skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior

Journal Article · · J. Synchrotron Rad.
OSTI ID:1008547

Synchrotron-based X-ray emission spectroscopy (XES) is well suited to probing the local electronic structure of 3d transition metals such as Fe and Mn in their host phases. The laser-heated diamond anvil cell technique is uniquely capable of generating ultra-high static pressures and temperatures in excess of 100 GPa and 3000 K. Here X-ray emission spectroscopy and X-ray diffraction have been interfaced with the laser-heated diamond cell for studying the electronic spin states of iron in magnesiowuestite-(Mg{sub 0.75},Fe{sub 0.25})O and its crystal structure under lower-mantle conditions. X-ray emission spectra of the ferrous iron in a single crystal of magnesiowuestite-(Mg{sub 0.75},Fe{sub 0.25})O indicate that a high-spin to low-spin transition of ferrous iron occurs at 54 to 67 GPa and 300 K and the ferrous iron remains in the high-spin state up to 47 GPa and 1300 K. This pilot study points to the unique capability of the synchrotron-based XES and X-ray diffraction techniques for addressing the issue of electronic spin transition or crossover in 3d transition metals and compounds under extreme high-P-T conditions.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1008547
Journal Information:
J. Synchrotron Rad., Vol. 12, Issue (5) ; 2005; ISSN 0909-0495
Country of Publication:
United States
Language:
ENGLISH