skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE TEMPERATURE-DEPENDENT SURFACE STRUCTURE, COMPOSITION AND ELECTRONIC PROPERTIES OF THE CLEAN SrTiO3(111) CRYSTAL FACE: LEED, AES, ELS AND UPS STUDIES

Journal Article · · Physical Review B (Solid State)

Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO{sub 2} surface, there are always significant concentrations of Ti{sup 3+} in an annealed ordered SrTiO{sub 3} (111) surface. This stable active Ti{sup 3+} monolayer on top of a substrate with large surface dipole potential makes SrTiO{sub 3} superior to TiO{sub 2} when used as a photoanode in the photoelectrochemical cell.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Chemical Sciences Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
1004888
Report Number(s):
LBL-6996; TRN: US201104%%1159
Journal Information:
Physical Review B (Solid State), Vol. 10, Issue 10; ISSN 0022-3719
Country of Publication:
United States
Language:
English