Sutton, S., Newville, M., Le, L., and NASA). Tue . "The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge XANES Measurements". United States. doi:.
@article{osti_1009018,
title = {The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge XANES Measurements},
author = {Danielson, L.R. and Righter, K. and Sutton, S. and Newville, M. and Le, L. and NASA)},
abstractNote = {Knowledge of the oxidation state of W over a wide range of fO{sub 2} is critical to understanding the oxidation state of the mantle and core formation processes. W occurs as W6+ above {approx}IW-1. The transition between W{sup 4+} and W{sup 6+} occurs just below IW-1. Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted {approx} 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies (Fig. 1) are inconsistent on whether W occurs as W4+ or W{sup 6+}. It is assumed that W{sup 4+} is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO{sub 2} is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO{sub 2} most relevant to core formation, around IW-2.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 06 00:00:00 EST 2007},
month = {Tue Mar 06 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • W{sup 4+} is relevant to core formation but W{sup 6+} may also occur. Silicate glasses show W{sup 6+} above IW and mixed valence below IW. The transition to W{sup 4+} only, appears to happen at or below IW-2 for iron free systems, but below IW-3 for iron bearing systems. Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted {approx} 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have beenmore » carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies (Fig. 1) are inconsistent on whether W occurs as W{sup 4+} or W{sup 6+}. It is assumed that W{sup 4+} is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO{sub 2} is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO{sub 2} most relevant to core formation, around IW-2.« less
  • Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affordingmore » significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.« less
  • We show that experimental spinels coexisting with silicate melt always have lower valence vanadium, and that spinels typically have 3+, whereas the coexisting melt has 4+ or 5+. Implications of these results for planetary basalts will be discussed. Spinel can be a significant host phase for V which has multiple oxidation states V{sup 2+}, V{sup 3+}, V{sup 4+} or V{sup 5+} at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO{sub 2}, but the uncertainty of the oxidation state under the range of natural conditions has mademore » elusive a thorough understanding of D(V) spinel/melt. For example, V{sup 3+} is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al{sub 2}O{sub 3}-SiO{sub 2} system. On the other hand, it has been argued that V{sup 4+} will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO{sub 2} units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels ({approx}300 ppm V), were analyzed using an electron microprobe at NASA-JSC and mi-cro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.« less
  • A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordinationmore » of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.« less