skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superlattice Formation in Binary Mixtures of Block Copolymer Micelles

Abstract

Two distinct diblock copolymers, poly(styrene-b-isoprene) (SI) and poly(styrene-b-dimethylsiloxane) (SD), were codissolved at various concentrations in the polystyrene selective solvent diethyl phthalate. Two SI diblocks, with block molar masses of 12000-33000 and 30000-33000, and two SD diblocks, with block molar masses of 19000-6000 and 16000-9000, were employed. The size ratio of the smaller SD micelles (S) to the larger SI micelles (L) varied from approximately 0.5 to 0.6, based on hydrodynamic radii determined by dynamic light scattering on dilute solutions containing only one polymer component. Due to incompatibility between the polyisoprene and polydimethylsiloxane blocks, a binary mixture of distinct SI and SD micelles was formed in each mixed solution, as confirmed by cryogenic transmission electron microscopy. When the total concentration of polymer was increased to 20--30%, the micelles adopted a superlattice structure. Small angle X-ray scattering revealed the lattice to be the full LS{sub 13} superlattice (space group Fm{sub 3}c) in all cases, with unit cell dimensions in excess of 145 nm. A coexistent face-centered cubic phase composed of SD micelles was also observed when the number ratio of S to L micelles was large.

Authors:
;  [1]
  1. (UMM)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE
OSTI Identifier:
1006681
Resource Type:
Journal Article
Resource Relation:
Journal Name: Langmuir; Journal Volume: 24; Journal Issue: (12) ; 2008
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; BINARY MIXTURES; COPOLYMERS; CRYOGENICS; DIMENSIONS; DYNAMICS; HYDRODYNAMICS; LIGHT SCATTERING; MICELLAR SYSTEMS; POLYISOPRENE; POLYMERS; POLYSTYRENE; SCATTERING; SIZE; SOLUTIONS; SOLVENTS; SPACE; SUPERLATTICES; TRANSMISSION ELECTRON MICROSCOPY; UNITS

Citation Formats

Abbas, Sayeed, and Lodge, Timothy P. Superlattice Formation in Binary Mixtures of Block Copolymer Micelles. United States: N. p., 2008. Web. doi:10.1021/la8002367.
Abbas, Sayeed, & Lodge, Timothy P. Superlattice Formation in Binary Mixtures of Block Copolymer Micelles. United States. doi:10.1021/la8002367.
Abbas, Sayeed, and Lodge, Timothy P. 2008. "Superlattice Formation in Binary Mixtures of Block Copolymer Micelles". United States. doi:10.1021/la8002367.
@article{osti_1006681,
title = {Superlattice Formation in Binary Mixtures of Block Copolymer Micelles},
author = {Abbas, Sayeed and Lodge, Timothy P.},
abstractNote = {Two distinct diblock copolymers, poly(styrene-b-isoprene) (SI) and poly(styrene-b-dimethylsiloxane) (SD), were codissolved at various concentrations in the polystyrene selective solvent diethyl phthalate. Two SI diblocks, with block molar masses of 12000-33000 and 30000-33000, and two SD diblocks, with block molar masses of 19000-6000 and 16000-9000, were employed. The size ratio of the smaller SD micelles (S) to the larger SI micelles (L) varied from approximately 0.5 to 0.6, based on hydrodynamic radii determined by dynamic light scattering on dilute solutions containing only one polymer component. Due to incompatibility between the polyisoprene and polydimethylsiloxane blocks, a binary mixture of distinct SI and SD micelles was formed in each mixed solution, as confirmed by cryogenic transmission electron microscopy. When the total concentration of polymer was increased to 20--30%, the micelles adopted a superlattice structure. Small angle X-ray scattering revealed the lattice to be the full LS{sub 13} superlattice (space group Fm{sub 3}c) in all cases, with unit cell dimensions in excess of 145 nm. A coexistent face-centered cubic phase composed of SD micelles was also observed when the number ratio of S to L micelles was large.},
doi = {10.1021/la8002367},
journal = {Langmuir},
number = (12) ; 2008,
volume = 24,
place = {United States},
year = 2008,
month = 8
}
  • We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (lowmore » interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.« less
  • A self-consistent mean-field lattice theory used to model the solubilization of polycyclic aromatic hydrocarbons in poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles is able to reproduce the experimental finding that the micelle-water partition coefficient of naphthalene increases with an increase in the poly(propylene oxide) content of the polymer and with polymer molecular weight. With the polycyclic aromatic hydrocarbons treated as flexible benzene chains, the model indicated a strong correlation between the micelle-water partition coefficient and the octanol-water partition coefficient of the solute, which was also observed experimentally. Linear, triblock copolymers and starlike, branched copolymers were studied. It was found that themore » linear polymers formed larger micelles with a more hydrophobic core environment, resulting in higher micelle-water partition coefficients.« less
  • A self-consistent mean-field lattice theory of the micellization and solubilization properties of poly(ethylene oxide)-poly(propylene oxide) block copolymers is described. The polymer segments are allowed to assume both polar and nonpolar conformations (corresponding to the gauche and trans rotations of the C-C and C-O bonds), which permits the dependence of the segment-segment interactions on temperature and composition to be accounted for in a physically realistic manner. The phase diagrams of poly(ethylene oxide) and poly(propylene oxide) in water, both of which exhibit lower critical solution temperatures, can be reproduced semiquantitatively. The predictions of the theory compare favorably with published light scattering resultsmore » on the aggregation behavior of block copolymers and with the authors experimental results for the solubilization of naphthalene in these micelles as a function of polymer composition and molecular weight. The dependence of the micelle-water partition coefficient on polymer composition is not simply related to the proportion of the hydrophobic constituent but depends on the detailed micelle structure. The strong effect of the molecular weight and PPO content of the polymer on the amount of naphthalene solubilized observed experimentally was interpreted in terms of the model results.« less
  • In this contribution, we develop a coarse-graining methodology for mapping specific block copolymer systems to bead-spring particle-based models. We map the constituent Kuhn segments to Lennard-Jones particles, and establish a semi-empirical correlation between the experimentally determined Flory-Huggins parameter χ and the interaction of the model potential. For these purposes, we have performed an extensive set of isobaric–isothermal Monte Carlo simulations of binary mixtures of Lennard-Jones particles with the same size but with asymmetric energetic parameters. The phase behavior of these monomeric mixtures is then extended to chains with finite sizes through theoretical considerations. Such a top-down coarse-graining approach is importantmore » from a computational point of view, since many characteristic features of block copolymer systems are on time and length scales which are still inaccessible through fully atomistic simulations. We demonstrate the applicability of our method for generating parameters by reproducing the morphology diagram of a specific diblock copolymer, namely, poly(styrene-b-methyl methacrylate), which has been extensively studied in experiments.« less