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| . + The Exponential Experiment

e | AEC) - Lt/ #3

The multiplying properties of & subcritical chain reacting assembly can

l

| ;

. be determined, as just indicated, by measuring the multiplication rate, R.
This, close to critical, is

R = -1
kex(Bo2)

vhich, according to (5.28), gives

- = = k(B2 =k Poo (EgyBo°) -1 (5.96)

=

The quantity Boa is of course known if the size and sh;pe of the reactor are
_ _known; for a sphere of radius R, 302 = _I;_. Often % Py (BgsBo2) and L2 are -
. known from diffusion type experiments; inRthis event the multiplication con-
. stant, k, can be found from the measurement of R.
Of particular interest is the situation where the subcritical dssembly
is so large that the simplified equation (5.22) holds. Then the excess multi-

plication constant becomes
kex(Bo?) = k - MBZ - 1

hence 1if M2 is known, and if R, 1.e., koy, 1is measured, then

k = 1 + M2B,2 -%.

The measurement of multiplication rate is a practical way to determine

v

the multiplying propefties of the assembly only if the system is so close to
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critical that R is large; otherwise, the two quantities M2Bo2 and % will be
very large, and their difference, which determines k, will have little ac-
curacy. The multiplication rate method is therefore best suited to enriched
systems whose critical size is smail and which can be built large enough to
give multiplication rates of 10 or 15 rather readily.

Since the size of a critical ordinary U chain reactor is very large,
the multiplication rate method is applicable only with difficulty to such
systems. While the German project nevertheless made most determinations
of the multiplying properties of graphite-uranium, and DpO-uranium systems
by measuring mulfiplication rates, the American and Canadian projects ob-
tained information on such systems by actuaslly measuring the details of the
:neutron distribution in subcritical assemblies in which the multiplication
: r;te was as little as 1.5 to 2. The advantage of such experiments, called
exponential or "intermediate"” experiments, was that they could give informa-
tion on the multiplying system with relatively little material. Since the
high quality graphite and uranium needed for the assemblies was very scarce,
the possibility afforded by these experiments of predieting the critical size
or optimizing uranium-graphite configurations was of the highest importance
for the Hanford project.

The exponentiél experiment iéeally consists of a long parallelepiped
or cylinder of the multiplying configuration whose properties are to be de-
termined. A neutron source is placed in the plame z = 0. The experiment
consisté in measuring the slow neutroﬁ’distribution in the assembly; the de-
tails:of‘thigldist:ibution de@e;mine the neutron EE&EEEEZEEQ properties of
the sys£¢ﬁ Just as the details of.the neutron distriﬁution iﬁ thé rather

similar diffusion length experiment (Chapter I, P. T71) serve Yo determine
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the neutron absorbing p#operties of the material out of which thé diffusion
length expcriment i1s constructed.

The analysis of the neutron distribution in the exponent}al éxéeriment
is best done by an application of the Fourier transform. This procedure,

rirst used by G. Placzek and G. Volkoff, Canadian Journal of Research, A,

25, 276 (1947) is of such wide application in all of nuclear reactor theory
that it will be described in detail.

Consider a uniéorm multiplying system in the shape of an infinitely
long parallelepiped of square cross section whose extrapolated width, as-
sumed to be the same for neutrons of all energy is a. 'In‘the z = O

plane there is placed a source of fast neutrons distributed like

QUx,y,2z) = Qos(z) cos Byx cos Byy . (5.97)
wvhere ‘
2 2 T2
B X = By = 82

are the geometric bucklings in the x and y directions. It is required to
find Qs(x, ¥, z), the thermal flux throughout the system.

The ﬁroblem as set forth is somewhat specialized since the source dis-
tribution is given simply by the fundamental mode cox B,x cos Byy. However
since any source distribution f(x, y) can be expressed‘gs a superposition
of Fourier components |

£(x,y) =L L £y, cox B, X cos Bj.y

the restriction to only the fundamental is not serious: the neutron distribu-
tion for an arbitrary source disposition is a superposition of the distribu-

tion for each harmonic. .

[}
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In much thé same way, the restriction to an infinitely long system

i8 not essential since the distribution in a block of length H is found

by placing + sources of equal strength at the points z = Y 4 n H and
-image sources at z = _ 4 (n + %)H'in an infinitely long block and
superposing.

The equation for the asymptotic slow neutron density is

Do & §s - Nog Qs + k_g!_gf $s(z ')P(ES:E:_{F')Q{' + /[ QLE') p* (Es;g,;_')dg' = 0 (5.98)

The slowing down kernels P*(Eg,r) and P(Eg,r) are in general different
since the energy of the source neutrons need not be the same as the energy

of the fission neutrons. To solve (5.98) we put
§s(r) = £(z) cos Byx cos ByY (5.99)

and ve introduce the Fourier transforms

@ ivz
£(z) = 1. [ Fwe aw
2T _oo
, (5.100)
1 (00} iwz
8(z) = — [ e dw
27 - 00
I? (5.97), (5.99), and (5.100) are substituted into (5.98), and if use is
made of the fact that ' ‘
ivz f iwz ( ‘ |)
J cos B.x cos Bye P(Eg,r,r')dr' = cos B x cos B,y € Pp_(E,|r-r'|)ar’
Pile x* v all x y o ‘\Ug
° space
iwz

= ccs ByX cos Byy e 1_’00 (Es,Ba) ‘




where

then f(w) is found to satisfy

Fw) - Qo Pos* (Eg,52). | (5.i01)

-Hence the required distribution is

2(z) = o r Po* (g,5%) . (5.102)
T-® yg [1+L2B?-%'P' (Es',Be)] '

To compute this integral we follow a semicircular contour which embraces

2 + }32 + w2 are the

the entire positive half-plane. Then if sz < B, y v

zeros (assumed simple) with positive imaginary part of the denominator, 1i.e.,

k Peo (Eg)B,2) :

= 1 © (5.103)
p(1 + 128 2) \
then integral (5.102) has the value
_ iv, |zl
£(z) = o Z, Poot (Es,ByZ) € . (5.104)
2 kK 3¢ 2 2
B,, Noa[a P’y (ES,BV ) -L ]
’ where
St p 2 d = .
P’ (EgsByS) u 27 PoolEgR | ,

In general the roots BE of (5.103) will form a denumerable infinity. The
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lowest root, Boz, is by definition, the material buckling of the system,
and 1s real. Moreover, since the infinitely long parallelepiped is sub-

critical,

2
Bx2 * BY = B02§

1/2
= |B2 - (B 2,43 2) is a pure imaginary, say w., = i The
o . A\Dy y P g : Y J Vo Z°

higher roots v, are in general complex, and their imaginary parts are all

i.e., w
? Yo

less than 4% in absolute value. Far from the source, therefore, the thermal

neutron distribution must be giQen by

ol
5 2
= £(z) cos B x cos Byy,,,?g Poo NEsiB, e £

- 5 cos Byx cos Byy (5.105)
2 P 2y _
B, N“a[gp'oo(Es’Bo ) L}

where

1
Bx2 + By = ﬁ »= B°2 . (5.106)

The asymptotic neutron distribution (5.105) is exponential with attenua-
tion length ¢ . This gives the "expoﬁential" experiment its name. The asymp-
totic attenuation length is related to the material buckling by the simple re-
lation (5.106). Thus by measuring the aftenuation ;ength of the neutrqn‘dis-
trivution in an exponential experiment, and by measuring the geometric quanti-
ties sz and Bya, the material buckiing of fhe multiplying system can be ob-
tained. It is to be notéd that the exponential experiment affords a measure-
ment of the material’buckling Airectly; an evaluation of k from the experiment

is possible only if (5.102) can be solved, and this in general requires de-

tailed knowledge of L2, P, and 550° However if the multiplication constant is

close to unity (5.103) becomes
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k = 1 + M2B2

agd k can therefore be estimated from a measurement of Bo2 and an estimate

-~

of M®. This is essentially the procedure which was used to estimate k in
the wartime Chicago experiments.

In carrying out the exponential experiment, care must be taken that
it is-indeed the asyﬁp;otic attenuation length which is measured.” Close
to the>source, the distribution (5.104) consists of a superpbsition of many'
exponentials, some with complex aﬁtenuatién lengths. These non-asymptotic
terms can be shown to arise from the spatial variation of theAneutron energy
spectrum: close to the source the spectrum i1s much influenced by the energy
of the source neutrons, dhiie farther away the spectrum takes on‘its asymp-

totic form determined mainly by the slowing down properties of the medium.

The slowing down density at energy E is

alryu) = XM f § (x) B(E,rr)arr + [ Qe )Be(Errazr (5.105)
P Pile ‘ o .

which, on substitution of (5.97), (5.99), (5.100), and (5.104), becomes

_ i, |z| . ' : o6
- B 2\5¢ o2va Y ® 1wz _ 2 (5.106) .
q(r;u) = %9‘21 T, Fot(Es;By”)P(E,B, )32 v J&  FUEB, ,Bya, w2)aw [cos B x
' : % f"(1.) (ESJsz) - L -® \

cos Byy

~The second term of course represents neutrons which reach (r,E) without having
undergone multiplication; the first term represents those which have gone
through multiplication cycles. At great distances from the source only the

v, = 1/¢ term persists; thus



5 P L
% Pa?*(E »Bo°)P(E,B,<) .

kg 2y.12
> P afEe,B,%)-L

iwz ,
P*(£,8,2,8,%,v%)av |cos B,x

8™ 8

k
Q(E)-u) ~3 )

(5.107)
cos Byy

In Qddition to these 'kpectral"” corrections the neutron flux willh
deviate from a pure exponential close to the source if the source.distri-
bution contains more than a single harmonic - e.g., if the source is con-
centrated in a point. Such "harmonic” corrections are in practice usually

.\ more important than the "spectral” corrections, and during theloriginal ex-
ponential experiments much attention was paid to evaluating thgse harmonic
corrections. To avoid both the spectral.and the harmonic corrections it is
necessary in determining lAé/ from the observed neutron distribution to'start

measurements two or three attenuation lengths from the source.
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General Reactor with Resonance Fission

'

It is possible to write down the characteristic equation and the asymptotic
solution fof a reactor system in which £he slowing down model is continuous and
fissions are assumed to occur atrarb;trary energies. Such systems are often
called "resonance reactors”: an example is the SIR.

If the validity of age theory is assumed even with absorption, then the equa-
tion for the slowing down, absorption, and multiplication of neutrons in a uniform

-reactor can be written (cf. Eq. 3.59)

D Y
© A Nog Folrsu) - NogFo(r,u) + £(u)l [ k(u )NogF(r,u')au’ + k(ug)Noalu,) o | =
NOSO ° - [o] .

3%; 3 N“soFo(E’“) : (6.43)

or, in terms of the slowing down density q(r,u) = ¢ Naso(Fo(r’u)’

. .
Do 4q(r,u) - e q(r,u) + £(w)| [ k(a) N8 q(r,ur)aut = 22K 4 k() )Noq(ug)F,
Nos, - € Ngso ° Nogo ¢~ au

(6.44)

In these equations, f(u) is the fission neutron spectrum in lethargy, u = ln En/E,
Ep being the high emergy cut-off of the fission spectrum, x(u) = ’!ﬁggi is the

_ a
number of fast neutrons produced per neutron absorbed at lethargy u, U is the

logarithmic energy loss corresponding to thermal energy, k(uo) is the number of

fast neutrons produced per thermal neutron absorbed, and Qs is the thermal neutron

flux. It is assumed that u;, the lower limit of the fission spectrum, is above .

thermal lethargy.
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For the thermal neutrons,

Doug) 8§, - Nog(u )P, + alu) = o (6.45)

It will now be shown that asymptotic solutions of (6.4L4) and (6.45) in which
space and lethargy are separable can be constructed provided the neutron fluxes

at all energies are distributed in space as solutions of
Ay (x)+ By (x) = o (6.46)

and Bg2 satisfies ; characteristic equation which will be described below.

In other words, the most general reactor equation (6.43), in which resonance
fission occurs, has an asymptotic solution, and a characteristic equation, Jjust as
in the case of thermal fission reactors. Thus even when resonance fissions occur,
the powe£ distribution in a bare, uniform reactor with energy independent extrapo-
lation length, is éiveh by a solution of the wave equation (6.46).

To prove this "generalized" fundamental tfieorem of pile theory, set
7Y ?S + Bgz @5 = 0, Q(E)u) = X(U)V(E)- _ '

Then from (6.&5),

b, - q(uo) . (6.47)
8 Nog(u,) + B2D (u,)

If this exprehsion for Qs is substituted into (6.44), and if q is replaced by x(u)w(E),

A q by - 362 X(u)y(r), there results

.

- DoBg2 + Noa X(u) + f£(u) [. k(u") _Nog X(u')du' + k(ug) X(uo) = 2 X(u)
o " Nog, ¢ 1+ L2Bg2 2u

Rog, ¢ ¢ No
%o S (6.48)
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Equation (6.48) may be thrown into integral form by solving it as a first order

differential equation in X{u). The result is

B M) o [ BaPlx) ¢ Nealx) g
X(u) =€ © ¢ Nog (¥) | f(z)e - & Nogg(x)
[e]
(6.49)
h ' .
I No (V k(H) X (V)d\l + k (uO) X (uo) 1dz
. o ¢ Ndso(") B 1+ LQBS2

Now the assumption

. fl Nog(y) + BgaDo(y) ay| . ? Bg?Do(x) + Noa .
X(u) =€ ° & Nogy(y) [ £(z)e ° & "9  az

o
(6.50)

vanishes, as it should at u = o0, and solves (6.48) provided Bg2 satisfies the fol-

lowing equation

U ¥ : - Bg2 T(z,w) | Yo Co- Bg"""(z,uo)
[ 1 xw) & p(z,we e(2)azaw + X(%) & plzu) e £(z)dz _ ,
G o Ncsog . 1+ Lnga |
(6.51)
’In this equation ' u ’
S Nealw) - (6.52)
olz,u) =€ % & N“eo(“)

is the resonance escape probability from lethargy z to u as computed from simple age

theory, while



- u
2 (zu) = [ _Do(W g (6.53)
z g Nog, 4

is the neutron age from lethargy z to u, again acco?ding to simple age theory.
The sense of this generalized resonance pile equation is the following: the

second term, which is practically the same as (6.14) is the product of (l)k(uo),

the number of neutrons produced per thermal absorbed; (2), the probability\of

escaping leakage while slow, —31 . and (3), the probability of escaping

1+ LeBs2 ’
resonance capture or leakage while slowing down, viz.,

; - 3" [#(z0)]

o
) p(z,uo) e f(z)dz.
o

The product of these three factors may be called the slow effective multiplica-
tion constant, kteff' Since ordiharily resonance capture does not set 1ﬁ until
well below the lower limit of the fission specfrum, p(z,uo) ié replaceable by p,
the total resonance escape érobability. Also uy may be replaced by uj in the
limit of the integral since f(z) is zero below lethargy uj. Then, since k(u,)

) k(uo)p is the same as the usual multiplication constant

was defined as Y NOf_
Noa

provided v includes £ . The thermal effective multiplication constant, with these

simplications, is therefore

E, - B,° 2 (Eg,E')
k £ t(E') e . a8’
. ‘

(6.54)

2
ki pp(Bg") =
eff &
' 1 + L2Bg2

vhich is essentially (6.13) since f(E) is assumed to be zero outside the energy

range E; to E,.
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The first term may be called the effective resonance muitiplication constant,

U W
kfeff(Bga) = [ f k(v)——P(Z:V)C Bg ®v(zw)

£(z)dzdw. The integrand
(¢} 1‘{uso € .

A

18 the product of: (1) k(w), the number of neutrons produced per neutron absorbed

No
at lethargy w; (2) —2—, the probability that a neutron will be absorbed rather

than scattered in unit lethargy interval; and (3), f £(z) p(z,w)e Bg? 7 (z,v) dz,

°] .
the probability that a fission neutron will escape resonance capture or leakage
while slowing down to lethargy, w, where further fission may take place.

If the fission spectrum were a &-function, f£(z) = a(ulv- z), the generalized

characteristic equation (6.51) becomes

'f(u W) ky © ‘
f k(v) (_2_) e 8.V . =1, (6.5
. 1 + L2p2
v
-f Noa__ gw
where 9P = Nog__ e u ¢ Nog , being the derivative of the resonance
dw 8o

11 N°so

escape probability, is the probability of resonance absorption per unit lethargy in-

terval.

I the reactor system were infinitely large, Bga = 0, and the effective

multiplication constants become the infinite mulfiplication constants. This sug-
gests that in any chain reactor in which non-thermal as well as thermal fission
takes place, two multiplication constants, ke for non-thermal and k. for thermal

fissions, ought to be defined. Putting 1382 = 0 in the formulas for the effect-

ive multiplication constants and equating the results to ke and -ky»

uo w .
j o et o) £ (2) deaw (6.56)
o

k =
L Nos, € (w) P
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» ul
kg = 2 02) T o) e (o) 4
o
Naa(uo) o] '

LY

or, if an average resonance escape probsbility is defined by

oW
(W) = [ p (zw) £ (2) dz,
0

this being the same as the usual resonance escape probability, then

uo i
ke : | Nog(w)

P (v) aw
© Nog, & (v) :

kg ¢~ orl) Pw) = mfp
Nog(u,)

since f=
q Nog

(6.57)

(6.5Ta)

(6.58)

(6.59)

The quantity ke is simply the number of neutrons produced by non-thermal fis-

sion per neutron produced by all fissions. The total number of neutrons produced

by thermal fissions that become thermal.per thermal neutron absorbed is'kt.l Ihe

fast effect, & » 18 by definition the number of neutrons produced by all fissions

per neutron produced by thermal fissions. Hence

1 1

) Nosb £ (w)

and the multiplication constent

L
£ 1. v¥oe(W) o) av

(6.60)

A
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number produced by all fissions _ = =MD
: = kt + kfg kt ktE 7]p f&

number absorbed . .

It 1s in this way that the continuous slowing down theory f;r a resonance reactor
can be related to the usual four-factor equafion for k which has validity in a pre-
. dominantly thermal reactor.

Historically, formulas such as (6.57) for £ were not introduced into the
}iterature mainly because (6.57) assumes that the slowing down is given by elasti;
scattering age theory whereas in the Hanford reactors, for which the 6rig;nal theory
vas formulated, the slowing down below .the fas§ fission threshold of U258 is by in-
elastic scattering with q nuclei. This degradation of the energy below the fast )
fission threshold is most convenie;tly handled by tracing the first few collision
histories of a neutron as it is born inside a uranium lump until the neutron énergy
is degraded by inelastic scattering below the 0238 fission threshold or the neutron
escapes from the lump. On the other hand, in a homogeneous reactor system where
the energy loss of the neutron is by elastic scattering the theory of the fast ef-
fect described here is appropriate, o

A further simplification in the characteristic equati-on ca.ﬁ be effected by
defining av;rage ages for neutrons inducing resonance fissions and for neut£ons

. inducing thermal fission. Thus if -"?fia.nd ?t are defined by the equations

Y v No - Bg T(z,w)
27T [ ] x(w) —N__g_ p (z,W) e £(z)dzaw
e- B8 f o o Oso & (6.61)
ke
vy - ngz'(z,uo)
e-Bg T . W) J plzwe £(2)dz  (6.62)
kt i ‘ N '

then the most general reactor equation based on simple age theory is



25 "Bg Ty
ke e

1+ Laqf

= 1 (6.63)

) .vhich is a very reasonable generalization of the usual Fermi equation. Since 7f

is always smaller than Q't, the .non-leakage probability for the resonance fission

cycle 1s greater than for the thermal neutron cycié. Hence resonance fissions are
more effective in maintaining the chain reaction than are thermal fissions.

Thg essence of the thermal reactor model is that all non-resonance fissions
are assumed to be induced by neutrons which do nbt diffuse; i.e., 7} = 0. In
other words, v is increased by the factor £ . Now if 1} = 0, and if the multi-

plication constant is put equal to k = k; (1 + kfé.) = kt&" then (6.€3) becomes
R2= \
Le Bg 4 .
= 1 (6.64)

1 + 122

vhich 1s the ususl characteriétic equation for thelcontinuous slowving down model.
The foregoing is the most general asymptotic theory for reactors in vhich
pon-thermal fission occurs and in which the age theory slowing down model is ap-
plicable. The major weakness of the theory is of course the aésumption that
age theory is valid even though absorption is taking place. This weakness mani-
fests i£self in that the correct formula for: the resonance escape probability
involves aaeff while (6.52). involves o,. If the absorption is sufficiently weak -
as it often is in heavily moderated systems - Oaapp and o, are nearly the same an¢
the errors arelamall. On the other hand, if the resonance absorption is heavy - 80
heavy that q attenuates drastically in one slowing down interval - more nearly ac-

curate results will be obtained if g, is everywhere replaced by o&éff‘
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An attempt to derive the first order corrections to the age theory when ab-

(1)

sorption is present has been made by Goertzel and Greuling and by Edlund . The

result is that the usual equatidn relating q and F, viz.,
q(u) = Nog .t F(u)

should be replaced by the equation

qlu) = [ g Nog + 7 Zé] F(u).

where

7:
l - o - «
2
y = M-1 , € = -1lna.
M+1

For further details the reader is referred to the original paper, CF No. 51-5-98,

Volume II, Chapter VI,

(1) ORNL-115&.
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VOLUME ITI, PART I

MICROSCOPIC PILE THEORY

’

The previous part of this book has been concerned primarily with gggig-
scopic pile theory, i.e., the calculation of the extensive'properties of a
chain reactor. These propegties include the ovér-all neutron distribution,
the time behavior of the neutron flux when the reactor is non-critical, and
the critical size of the system. In all these cdnsiderations,.the intensive
properties of the chain reactor, namely, the multiplication constant, the
infinite slowing down kernel, the fine structure of the neutron distribution
in a'heterogeneous system, or the material buckling were given as preassigned
quantities. The calculation of the intensive properties of a chain reactor
. comprisesmicroscopic pile theory, and the remainder of the book is devoted
to an exposition of microscopic pile theory.

Actually the division of chain reactor theory into microscopic pile
theory and macroscopic pile theory depends on the poséibility of defining
a clear cut "generation" or neutron cycle. In a chain reactor ih which fis-
sions occur only at thermal energy, & generation is well defined: one starts
with, say, anyaverage fast neﬁtron, which has a certain prébability, p, of
escaping resonance capture, has a certain probability, £, of being absorbed
by uranium, and, once absorbed, yieids N fast neutrons on the average. This

complete cycle constitutes a generation, and the multiplication factor is

k =MNpf.
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In a natural uranium chain reactor, some non-thermal‘fission occurs.
Since the number of fast fission-produced neutrons is small compared to the
number of thermal fission-produced neutrons, the few fast fissions hardly
alter @he generation. Thus the generation is a relatively valid notion in
a predominantly thermal neutron chain reactor such as a large natural uranium
pile. |

The procedure for determining extensive properties of such a thermal
reactor consists of computing k, M2, and BgQ, and then applying the ideas
of macroscopic pile theory to an equivalént uniform system having the same
k, Mz, and Bge as the actual system.

If appreciable fissions occur at non-thermal energies, the definition
of a generation, and therefore the division into macroscopic and microscopic
theory loses much of its validity. Since neutrons go through complete cycles
of absorption and reproductipn at several energies, there is no unique iay
to specify the beginning and the end of the neutron cycle. There are, so
.to speek, "multiplitation constants" for each eneréy at which fission occurs,
and the true multiplication constant is the sum of the separate multiplica-
tion constants in each energy range cycle. It is customary in dealing with
such non-thermal reactors to avold reference to a neutron cycle or even to
a multiplication constant; instead multi-group equations of the reactor are
written down which involve only the absorption, scattering, and fission cross
sections and number of neutrons per fission, rather than such quantities as
multiplication constant, resonance escape probability, or migration length.
The solution of ihese multl-group equations gives thelrelevant macroscopic

information - critical size or neutron distribution - without recourse to

\

any of the notions of microscopic theory.
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So long as a chain reactor is homogeneous, tﬁe derivation of  the .ap-
propriate multi-group equations is straightforward, and there is little
incentife to separate microscopic reactor theory from macfoscoPic theory.
Howevef, when the reactor configuration is'heterogeneous, as in a natural -
uranium lattice, the fine'structure fluctuations of the neutron density in
effect modify the cross sections which are to enter the macroscopic equa-
tions. Iﬁ 1s the purpose of microscopic, or lattice, theory to compute the
details of the neutron fine structure and to thereby obtain the modifiéd
values.of the neutron cross sections. The calculations of this fine struc-
ture and the multiplication constant, migration area, and materi;l buckling
in such a system is a complicated matter which will ﬁe dealt with at length

in Part III of this book.
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CHAPTER XI

THEORY OF HOMOGENEQUS SLOW NEUTRON REACTORS i

As an introduction to Chapter XII on the microsCOpic theory of hetero-
geneous reactors the microscopic-theory of a homogeneous thermal neutron I
reactor will be developed in this chapter. Many of the results have already
been given in Chapter V, and so much of the discussion will be a review.

While the microscopic theory of homogeneous thermal reactors is pre-
sented mainly because it points up the modifications required for hetero-
geneous theory, the homogeneous slow neutron theory is nevertheless of con-
siderdble practical importance. An exampie of a homogeneous slow neutron
reactor 1s the Los Alamos water boiler which consists of a solution of
enriched uranyl nitrate and ﬁgo. Chain reacting solutions or dispersions
of natural or very,slightly,enriched uranium in heavy water_Pave been suggested
- since 1943 as a very attractive means for producing plutonium and poﬁer on
a 1arge scale. The inherent simplicity of such a homogeneous reactor makes
it likely that such systems may eventually become very important in the
large scéle release of nuclear energy. The homogeneous reactor theory dis-
cussed here is particularly relevant to such slightly enriched, heavy water

moderated chain reactors.

The critical equation

5 2

Poo(Eg, By ) '
k oo(Es, Bg = 1 (11.1)
P 14+1282 '

" for a thermal chain reactor involves the quantities k, p, 12, and FAO(ES,Bga).

\
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As was pointed out in Chapter V, the multiplication constant k is the pro-

duct
k =hepf : } (1.2
whe;e | —
= number of neutrons produced per neﬁtrdn absorbed in uranium.
€ = total number of neutrons produced by all fissions/total
number of neutrons produced by thermal‘fission.
P =. resonance escape probability.
f = thermal utilizatioh.
Each quantity in this "four factor" formula will be computed separately
.below(l);

In addition, it will be necessary to know the diffusion ares, L2, and
the slowing down kernel, Poo(Eg,r), in order to determine the critical size

A

or the material buckling from (11.1).

Determination g{ U

' The number of neutrons produced per neutron absorbed in fissionable
material was ﬁirectly given, in terms of cross sections, in Chapter V. (Eq.

5.2). Thus, if the mole ratio of U235 to UR38 is denoted by R, then

RY g (U235)

(11.3)
R 0p(U235) + Ro _(UP3) + dr(U238)

n(R) =

where % is the number, of neutrons produced per fission, df(U235) is the

fission cross section of 0235, Cff is the radiative capture cross section

(1) The "fissionable materigl" in the system will be considered to include
all isotopes of uranium or plutonium. Thus natural uranium as well as
U235 will be called fissionable material.
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in each of thé uranium isotopes.

As was4mentidned earlier, " in general is‘a function of energy. ?his
is so mainiy because the cross gections, rather than ¥ , are energy sensitive;
and fufther, the fission cross.sections depend on enefgy in a-ﬁanner differ-
ent from the way the capture cross sections depend on energy. The details of
the energy dépendence of‘o} and dr in the fissionable isotopes are given
in Chapter IV. | \

For natural uranium, R = .0071. If the following thermal neutron

cross sections and 2’, giveh by the A.E.C. Neutron Cross-Sections Advisory

/

Group (BNL-136), are assumed:

Y (u235) 2.51
op(U23%) sk b

o, (U235) TSR \
.cr(U238) 2.8b

then ” for natural uranium is 1.32. There is considerable uncertainty even
now as to the thermal capture cross section of U238, and on this arcount the

above quoted value of 7 cannot be congidered reliable to better than perhaps

-

three percent. The values of 7 for thermal neutrons in pure fissionable

‘isotopes, as given by BNL-136, are as follows:

_Thermal Neutron l;_for U233, 1235, pul39 .
Isotope /=
u233 -2.37
Ué35 S 2.2

Pue39 ‘ 2.00
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The thermal n for natural uranium was of course a number of extreme
importance in the early days of the Manhattan Project since, unless it was
appreciably larger than unity, it would not have been possible to establish
a chain reaction in normal uranium. Several experiments were theréfore
performed to try to measure.q directly. One such experiment py Fermi and
Anderson consisted of a long block of graphite in which was placed a Ra-Be
neutron source. The total number of neutrons appearing as thermals thféugh-
out this block was measured both before and after a layer of U30g had been
placed in front of the Ra-Be source. With the U308 in place the total
number of fast neutrons should be increased because of fissions. The experi-
ment was never entirely EIear-cut, however, because many of the neutrons
leak out of the sides of the block, and in addition, some of the neutrons
produced by ‘the U fission are captured by the resonances in U238, Experi;
ments of this type were performed on two different occasions by Fermi and

Anderson and the results were the following.

Thermal 1} for Natural Uranium
as Measured by Fermi and Anderson !

;q_ Date Measured
1.73 ' January 1941
1.29 - July 1942

Historically the very high value q = 1.73 was significant since it m;de the
outlook for a chain reaction with unenriqhed uranium very optimistic at a
time vhen no chain reaction had even been established.

The directly determined.n disagrees with the valug obtainéd from ¥

.and the cross sections. It also disagrees with the value of 7 deduced from
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measurements of the multiplication in chain reacting systems containing
patural uraniué. The moét directly interpretable experiments of this

. character were done by Wattenberg, et al® on solutions of ﬁatural UOF,
in heavy water. The experimentally determined buckling as a function of
UOoF 5 conéentration seems to be best fitted if N for natural U is assumed
to be 1.35. This is in rather good agreement with the value found directly
from the croés sections but 15 in serious disagreement with.the value
found by direct measurements. It is generally believed that the directly
measured Y is the least reliable value.

35 and other fis-

Recently it has been possible to measure % for U2
sionable materials very directly by observing the effect that a small
amount of U235 has on the reactivity of a‘chain reéctor. To increase
accuracy, the sample is oscillafed in and out of the reactor, and the re-
sulting modulation of the reactor power is recorded. Such "pile oscillator"
measurements have been performed'by.Cruikshank, Littler and Ward at Chaik .
River and by Muelhause at Argonne. These measurements are now believed

to give the most relisble values for the thermsl 1 of the fissiondble

materials, and they are tabulated below.

Pile Oscillator Values of 1

Argonne Chalk River

YL(U233) = 2.31 2.38

n(U?3) = 2.10 -

CP-3364



The Thermal Utilization, f

The thermal utilization, f, is the number of thermal neutrons ab-
sorbed in the fissionable material divided by the total number of thermal
neutrons absorbed in the vhole system. In a homogeneous system this must
simply be the ratio of the absorption cross sections of uranium to the ab-

sorption cross section of the whole system:

£ = Nooa, (11.4)
Nodao + Nlda]_

vhere No, N; are the number o% atoms of fissionable and non-fissionable
species present pef cuﬁic centimete?, and oho’ dhl"are their réspective
thermal absorption cross.sections. In a natural uranium-graphite chain
reactor, f is about 0.9. For natural U, dho-is éf course the sum of fis-
sion, 235 capture, and 238 capture cross sections. It is often more con-

venlient to consider the reciprocal of f:

N 681

—_ ) . (11.5)

the ratio Nldhl/Nodho is called the relative absorption sipce it is the
ratio of absorptién in non-fiésionable to absorption in fissionable ‘species.
The thermal utilization, f, is the number of neutrons absorbed in fis-
sionable material divided by the nuﬁSer absorbed in the whole system; this
is the same as the number absorbed divided by the number of thermal néutrons
produced only if the system is infinitely large, since otherwise some of the

thermal neutrons will leak out rather than be absorbed. This latter ratio,
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o (number absorbed/number Eroduced), is called the effective thermal utili-
zation ahd depends on the size of the reactor. It is therefore not an
intensive property of the reactor. Since the ratio

thermal neutrons produced _. ; , thermal neutrons leaking
thermal neutrons absorbeq -thermal neutrons absorbed

18, according to (5.24), just (1 + L®B2) so long as the reactor is bare,

‘the effective thermal utilization, f.pp 1D & bare reactor is
feer = ————fz 5 - L (1.6)
-1 + L*B

The name, effective thermal utilization, of course derives from the

fact that the effective multiplication constant is

~

‘ k.. k Pao(E,sB%)  _ nMED £ Poo(Es,B2)
= T
or
Kerr = N EPerr Lerr ann
N
if ¢ -1s defined as and p is defined as
eff 1+ 12B° eff
Dopr. = P (Eg,B%) . (11.8)

The effective resonance escape probability is’the ratio of the number
of neutrons escaping resonance capture to the number of resonance neutrons

produced; it, like feff’ depends on the pile size and is smaller than p by

/.
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——

the fraction of neutrons which escépe while slowing down - i.e., by

LR

fao(Es,Be), since by convention POD(ES,E)_hés been already normalized

to p rather than to 1 (cf. eq. 5.14).

The Resonance Escape Probability and the Fast Effect

- Since in a homogeneous slow neutron reactor the resonance escape,
the resonance fission, and the fast fission all involve the probability
that a neutron will lose energy by elastic collision with the moderator,
iﬁ will be convenient tq treat them all together. In a heterogeneous,
natural U arrangement, on the contrary, it is inelastic collision with
U238,atoms-or escape from the uranium lump and subsequent elastic slowing
down which are the major mechanisms for making a neutron unavailable for
inducing fission in Y238, Thus the fast effect in a heterogeneous arrange-
ment does not have the same direct relation to the resonance fission that
the phenomenon has in a homogeneoﬁs, moderated reactor.

The relevant theory for the resonance escape and the fast effect in
a homogeneous system was already worked out in’Chapter IV and Chapter VI.
In Chapter VI it was shown that the critical equation for a homogeneous
s;stem in which resonénce capture and non-thermal fission could occur, and

in which elementary age theory is applicable, was
25
- Bg Z%

-2 e o
ke € 's —4—1’ 5 1 (11.9)

2
1+ L Bg

where Zﬁf and f; are avefage ages for fast and slow fission neutronms,
ke is the non-thermel multiplication constant, and p was the average re-

sonance escape probability. For p there is the formula (6.5Ta).

‘
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3 = jul p(%,u,) £(8) a& : (11.10)
’ '
£(8) being the fission spectrﬁm, Up the thermal lethargy, u, the low
energy lethargy cutoff of the fission spectrum. Since there is ordinarily
practically no resonance capture at fission spectrum lethargies, (11.10)
i1s Just the usual

Yy

N
oy - 0
= = e . (
Prrced T emmamd ) %o e
o

du (11.11)

where %, has been replaced by Tap epp’ 25 in Chgpter IV. In (11.11)

N, is the number of moderator atoms pef cc, & is the average slowing down

parameter
N, o + NoO% .
1%, &1 0%, ¥o
£ = 1 (11.12)
and ogl and O, &are the scattering cross sections of moderator and

absorber respectively. The resonance integral -lbéo off du depends on

the scatte:ing crass section per c¢ aud 15 in principle calculable according
to (4.30) if all cross sections are known. However, it is much more prac-
tical to use the measured variation of the integral with cross section. This
dependence is given in Fig. 4-VI.

In an actual homogeneous slow neutron chain reactor using normal
uranium, there is always some - though usually very little - non-thermal
neutrpn figssion. Below the U238 threghold this comes from y235 fissions;
above the U238 threshold (0.9 Mev) it comes predominantly from U238. How-

ever, the scheme for computing these effects based on (11.9) is entirely
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adequate in a homogeneous, moderated reactor. According to (6.53)

A

ke 18 to be computed from

. uo w o
ke of of ?TNod'sof+ ;NSD p(&,v) :t-‘(Z) aE av. (11.13)

where Nop(vw) is the fission cross section per cc.

At energies above the 1238 f1ss10n threshold, contribution to (11.13)
comes practically entirely from U238 fission. Below this'threshold, vhich
is shown in the accompanying ‘graph of c}(U238) to be about 0.9 Mev, the re-
sonance fission comes only from U235. The expression for ke can therefore

be broken into two parts

ke = kepg + keps - (11.1k)

the first term coming from 0238 fissions occurring above the U238 threshold,

ung, the second from U235 fissions. Thus

teg W N Orog
= - p(2,w) £(8) & a 11.1
keog I j ?Noa,omlo-ﬁ p(8,v) £(8) v (11-25)
md ' - 3
kpps5 = }o . Va5 N G5 p(2,w) £(8) a2 aw ’(11-16)
—3@00'35 + NIO—B]_) :

uz8 o
Now in the lethargy interval O - upg; there is practically no resonance -

W .
capture, p(%,w) = 1. If { f(B)da& = F(w), then
J
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wg . N _
keog = [ V2 T 926 (¥) F(w)aw (11.17)
o z(Nooso + N10g;) :
* N Uf28 aw

i.e., the fast fission probability per lethargy interval -
? . y P &y ? 1;TEOQS° + Nlasiji ’

‘must'be veighted with Ihat part of the fission spectrum which, in the
course of slowing, will enter dw, and this is F(w).

For the true resonance fission contribution, kf25, the fission spectrum
can be replaced by a.b function, 8(8 - upg), since the actual spread of f£(8)

in % is relatively very small. Hence

u .
)
- I Vo5 N 0pps
| keos f8 ,'T?(ﬁgdso T ey p(o{v)dw (11.18)

and

w

¥
of Sagers U

o .

p(o,v) = exp. - (11.19)
p(o,v) really should be written p(upg,v), but the two are the same since
agers = 0 above the 28 fission.qutoff. Actually (11.17) and (;1.18) have
very much the same form: in the one case the number of neutrons crossing
lethérgf v is F(v), in the other case, plo,vw).
The fast effect, £ , is given, as in Chapter VI, by
& = 1 ~ 1l+ke (11.20)
1-ke | ' ‘
since ko is always much less than unity in a thermal reactor.
The relative importance of the 0258 fast fiséion and the U255 resonance
fission\- i.e., the relative importance of kfaé'and kpos - 18 strongly de-

bendent on the enrichment and on the uranium to moderator ratio. In an un-

enriched heavy water moderated system, keog will run around l/2$ or less,.
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kf25 will be of the same ;erer. As the enrichment increases, the relative
importance of ki’25 grows until in a completely enriched system ko8 = 0. Fur-
ther increase in the U232 to moderator ratio will make kf25 grovw at the ex- .
pense of k¢ until finally, when kt pLA kf25’ most of the fi‘;sions are in the

non-thermal region and the reactor becomes a resonance reactor.

The Migration Area

The critical condition (11.1) for a predominantly thermal reactor may
now be written ‘
- 2
MErt _PoolBesBg™) (11.21)

P [l + LaBg?]

thch reduces to

T')ep £ -1 @ 2 332 (11.22)
£+n%prr

if the reactor is large. The slowing down kernel.is primarily an experimentally
measured function; for materials such as graphite, it is usual to consider it
to be Gaussian. As usual, Poo(Eg,r) is normalized to p.

The buckling given by (11.22) clearly goes through a maximum as the ratio
of fissionable to moderator atoms is changed. At high No,/l!l (relatively large
a.moun_ts of U), the thermal utilization f approaches unity, while the resonance
escape probability, p, approaches zero. At small No/Nl (relatively large amounts
of moderator), the resonance escape approaches unity while the thermal utiliza-
tion approaches zero. Since £ is practically constant, the maximum k, and

therefore the maximum Ba, must be somewhere between these extremes.
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The diffusion length, L, has already been computed in Chapter I. If
the thermal transport cross sections for moderator'(including 1mpuri£ies or
poisons) and fissionable material are Otry and °trol and the thermal absorp-

tion cross sections at the average Maxwellian velocity are Ual and aao, then

12 = 1 . (11.23)
3(K, Otrg * yl °trl)(No Oag *+ N3 °a1)

provided the absorption is weak compared to the total cross section. This must
be the case in a slow neutron chain'reaction for otherwise a large fraction of
the neutrons would be caught before they become thermal. .

The number of fissionable atoms is always small compared to the number
of moderator atoms. $1nce the transport cross sections of practically all ele-
ments are comparable (except for H all are within a factor of 3 of each other)

Ny otry D3 Ny Otr -  Furthermore, since

Ny o
1.0, . 178l (11.24)
t No 9a4
N, O
1 = 14 =2 % (11.25)
1 -7° N; 0aj

the expression for L2 is often written

12 = (1-1)12 ' - (11.26)

vhere Ly is the diffugion length of the moderator alone.
Physicallj, the reduction in diffusion length implied by (11.26) which

results when a heavy absorber like U is dissolved in the system is the result
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of the increase in‘mécroscopic‘absorption from N, oal'to N, Oay + Ny 0g
. . (e}
i.e., from

Ny o No U

a)

to

Nl Ual
1 -7

U

Now the thermal neutron lifetime in pure moderator is

]
’

,é = .__l.__._ »

. Nl Oal v

v being the average neutron veldcity. Hence with U dissolved in the moderator,

the lifetime 1s reduced to
_‘_lf__e_f__ , _ (11.27)

provided the effect of the gdditional absorption on the neutron temperature

is ignored.

Since the thermal utilization 1s ususally about10.9, Lelin, say, a
graphite chain reactor will be 1/10 the L2 in pure G similarly the heutron
lifetime is shortened by a factor of ten. This is a fairly general rule —_that
in most slow neutron'chain reactors using unenriched uranium the generation'time

and the L2 are about ten times lower than their values in the -moderator alone.

" Temperature Coefficient of Reactivity ' )

The temperature behavior of a chain reactor is of the utmost importarnce

in‘dévising an adequate control system, and for this reason the calculation
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of temperature coefficients of reactivity is always a central part
of any reactor design probleg.» Of the quantities 7 , £, p, T L?,
and P which enter into the expression for kéff, only the kf28 part of
£ (vhich involves very fast neutron cross sections) is independent
of the temperature.  All the otﬁers may vary with the temperature of
either the modera£or, the fissionable material, or the neutrpns;
In general, three téﬁperétures are relevant in a sloﬁ neutron
chain reactor: '
1) Moderator temperature: the moderator temperature determines
the neutron temperature (though the two afe usually not quite the same); -
in addition it determines the moderator density, and therefore the éggzg-
scoplc cross sections of the moderator. |
2) Neutron teﬁperature: this is in simplest approximation the
same as the moderator temperature. ﬁére exactly, because of the U ab-
sorption, the neutrons never quite come into thermal gquilibrium with
the moderator, and their temperature is somewhat higher than the modefa-
tor temperéture.
Experiments by L. Woods (CP-475) have shovn that the neutron
ﬁempérature in‘a graphite natural U reactor is perhaps 60 - 85°C
‘higher than thé graphite temperature. It is the neutron temperature
which enters in calculations of microscopic thermal neutron cross sec-
" tions. In lieu of a better theory, it will be ass;med thaf a change

in moderator temperature causes the same change in neutron temperature.
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3) Uranium temperature: if the U and the moderator are not in
intimate contact, the uranium and the moderator temperatures can vary
independently. This is particularly the case in a heterogeneous reactor
vhere the heat transfer from U to moderator may be very poor. In such a
system, a sudden rise in neutron le§e1 will cause the fission rate, and
‘therefore the temperature, of the U to increase beforé fhe heat gets a
chance to enter the qoderatﬁr. The uranium temperature affects the
thermal cross sections of U only insofar as the temperature-induced densitf
change affects N,, and therefore the macroscopic cross sections. The more
important effecf of changes'in U temperatufe is to change the resonance ab-
sorption because of Doppler. broadening.

We turn now to a consideration of each of the temperature dependent

quantities, 7 s P kf25’ f, L2, and P. .

Temperature Coefficient of ¥
~

Since n involves the ratio of U235 to 1238 cross sections, namely

p—_1 S
25 * %25 * %rpg

(vhere subscripts refer‘to the nuclear species), 7 will vary with tempera-

ture only if the absorption or fission c;oss sections of U235, and the ab-

sorption cross section of U238 deviate in different va&s from.l/v behavior.

Data on this point are not entirely conclusivé since d;(U238) has not been

measured in the region just beyond .025 volts with any precision. '

If the cross sections are considered to deviate from l/v, then'n

of course must be averaged over the neutron spectrum vhich is assumed to

\
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/kt

be Maxwellian, M(E)= JE € -E Thus (11.28) should be replaced by

- RY [ orp5(E) E M(E) 4E
| ;[R Ofp5(E) + R Oryc(E) + Urgg(E)] JE M (E) aE

(11.29)

vhere T is the absolute neutron temperature. The extra factor \ﬁf in
the average comes from the fact that the cross sections must bg weighted
with the flux, nv, rather than with the neutron density, n.

To evaluate q(T) it is convenient to make some analytic approxima-
tions to the experimental cross section. Wigner, from analysis of all

available data has suggested the following analytic approximations(all o's

in barns): 1
Orpg(E) = b [1 + 0.50 E + 0.11 E2]
NE
. _ou3 Lo 2]
Gaps(B) = Gpps + Gy = NG 2 ) 324 8+ 12.8 57 \ (11.30)
\ 13 ] 1 a g 2]
crfes(E) = —1.18 = [1 (3.24+ T8 @ JE + 12.8 E

\ -

-

where Q = °T2§/°}25 —~ 0.18. Considersble uncertainty in the value of

] exists. Recently (KAPL-511) J. Sampson and H. Hurwitz, Jr. have analyzed

dE
the neutron spectrometer data on U235 and experiments by Bragdon, Hughes, and

Marshall (CP-1381) in which the change in U235 fissions to U238 captures was
measured with and without a silver filter around the sample: the average

temperature of the neutrons was higher with the silver filter than without.

Their analysis gives the‘following:
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do(kT)
da/dE aT
Bragdon et al - .46/ev to - .82/ev - Tx10-5/9C to - 11x10-5/°C
Neutron Spectrometer + 0.6/ev ' + 10x10-2/°C

~

"The true value of da/aT 1s tixus seen to be in grave doubt. The range of
values for d'7/dT of natural U found by substituting (11.31) into (11.30)

are given by Sampson and Hurwitz thus:

dot/dE . da d_."._
ar aT
Bragdon . ‘ :
Experiment - 0.74/ev - 10x10-%/°C - 6x10-5/°C
Neutron ' ' '
Spectrometer " T+ 0.6/ev + 10x10-2/°C - 29x10-5/°C
Constant & 0 "0 - 18x10-%/°¢

All that can be concluded from this is that d ?7 /T is very ;;robably

negative, and around 10 x 1072/°C.

Temperature Coefficient of p

Since .

N
. (o]
= exp. - o, dE/E
3 P - Fliog; + Navay) J g

(11.31)

and since S Ca dE/E increases with uranium temperature in the manner

Oeff

discussed in Chapter IV, the resonance escape probability decreases as a

natural uranium chain reactor heats up. The change in I 0'30 aE/E with
. : ) . 3 eff



temperature becomes small as the scattering to absorption ratiohincreases;

in the 1imit of oo scattering cross section, | aoeps dE/E becomes

ef
“temperature indepex_xdent. On this account the change in p with temperature

-

in a homogeneous reactor - in which the scattering per uranium atom is evi-
~ N
dently very large - is of less consequence than in a heterogeneous system.
There are no data available on the temperature coefficient of

fdés e dE/E; nor are there data on temperature variation of 5 dE/E

(o
8oeff

except for natural U metal and U oxide. For these systems, the temperature
coefficient of the resonance integral is abouf -1.5x lO'h/OC. Since the -
fraction of neutrons "trapped" bykresonance absorption is about ten percent
iﬁ a natural uranium chain reactor, the temperature coefficient of p in a

reactor such as Hanford is about

)

1

1l dp __ - :
S & = -15x10 5/0c (11.32)

in a highly enriched reactor such as the EBRior the SIR in which a con;
siderable fraction of the fissions occur at resonance energies, the Doppler
broadening can of course increase the fission rate, i.e., kf25’ with in-
creasgd temperature. At the time §f this writing not enough is known about
the details of the 0235 resonance structure to predict the sign of the
Doppler-induced temperature coefficient in an intermediate energy U235 re-

actor such as SIR.
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Temperature Coefficient of f

The thermal utilization involves the ratio of absorption cross

sections of uranium and moderator, etc. So long as all cross sections

\

are l/v, and the System is truly homogeneous, f will be independent of
neutron temperature. If some of the cross sections deviate from l/v,

then f will be neutron temperature dependent, just as 7]13, viz,

E/xT

N § o (B)EC
-E/kT

% (T) = 1 + :
NS (B)EE

In (11.33), the assumption is made that the thermal neutron spectrum is

Maxwellian. No general conclusion regarding the variation of £ with T

is possible. In a homogeneous system it is customary to assume f is

temperature independent, while in a heterogeneous system in which the

(11.33)

details of the thermal neutron distribution will be senaitive to neutron

temperature, the thermal utilization will be dependent on temperature even

though all cross sections are 1/v. This effect will be discussed in the

following chapter.

gggperature.Coefficient of L2

The diffusion area, L2, in the reactor is given by

12,= (1-¢)12
Hence
2
A a2y Yy 1 af
2 "ar - T2 TaTt R S ar
L L
2./
- 1 dLm
= 2 aT
Lm

(11.3%)
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in a homogeneous system in which % ~ 0. The diffusién length of the
moderator is
2 N
I = — 1. (11.35)
3 1 G&l °tr {
and therefore
dLa .
-1 m _ _2 & 1 %% 1 4% (11.36)
Lﬁ 4aT N 4T Oir 4aT - Ca a7 '

o .
Now %l -&} is simply the negative of the reciprocal expansion coefficient

. 1 4% 1,
of the moderator, B; and o, I " " 1f oy 18 1/v and T 1s the

absolute temperature of the neutrons. Thus

2.
1 dly 1 1 d Tpr
= @ ®tEm - G T CL

-1
since Ay ~ (qt‘r) .

If the transport cross section, &, , is known as a function of
neutron energy, then fhe proper average transport cross section, which is

to be used for computing the diffusion length, is, according to (1.91),

o0
--11(-7 M (v) d
6)' Gtr v Y Y

1 = (11.38)
%r 00

5 v M (v) av

(o}

provided the neutron distribution is nearly Maxwellian, and the scattering
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atoms are so light that the "amnesia" approximation discussed in I-38
is Justified. Although the compiéte justification for (11.38) has never
been given, it has been customary in project literature to use it in com-
puting the average transport mean free path.' The important point about
Cu,3® is that it 1é the reciprocal cross section which is averaged.

Two mechanisms are of importance in imposing a temperature dépendence
on the transport cross section. These are

a)‘.Cr&stalline effects

b) Chemical binding effects. _

Although the theory of both effects in application to the prnblem of
neutron diffusion in a chain reactor is not nomplete, it will be instruc-
tive to describe what has been done.

Crystalline Effects

The scattering of slnw neutrons in crystalline material is of two
kinds: coherent scattering, in which the neutron waves form diffraction
. patterns as the wavelets from the regularly spaced scattering centers in-
terfere or reinforce; and incoherent scattering, }n which, for various
/reasons such'as spin dependencé of the scattering, presence of different
isotopes, or 1ne1astic'scattering, there is no regular phase relation be- .
tween the neutron wavelets scattered from different scattering centers,
and interference is therefore impossible. Coherent‘scattering will occur
‘only if the scattering angle '9 and the neutron wave 1ength'4A satisfy
the Bragg relation |

| . nA = 24 sin 6 ,

n being the order of the reflection, and d,the distance. between lattice
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planes. .
If Auexceeds 2d, coherent scattering is impossible; only incohefent
processes can lead to scattering. The total incoherent scattering cross
section is often very small (~ 0.7 b in BeO); thus, very slow neutrons
will hardly be scattered at all in polycrystalline media. A long thin
block of BeO can therefore be used to filter out neutrons of very low
energy since neutrons of more than about 4.5 R wave length will be scattered
only incoherently (with cross section of 0.7 b) wpile neutrons of shorter
wave length will be scattered with a cross'sect{on perhaps ten times higher.
A striking demonstration of this is seen in the accompanying graph of Fermi

and Marshall(l)

showing the spectrum of neutrons filtered through a
40 cm x 10 cm x 10 cm prism of BeO when a Maxwellian spectrum was incident

on the block.

(2)

1 2 3 b 5 6 7T A_3
If /X is short enough for the Bragg relation to be satisfied,

coherent scattering can take place. Fermi, Sturm, and Sachs(3) have

shown that the scattering cross section per nucleus corresponding to

(1) Physical Review, Vol. 71, p. 666, 1947.
(2) 1Ivid. p.672 (Fig. 3).

(3) Ibid. p. 592.



scattering of a particular order from a particular set of lattice planes

in a randomly oriented polycrystalline aggregate is -

-
_ NF A2 e-2v :
% 8xb

vhere N is the number of nuclei per unit volume, F is the crystal form

factor (i.e., the scattering cross section of the crystalline unit cell),

b = » 0 = order of the reflection, w = Debye-Waller temperature

Al

factor. The formula for w is

o .
-3 h /T
v =3 'm'k'e.< /T +l/h)
vhere b = Planck's constant, m = the atom’'s mass, k = Boltzmann's

constant, © = characteristic temperature, T = absolute temperature,
and § a Debye's function.
The total coherent scattering is the sum of the scattering from all

lattice planes for which diffraction can take place. -Thus

o = Z‘b < 2/)\5‘ N A% exp (- 2wb2)/8 b ; (11.39)

the cross section given by (11.39) is zero until the energy increases enough

‘for the Bragg condition for the most widely sebarated crystal planeé to be
satisfiea. The cross section then decreases essentially proportionally té
the sqQuare of the wave length until the Bragg condition is satisfied for
the next most yidely separated planes at which energy there is another

sudden increase in scattefing cross section. These discontinuous Jjumps,

~

followed by monotonic decreases, are repeated until the wave length is so

short that many planes contribute to the scattering, and the Bragg scattering
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becomes indistinguishable from the ordinary free atom scattering. This
" Jagged-tooth" variation of the cross section with energy in the case of
Be0O is shown in the accompanying Figu;e 11 - I. At very low energles
where (11.39) gives no scattering, there is of course some residual
incoherent scattering.

To show how the crystalline scattering affects the average mean free
path, the cross sections of microcrystalline BeQ have been averaged over a
Maxyellian neutron flux according to (11.38). The resulting averages are
compared with the averages obtained from the h;gh energy BeO scattering
cross sections in the accompanying Figure 11 - II. It is seen that in
Be0 the crystalline effects increase the free atog mean free path by

about 1T%.
Chemical Binding Effects

It can be shown on rather general grounds that the cross section
for the potential scattering of a neutron is proportional to the square
of the reduced mass of the system neutron + scatterer. [See, e.g.,

Bethe; Elementary Nuclear Theory, (Wiley, 19L47), p. h?] When a neutron

of high energy strikes an atom in a molecule, the struck atom acts as
though it were free. Howe%er, vhen the neutron eﬁergy is comparable to

~ the energy of chemical binding, the molecule will tend to recoil as a
whole. Thus the effective reduced mass of the scattering center +
neutron rises as the neutron energy decreases; since the scattering cross
'section also.increases with the reduced mass, the thermal scattering

cross section tends to increase as the neutron energy decreases.

Since the reduced mass of neutron-proton system changes from % m,

the nuclear mass when the proton is free, to m when the proton is tightly
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attéched Fo an infinitely heavy molecule, the thermal neutron-proton
scattering cross séction increases by about a factor of four as the

neutron energy decreases. The change in reduced mass with binding is
greétér for a proton than for any other nucleus. For deuterons, the

reduced mass of the system neutron + deuteron changes from

m free -deutron

win

to
m completely bound deuteron

so that the deuteron scatfering cross section ought to change by a
factor of 9/h as the energy of the neutron approaches zero. With

heavier nuclel the effect is less important.

Experimental evidence for the "reduced mass" effect in ﬁeutrog; ‘
proton and neutron-deuteéon scattering is abundant. The accompanying
graph Figure 11 - III gives thé n-d scattering cross section as
measured in Dy0 at several neutrpn‘energiés.

Since tlie strength of the binding depends on the particuler com-
pound containing the proton, it is not surprising to fiﬁd the detﬁils of
the energy dependence of the n-p scattering cross section are sensitive

to the composition of the proton containing molecules. This is shown in
Figure 11 - IV vhere the n-p cross sections as measured in H, gas,

methane, proéane and cetane are given.

It is seen in the graphs that the n-p cross section (as measured in
cetane) fallé from about 71 barns to 21 barns, while the n-d cross
section falls from 6.6 to 3}3 ﬁarns in going from .0l e.v. to 1 e.v. These
values are close to the theoretical valueg of 4 x 21 = 84 barns for H and

'9/& x 3.3 = 7.4 barns for D to which the cross sections should: extrapolate -

at zero energy.
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The chemicoi binding variation of cross ;ection must of course
be taken into account when estimating the dependence of 12 on tempera-‘
ture. In H,0 moderated systems, where the effect is by far the largest;
the variation in scattering cross oeotion accounts for about hO%Aof the
temperature coefficient of L2. The remainder comes from the 1/v absorp-
tion cross section.

Temperature Variation of = P

el | o

Little need be said about the variotion of % P with temperature.
Since % P is determined by the fast neutron scattering properties of the
moderator, and since these depend on tempefature only insofar as the;mal
expansion changes the number of noclei per c.c.y % P is affected also
only insofar as the density of the .moderator changes with temperature.

Examples of Homogeneous Reactor’Systems

The nuclear energy literature abounds with suggestionsifor slow
neutron chain reacting systems in vhich fissionable material and mode-
ratorvare.intimately mixed. In addition; there are the fast and inter-
mediate systems in all of which.heterogeneities of fuel distributions are
rather unimportant because thekmean free path of the system is large com-
pared to either the fuel.element thickness or the space between the fuel
elements.

Of the true homogeneoué chain reacting systems only two, the Los

Alamos water boiler and the HRE, have actually -been built and are oper-
ating. Both of these; from a nuolegr standpoint, are Hy0 moderatgd and

use U235 as fuel. Nuclear characteristics of the HRE are given in ORNL-1121

N

and ORNL CF-51-11-9k. L o ' . .

(1) The fhctorﬁ%'nOrnalizes the slowing down kernel to unity, rather than
to p. ~
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.There have been numerous critical experiments performed on Hy0 so-
lutions of various concentrations with both U235 and Pu239 as fuel. The
0255-H20 solution experiments were performed by Callihan, et al. A com-
parison of their observations with’ two-group calculations and with the
variational method of Greuliné is given in Fig. 11-V.

PQ-HQO experiments have been done at Los Alamos during the war by
P. Morrison, B. T. Feld, L. Slotin, et al. An estimated minimum critical
mass of 606 : 50 grams of Pu239 ip ; nitrate solution vith an infinite H;0
reflector was obtained by extrapolating these experiments.

Finally, in the Hp0 moderateg systems, there have been numerous ex-
periments in which the U is borhe in plates which are so close to each
other that in effect the system is practically homogeneous. The MIR (and
its children, the LITR and BSF) are all reactors of this type,
the ‘p;ates being ‘ aluminum.

One characteristic of HyO moderated systems is that because of the
very large thermal neutron- scattering by protons, the thermal ‘diffusion
length in H20 systems is always extremely small. For this reason the fast\
leakage is always much greater than thé slow leakage. In the MIR, for ex-
ample, the fastlleakage is eighteen times the slow. Thus the characteris-
tics gquation in 8 water moderéted system can with good approximation be
replaced by .
%?w(ss,}ﬁ) = 1 (11.%0)
since the slov leakage, L2B2, is small compared to unity.

Greuling has worked out a complete varigtional treatment for water
'moderatéd, water reflected systéma which ﬁas been used extensively in cal-

culations on such systems, and the reader. is referréd to this work

“w
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(LA-393) for details.

Heavy water enriched fuel systems have been studied by Snell. He:
measured critical masses of D50 - U235 solutions which were eséentially
homogeneous. The results of his measurements are summarized in MonP-45k4
and are analyzed'in some detail by Gafabedien(l)and Néfdheiﬂé). Snell's ex-
periments were heavy water reflected, and therefore bare reactor theory
is inapplicable. The minimum critical mass he found was 859 gm of U235,

The critical mass in these Hpo0 and DoO moderated syétems as a
function of fuel to moderator ratio shows a minimum. That the critical
mass should be very large at very low concentrations follows because the
more dilute the solution, the more neutrons are absorbed by the moderator.
In fact, since k = fi] (€ and p are pracfically'l at low concentrations)

must exceed unity in order for the system to chain react at all, the con-

centration at which the system is infinite is given by

-

1
F - q (11.41)
Since % is given by (11.24),

’ (11.2&).‘

' N0,
1 .., a1
f Nocho
. . !
the minimim chain reacting concentration is
N , s . .
= - 8p
i (M- — (11.42)
o 8.1 .

(1) cNL-3%6.

(2) MonP-31k.
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In HyO and U235 this 1s 1200 or 10.9 gm U235/1iter; in DO it 1is
9.6 x 10° or .0135 gm U235/1iter.

At the high concentration end the critical mass also goes up,
although the thermal i'eactor theory breaks down as soon as the concen-
tration is so high t)‘mt an apprecia:ble fraction of the fissions are epi-
thermal. At the high end of the concentration scale, the multiplication
consfant becomes practically 'constant and equal to 71 since eventually
all the neutrons are absorbed by the fuel. The 12 approaches zero as U
concentfation, and therefore absorption, increase, but, until resonance
fission becomes important, the Z remains practically constant. Conse-

quently the buckling, which roughly approaches

P N1 (11.43)

&

re;lain_s unchanged as the- concentration increases, and therefore the total
mass grows larger and larger. Actually the maximum critical mass on the
high concentration aide is Just the mass computed for a fast neutron re-
action in a 80114 chunk of fuel. Since in a fast system almost every

collision leads to a fission, the buckling is much more nearly

B2 -1 : (11.44)
: A2 . DU
3 tr

Y-
vhere Atr is of the order of the fast transport m.f.p. Since 7z Rt LT
e s * v . - wr
(for U235 density 18.6, %‘- A2 ~ 5.4, 6320 ~~ 33) the actually maximum
A tr
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critical mass is far smaller than tha£ obtained from (11.43). -

The thermal neutron homogeneocus systems of perhaps greatest in-
terest are tpose vwhich involve solutions of natural or sligﬁtly enriched
U in Do0. Such systems can in principle be.used to convert uranium into
plutonium, and they have therefore been studied rather extensively.
Critical mass as a function of U0 to U238 ratio and of concentration
for U0oSOy, UOp, and UOoNO3 in Dy0 is given in Fig. 11-VI. The method
of calculation is simply to use (11.28), (11.11), (11.4), (11.26), and
(11.22) for 7 » D> £, L and B2 and assume that &£ = 1.

From the calculation it appears that any of the natural uranium
systems, except the nitrate, can'be made chain reacting at the appropriate
U to DQO ratio. The optimum concentration, i.e., tpe concentration
leading to minimum U investment, is about 60 - 70 gm U/liter. Below
this concentration the parasitic thermal absorption by the’DQO tends
to reduce k and thefefore the critical mass is large; abové this concen-
tration the 0258 resonance absorption begins to become important, k
deéreases, and again the critical mass growvs.

No slightl& enriched homogene&us Do0O system has been made critical
as yet. However, exponential experiments on sub—cri@ical assembliesAof
natural UOoFs in DpO were made by Wattenberg in 1945, and the results of
these compared with Dancoff's calculations are‘given in CP-3%k4. 1In su;h
systems which contain natural U the resonance absorptiog integral, and its
variation with concentration of moderator, is extemely important for de-

te;mining the multiplication éonstant. The values of [ %a0ers dE/E
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S wﬁich ﬁancoff.had used to achieve agreement with experiment are the
same és given in Fig.:Vi‘of Chaptér IV. The comparison with experiment

is given in the accompanying graph, Fig. 11-VII.
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