a value of 2.6 W/mK. This calculation uses the CT
dissociation front data and Equation (5) to estimate a
value of 0.03 for B (a front displacement of 1.7 cm after
840 seconds). While the thermal conductivity value is
clearly higher than would be expected for pure thermal
conduction, it should be remembered that the value
incorporates all heat-transfer processes. Hence, this
lumped parameter includes advective processes and
kinetic effects as well as potential experimental
uncertainty, such as the effects of radial heat transport.

Conclusions

The CT images clearly track the spatial progression of
a dissociation front in a sand/hydrate system. By the
application of a simple moving-boundary-problem
model, the advancement of the dissociation front along
with applied temperature boundary conditions have
been used to compute an effective thermal conductivity

for the dissociated sand/water ice system. This lumped
parameter, which describes the heat-gain processes of
the sand/water ice medium, is estimated as 2.6 W/m K.
It is considerably higher than expected based purely
upon heat conduction alone. One possible explanation
for this result is that the effective thermal conductivity
incorporates advective and kinetic processes associated
with hydrate dissociation. Additionally, if there were
significant radial heat transport into the sample, as well
as end effects that the model neglects because of our
assuming a semi-infinite domain, these model errors
would increase the estimated thermal conductivity
value. These results demonstrate the value of using
remote sensing techniques to track the movement of a
hydrate dissociation front for understanding the
complex thermodynamics of hydrate/sand systems.
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