skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

Abstract

From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in anmore » electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact with metallographic polishing lubricants, solvents, or chemicals. And water being one of the most reactive solutions, is not used in the preparation. Figure 2 shows an example of a plutonium sample in which an oxide film has formed on the surface due to overexposure to solutions. it has been noted that nucleation of the hydride/oxide begins around inclusions and samples with a higher concentration of impurities seem to be more susceptible to this reaction. Figure 3 shows examples of small oxide rings, forming around inclusions. Lastly, during the cutting, grinding, or polishing process there is enough stress induced in the sample that the surface can transform from the soft face-centered-cubic delta phase (30 HV) to the strain-induced monoclinic alpha{prime} phase (300 HV). Figure 4 and 5 shows cross-sectional views of samples in which one was cut using a diamond saw and the other was processed through 600 grit. The white layers on the edges is the strain induced alpha{prime} phase. The 'V' shape indentation in Figure 5 was caused by a coarser abrasive which resulted in transformations to a depth of approximately 20 {micro}m. Another example of the transformation sensitivity of plutonium can be seen in Figure 6, in which the delta phase has partly transformed to alpha{prime} during micro hardness indentation.« less

Authors:
 [1];  [1]
  1. Los Alamos National Laboratory
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
OSTI Identifier:
1000492
Report Number(s):
LA-UR-07-0066
TRN: US201101%%361
DOE Contract Number:
AC52-06NA25396
Resource Type:
Conference
Resource Relation:
Conference: MICROSCOPY & MICROANALYSIS 2007 CONFERENCE ; 200708 ; FT. LAUDERDALE
Country of Publication:
United States
Language:
English
Subject:
36; ELECTROLYTES; ETHANOL; FCC LATTICES; HEALTH HAZARDS; HYDRIDES; METALLOGRAPHY; MICROANALYSIS; MICROSCOPY; NITRIC ACID; OXIDES; PLUTONIUM; POLISHING; SAMPLE PREPARATION; SILICON CARBIDES

Citation Formats

PEREYRA, RAMIRO A., and LOVATO, DARRYL. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS. United States: N. p., 2007. Web.
PEREYRA, RAMIRO A., & LOVATO, DARRYL. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS. United States.
PEREYRA, RAMIRO A., and LOVATO, DARRYL. Mon . "PLUTONIUM METALLOGRAPHY AT LOS ALAMOS". United States. doi:. https://www.osti.gov/servlets/purl/1000492.
@article{osti_1000492,
title = {PLUTONIUM METALLOGRAPHY AT LOS ALAMOS},
author = {PEREYRA, RAMIRO A. and LOVATO, DARRYL},
abstractNote = {From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact with metallographic polishing lubricants, solvents, or chemicals. And water being one of the most reactive solutions, is not used in the preparation. Figure 2 shows an example of a plutonium sample in which an oxide film has formed on the surface due to overexposure to solutions. it has been noted that nucleation of the hydride/oxide begins around inclusions and samples with a higher concentration of impurities seem to be more susceptible to this reaction. Figure 3 shows examples of small oxide rings, forming around inclusions. Lastly, during the cutting, grinding, or polishing process there is enough stress induced in the sample that the surface can transform from the soft face-centered-cubic delta phase (30 HV) to the strain-induced monoclinic alpha{prime} phase (300 HV). Figure 4 and 5 shows cross-sectional views of samples in which one was cut using a diamond saw and the other was processed through 600 grit. The white layers on the edges is the strain induced alpha{prime} phase. The 'V' shape indentation in Figure 5 was caused by a coarser abrasive which resulted in transformations to a depth of approximately 20 {micro}m. Another example of the transformation sensitivity of plutonium can be seen in Figure 6, in which the delta phase has partly transformed to alpha{prime} during micro hardness indentation.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 08 00:00:00 EST 2007},
month = {Mon Jan 08 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets tomore » expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some of the more interesting results of these investigations are presented.« less
  • Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. The authors have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation ofmore » the original data and subsets drawn from it. The authors have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities.« less
  • A group of white male workers with the highest internal depositions of plutonium at the Los Alamos National Laboratory was selected in 1974 for a study of mortality. This group of 224 persons includes all those with an estimated deposition (in 1974) of 10 nanocuries or more of plutonium, principally /sup 239/Pu but also in some cases /sup 238/Pu. Follow-up of these workers is 100% complete through 1980. Smoking histories were obtained on all persons. Exposure histories for external radiation and plutonium were reviewed for each subject. Standardized mortality ratios (SMR) were calculated using rates for white males in themore » United States population, adjusted for age and year of death. SMRs are low for all causes of death (56; 95% CI 40, 75) or for all malignant neoplasms (54; 95% CI 23,106). Cancers of interest for plutonium exposures, including cancers of bone, lung, liver, and bone marrow/lymphatic systems, were infrequent or absent. The absence of a detectable excess of cancer deaths is consistent with the low calculated risk to these workers using current radiation risk coefficients. An alternate theory that suggests much higher risk of lung cancer due to synergistic effects of smoking and inhaled insoluble plutonium particles is not supported by this study.« less
  • The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.