skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of the Maltose Transport System Reveal a Mechanism for Coupling ATP Hydrolysis to Substrate Translocation without Direct Recognition of Substrate

Journal Article · · J. Biol. Chem.

The ATPase activity of the maltose transporter (MalFGK{sub 2}) is dependent on interactions with the maltose-binding protein (MBP). To determine whether direct interactions between the translocated sugar and MalFGK{sub 2} are important for the regulation of ATP hydrolysis, we used an MBP mutant (sMBP) that is able to bind either maltose or sucrose. We observed that maltose- and sucrose-bound sMBP stimulate equal levels of MalFGK{sub 2} ATPase activity. Therefore, the ATPase activity of MalFGK{sub 2} is coupled to translocation of maltose solely by interactions between MalFGK{sub 2} and MBP. For both maltose and sucrose, the ability of sMBP to stimulate the MalFGK{sub 2} ATPase was greatly reduced compared with wild-type MBP, indicating that the mutations in sMBP have interfered with important interactions between MBP and MalFGK{sub 2}. High resolution crystal structure analysis of sMBP shows that in the closed conformation with bound sucrose, three of four mutations are buried, and the fourth causes only a minor change in the accessible surface. In contrast, in the open form of sMBP, all of the mutations are accessible, and the main chain of Tyr{sup 62}-Gly{sup 69} is destabilized and occupies an alternative conformation due to the W62Y mutation. On this basis, the compromised ability of sMBP to stimulate ATP hydrolysis by MalFGK{sub 2} is most likely due to a disruption of interactions between MalFGK{sub 2} and the open, rather than the closed, conformation of sMBP. Modeling the open sMBP structure bound to MalFGK{sub 2} in the transition state for ATP hydrolysis points to an important site of interaction and suggests a mechanism for coupling ATP hydrolysis to substrate translocation that is independent of the exact structure of the substrate.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002796
Journal Information:
J. Biol. Chem., Vol. 285, Issue 04, 2010; ISSN 0021-9258
Country of Publication:
United States
Language:
ENGLISH