skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators

Journal Article · · Journal of Micromechanics and Microengineering

Thermal stress-induced damage in multilayered films formed on substrates and cantilever beams is a major reliability issue for the fabrication and applications of micro sensors and actuators. Using closed-form predictive solutions for thermal stresses in multilayered systems, specific results are calculated for the thermal stresses in PZT/Pt/Ti/SiO2/Si3N4/SiO2 film layers on Si substrates and PZT/Pt/Ti/SiO2 film layers on Si3N4 cantilever beams. When the thickness of the film layer is negligible compared to the substrate, thermal stresses in each film layer are controlled by the thermomechanical mismatch between the individual film layer and the substrate, and the modification of thermal stresses in each film layer by the presence of other film layers is insignificant. On the other hand, when the thickness of the film layer is not negligible compared to the cantilever beam, thermal stresses in each film layer can be controlled by adjusting the properties and thickness of each layer. The closed-form solutions provide guidelines for designing multilayered systems with improved reliability.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1003533
Journal Information:
Journal of Micromechanics and Microengineering, Vol. 16, Issue 11; ISSN 0960--1317
Country of Publication:
United States
Language:
English