skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Flap Mutations on Structure of HIV-1 Protease and Inhibition by Sanquinavir and Darunavir

Journal Article · · J. Mol. Biol.

HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses were used to investigate the role of flap residues Gly48, Ile50, and Ile54 in the development of drug resistance. The crystal structure of flap mutants PR{sub I50V} (PR with I50V mutation), PR{sub I54V} (PR with I54V mutation), and PR{sub I54M} (PR with I54M mutation) complexed with saquinavir (SQV) as well as PR{sub G48V} (PR with G48V mutation), PR{sub I54V}, and PR{sub I54M} complexed with darunavir (DRV) were determined at resolutions of 1.05--1.40 {angstrom}. The PR mutants showed changes in flap conformation, interactions with adjacent residues, inhibitor binding, and the conformation of the 80s loop relative to the wild-type PR. The PR contacts with DRV were closer in PR{sub G48V}-DRV than in the wild-type PR-DRV, whereas they were longer in PR{sub I54M}-DRV. The relative inhibition of PR{sub I54V} and that of PR{sub I54M} were similar for SQV and DRV. PR{sub G48V} was about twofold less susceptible to SQV than to DRV, wheres the opposite was observed for PR{sub I50V}. The observed inhibition was in agreement with the association of G48V and I50V with clinical resistance to SQV and DRV, respectively. This analysis of structural and kinetic effects of the mutants will assist in the development of more effective inhibitors for drug-resistant HIV.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1006792
Journal Information:
J. Mol. Biol., Vol. 381, Issue (1) ; 08, 2008; ISSN 0022-2836
Country of Publication:
United States
Language:
ENGLISH