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homogeneity:andxx should _approacﬁrl :‘unity. If a is very small Ay will be
equal to unity and all the higher A, will be zero. Equation 24 then re-
duces to:

A=1+(a?/2) A/(A = )\) (25)

From this we see that A approaches unity as a approaches zero. It is
furthermore clear that if a approaches zero, Eq. 25 will again hold
and A must again approach-unity so‘that we have verified that Eq. 24
has the correct limiting behavior.

We now wish to work-out an approx1mate procedure for calculating
A, which will be reasonably accurate and simple for an arbitrary func-
tion u(x) If the wave vectork is real Eq. 9 can be arranged to have a
Hermitian kernel. We multiply each side of Eq. 9 by Vu(x) and rewrite
it as follows:

Ay (%) Vux) = (1/47) f
x elke &%) Vu(x)ulx’) ¢ulx’) Vulx)  (26)

This equation can be derived fromf a simple variational principle and A
can be written as the maximum of the following expression:
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The maximum will be reached when ¢ is an actual solution of Eq. 9.
If the variation of u(x) is not too violent, ¢y (x) will be approximately
‘constant. We, therefore, place, ¢k(§) and ¢k(§) equal to unity and -
investigate the agreement between the value of U thus obtained and the
correct value of A. It is, of course, clear that the value of U thus ob-.
tained will always be lower than the correct value of \. We write X for
this approximate value and obtain:
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