skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme

Journal Article · · J. Mol. Biol.
OSTI ID:1008593

Large RNAs collapse into compact intermediates in the presence of counterions before folding to the native state. We previously found that collapse of a bacterial group I ribozyme correlates with the formation of helices within the ribozyme core, but occurs at Mg{sup 2+} concentrations too low to support stable tertiary structure and catalytic activity. Here, using small-angle X-ray scattering, we show that Mg{sup 2+}-induced collapse is a cooperative folding transition that can be fit by a two-state model. The Mg{sup 2+} dependence of collapse is similar to the Mg{sup 2+} dependence of helix assembly measured by partial ribonuclease T{sub 1} digestion and of an unfolding transition measured by UV hypochromicity. The correspondence between multiple probes of RNA structure further supports a two-state model. A mutation that disrupts tertiary contacts between the L9 tetraloop and its helical receptor destabilized the compact state by 0.8 kcal/mol, while mutations in the central triplex were less destabilizing. These results show that native tertiary interactions stabilize the compact folding intermediates under conditions in which the RNA backbone remains accessible to solvent.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1008593
Journal Information:
J. Mol. Biol., Vol. 353, Issue (5) ; 2005; ISSN 0022-2836
Country of Publication:
United States
Language:
ENGLISH