skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates

Abstract

Electromechanical coupling in individual tobacco mosaic viruses has been studied using piezoresponse force microscopy. Possible origins of the observed high resolution contrast, including the topographic crosstalk, difference in the elastic properties, and the intrinsic electromechanical coupling due to the piezoelectric and flexoelectric effects are discussed. Using simple estimates, we argue that, due in part to the small size and high symmetry of this particular material system, flexoelectric coupling can dominate the observed electromechanical behavior. The electrical manipulation of the virus particles, essential for nanoelectronic applications for which they are proposed, has also been demonstrated.

Authors:
 [1];  [1];  [2];  [2]
  1. ORNL
  2. University of California, Riverside
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1001692
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 88; Journal Issue: 15
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 60 APPLIED LIFE SCIENCES; ELASTICITY; MICROSCOPY; RESOLUTION; SYMMETRY; TOBACCO; VIRUSES

Citation Formats

Kalinin, Sergei V, Jesse, Stephen, Liu, W. L., and Balandin, A. A. Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates. United States: N. p., 2006. Web. doi:10.1063/1.2194008.
Kalinin, Sergei V, Jesse, Stephen, Liu, W. L., & Balandin, A. A. Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates. United States. doi:10.1063/1.2194008.
Kalinin, Sergei V, Jesse, Stephen, Liu, W. L., and Balandin, A. A. Sun . "Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates". United States. doi:10.1063/1.2194008.
@article{osti_1001692,
title = {Evidence for Possible Flexoelectricity in Tobacco Mosaic Viruses Used as Nanotemplates},
author = {Kalinin, Sergei V and Jesse, Stephen and Liu, W. L. and Balandin, A. A.},
abstractNote = {Electromechanical coupling in individual tobacco mosaic viruses has been studied using piezoresponse force microscopy. Possible origins of the observed high resolution contrast, including the topographic crosstalk, difference in the elastic properties, and the intrinsic electromechanical coupling due to the piezoelectric and flexoelectric effects are discussed. Using simple estimates, we argue that, due in part to the small size and high symmetry of this particular material system, flexoelectric coupling can dominate the observed electromechanical behavior. The electrical manipulation of the virus particles, essential for nanoelectronic applications for which they are proposed, has also been demonstrated.},
doi = {10.1063/1.2194008},
journal = {Applied Physics Letters},
number = 15,
volume = 88,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • We explore two-dimensional self-assembly of tobacco mosaic viruses (TMVs) on a substrate-supported, fluid lipid monolayer by manipulating the electrostatic interactions, with specific focus on the effects of the cationic lipid concentration in the monolayer and the presence of Ca{sup 2+} ions in the surrounding bulk solution. The TMV assemblies were characterized by grazing-incidence X-ray scattering and atomic force microscopy, and the inter-particle interaction quantified through X-ray scattering data analysis. In the absence of Ca{sup 2+} ions, we found that higher charge densities on the lipid monolayer led to poorer in-plane order, which may be attributed to faster adsorption kinetics, duemore » to the surface potential that increases with charge density. At the same time, higher lipid-charge densities also resulted in weaker repulsion between TMVs, due to partial screening of Coulomb repulsion by mobile cationic lipids in the monolayer. The lipid-charge dependence was diminished with increasing concentration of Ca{sup 2+} ions, which also led to tighter packing of TMVs. The results indicate that Ca{sup 2+} ions strengthen the screening of Coulomb repulsion between TMVs and consequently enhance the role of attractive forces. Control experiments involving Na{sup +} ions suggest that the attractive inter-TMV interaction has contributions from both the van der Waals force and the counter-ion-induced attraction that depends on ion valence.« less
  • We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essentialmore » for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca{sup 2+} ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.« less
  • We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essentialmore » for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca2+ ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.« less