
UNCLASSIFIED 

• 

UNCLASSIFIED 

AECD-4143 

Subject Category: PHYSICS 

L -
UNITED STATES ATOMIC ENERGY COMMISSION 

SUPPLEMENT TO THEORY OF NEUTRON 
CHAIN REACTIONS 

By 
Alvin M. Weinberg 
L. C. Noderer 

May 26, 1952 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 

Technical lnformatior:' Extension, Oak Ridge, Tennessee 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



• 

JI 
Date Declassified: 

I 
January 9, 1956. 

LEGAL NOTICE 

This report was prepared as On account of Govel"nment sponsored woMt.. Neither the 

United States, nor the Commission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, express or implied, with respect to the ac­
curacy, completeness, or usefulness of the information contained in this report, or thot the 
use-of any information, apparatus, method, or process disclosed in this report.may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the u~ of, or for damages resulting from the 
use of any information, apparatus, method, or process disclosed in this report • 

As used in the above, "perwn acting on behalf of the Commiuion" includes any em­
ployee or contractor of the Commission to the extent that such employee or contractor 
prepares, handles or distributes, or provides acceu to, any information punuant to his em­
ployment or contract with the Commiuion. 

This report bas 
available copy. 

been reproduced directly from the best 

Issuance of this document does not constitute autbori ty 
for declassification of classified material of the same or 
similar content and title by the same authors. 

Print~d in USA, Price 40 cents. Available from the 
Office of Technical Services, Department of Commerce, Wash­
ington 25, ·D. c. 

/ 

AEC, Oak Ridge, Tenn. 

·.-_:. 



-~I ' 

I 
I~ 

I 
I 

I 

AECD-4143 

SUPPLEMENT TO THEORY OF NEUTRON CHAIN REACTIONS 

. I 

By 
Alvin M. Weinberg 
L. C. Noderer 

May 26, 1952 . 

Work performed under Contract No. W-7405-Eng-26. 

OAK RIDGE NATIONAL LABORATORY 
Operated By 

CARBIDE AND CARBON CHEMICALS COMPANY 

POST OFFICE BOX P 
OAK RIDGE, TENNESSEE 

iii -



• 

1 

The Exponential Experiment 

A£ C/)- 4-/t.f3 
The multiplying properties of s subcritical chain reacting assembly can 

be. determined, as Just indicated, by measuring the multiplication rate, R. 

-~is, close to critical, is 

which, according to (5.28), gives 

= k. 
p 

1 

1 

The quantity B0 2 is of course known if the size and shape of tbe reactor are 

known; tor a spbere ot radius R, B0 
2 = ..2t__ Often -P1 P'00 (Es 1 B0 2) and L2 are . 

R2 
known trom diffusion type experiments} in this event the multiplication con-

stant, k, can be found trom the measurement of· R. 

Ot particular interest is the situation where the subcritical assembly 

is so large that the simplified equation (5.22) holds. Then the excess multi-

plication constant become·s 

1" ~, 

hence it ~ is known, and if R, i.e., kex' is measured, then 

1 - - . 
R 

Tbe measurement of multiplication rate is a practical vay to determine 

tbe multiplying properties of the assembly only if the system is so close to 
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critical that R is large; otherwise, the two quantities M2B0 2 and~ will be 

very large, and their difference, which determines k, will have little ac-

curacy. The multiplication rate method is therefore best suited to enriched 

systems whose critical size is small and which can be built large enough to 

give multiplication rates of 10 or 15 rather readily. 

Since the size of a critical ordinary U chain reactor is very large, 

the multiplication rate method is applicable only with difficulty to such 

systems. While the German project nevertheless made most determinations 

of the multiplying properties of graphite-uranium, and D20-uranium systems 

by measuring multiplication rates, the American and Canadian projects ob-

tained information on such systems by actually measuring the details of the 

-neutron distribution in subcritical assemblies in which the multiplication 

rate was as little as 1.5 to 2. The advantage of such experiments, called 

exponential or "intermediate" experiments, was that they could give informa-

tion on the multiplying system with relatively little material. Since the 

high quality graphite and uranium needed for the assemblies was very scarce, 

the possibility afforded by these experiments of predicting the critical size 

or optimizing uranium-graphite configurations was of the highest importanc~ 

for the Banford project. 

The exponential experiment ideally consists of a long parallelepiped 

or cylinder of the multiplying configuration whose properties are to be de­

termined~ A neutron source is placed in the plane z = 0. The experiment 

consists in .measuring the slow neutron distribution in the assembly; the de-

tails of this distribution determine the neutron multiplying properties of 

the system just as the details of the neutron distribution in the rather 

similar diffusion length experiment (Chapter I, P. 77) serve to determine 
J 

\ 
" . 

I • 

.. 
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the neutron absorbing properties of the material out of wh~ch the diffusion 

length experiment is ~onHtrutted. 

The analysis of the neutron distribution in the exponential experiment 

is best done by an application of the Fourier transform. This procedure, 

first used by G. Placzek and G. Volkoff1 Canadian JoUrnal ~Research, A, 

~~ 276 (1947) is of such wide application in a!l.l of nuclear reactor theory 

that it will be described in detail. 

Consider a uniform multiplying system in the shape of an infinitely 

long parallelepiped of square cross section whose extrapolated width, as-

sumed to be the same for neutrons of all energy is a. In the z = 0 

plane there is placed a_source of fast neutrons distributed like 

Q(x1 y1 z) • QQ&(z) cos Bxx cos ByY 

where 

are the geometric bucklings in the x and y directions. It is required to 

tind !s<x, y, z) 1 the thermal flux throughout the system ... 

The problem as set forth is somewhat specialized since the source dis-

tribution is given simply by the fundamental mode C?X Bxx cos ByY. However 

since any source distribution f(x, y) can be expressed.as a superposition 

of Fourier components 

(5.97) 

the restriction to only the fundamental is not serious: the neutron distribu-

tion tor an arbitrary source disposition is a superposition of the distribu-

tion tor each harmonic. 
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In much the same way, the restriction to an infinitely long system 

is not essential since the' distribution in a block of length H is found 

by placing + sources of equal strength at the points z = ~ 4 n H and 

-image i>Ources at z = ~ 4 (n + ~)H·in an infinitely long block and 

ouperposing. 

The equation for the asymptotic slow neutron density is 

Tbe slowin8 down kernels P*{E8 ,r) and P{Es,r) are in general different 

since the energy of the source neutrons need not be the same as the energy 

of the fission neutrons. To solve {5.98) we put 

fs(r) = f{z) cos Bxx cos ByY 

and ve introduce the Fourier transforms 

00 ivz 
f{z) = l I r(w) e: d.v 

. 2 7r -oo 

00 iwz 
6(z) l I e dw = 27r -00 

If {5.9'7) 1 {5.99), and (5.100) are substituted into (5.98), and if use is 

IIIBde of the fact' that 

iwz ivz 

(5.98) 

(5-99) 

(5.100) 

I cos B~ cos ByY e P(E8 ,!:_,!:' )d!:' = 
Pile 

I cos Bxx cos ByY e p 00 (ED, I!:-!:' I )d!:' 
all 

space 

. iwz 
B B e -Pco (Es,B2) . = ccs xx cos yY . 

\ 
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where 
B2 = B 2 + B 2 + ~2, 

X y 

then f(w) is found to satisfy 

f(w) = 

.Hence the required distribution is 

00 

f(z} = ~ f 
2 Tr CD 

dw. (5.102) 

To compute this integral we follow a semicircular contour which embraces 

the entire positive half-plane. Then if B 2 = B 2 + B 2 + wv2 are the 
V X y 

zeros (assumed simple) with positive imaginary part of the denominator, i.e., 

= 1 (5.103) 

then integral (5.102) has the value 

f'(z) 

iw lzl 
- 2 'V P00*(E6 .,Bv )e 

------------~~--

B N [ k -p' (E B 2) - 12] v 0 a p oo s' v 

(5.104) 

where 

In general. the roots B2 of (5.103) will form a demunerable infinity. The 
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lowest root, B0
2, is by definition, the material buckling of the system, 

and is real. Moreover, since the infinitely long parallelepiped is sub-

critical, 

[ J 
l/2 

i.e., w0 = B0
2 -- (Bx2 + By2) is a pure imaginary, say w0 = j. The 

higher roots wv are in general complex, and their imaginary parts are all 

1 
less than .z in absolute value. Far from the source, therefore, the thermal 

neutron distribution must be given by 

(5.105) 

where 

(5.lo6) 

The asymptotic neutron distribution (5.105) is exponential with attenua­

tion length..£ . This gives the "exponential" experiment its name. The asymp-

totic attenuation length is related to the material buckling by the simple re­

lation (5.106). Thus by measuring the attenuation length of the neutron dis-

tribution in an exponential experiment, and by measuring the geometric quanti­

ties Bx2 and BY2' the material buckling of the multiplying system can be ob­

tained. It is to be noted that the exponential experiment affords a measure­

ment of the material buckling directly; an evaluation of k from the experiment 

is possible only if (5.102) can be· solved, and this in general requires de­

tailed knowledge of 12, p, and P00 • However if the multiplication constant is 

close to uniq (5.103) becqmes 

'i • 

• 
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k l 

and k can therefore be estimated fr9m a measurement of B
0
2 and an estimate 

of ~F. This is essentially the procedUre which was used to estimate k in 

the wartime Chicago experiments. 

In carrying out the exponential experiment, care must be taken that 

it is-indeed the asymptotic attenUation length which is measured.· Close 

to the source, the distribution (5.104) consists of a superposition of many 

exponentials, some with complex attenuation lengths. These non-asymptotic 

terms can be shown to arise from the spatial variation of the neutron energy 

spectrums close to the source the spectrum is· much influenced by the, energy 

of the source neutrons, while farther away the spectrum takes on its asymp-

totic torm determined'mainly by the slowing down properties of the medium. 

The slowing down density at energy~ is 

q(!:_,u) = kNaa J ~s(!:') P(E1 !:_1 !:_')d£' + I Q(!:,')P*(E,!:_,!:_')d£' 
P Pile 

which, on substitution of (5.97), (5.99), (5.100), and (5.104), becomes 

CD .iwz 2 -*< . 2 + I e p E,Bx ,By , 
-CD 

(5.105) 

·The second term of course represents neutrons w~ich reach (r,E) without having 

undergone multiplication§ the first term represents those which have gone 

through multiplication cycles. At great distances from the ~ource only the 

v
0 

·= 1~ term persists; thus 
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-I z i'J.-- 2)- 2 00 _P....;<D:~_E,as_' B....;0::.....-_P_(E_,_B~0_) ___ + f 
k -t f 2) 2 - CD p P (])E6 ,B

0 
-L 

iwz -* 2 2 2 . 
P (E,Bx ,By ,w )dw 

In addition to these 'hpectral" corrections the neutron flux will 

deviate from a pure exponential close to the source if the source distri-

bution contains more than a single harmonic - e.g., if the source is con-

centrated in a point. Such "harmonic,. corrections are in practice usually 

more important than the "spectral" corrections, and during the·original ex-

ponential experiments much attention was p~id to evaluating these harmonic 

corrections. To avoid both the spectral and the harmonic corrections it is 

necessary in determining 1/~ from the observed neutron distribution to start 

measurements two or three attenuation lengths from the source. 

l 
I 

I 
I 
I 



9 -General Reactor with Resonance Fission 

It is possible to write aown ~he characteristic equation and the asympt~tic· 

solution for a reactor system in which the slowing down model is continuous and 

fissions are assumed to occur at arbitrary energies. Such systems are often 

called "resonance reactors": an example is the SIR. 

If the validity of age theory is assumed even with absorption, then the equa­

tion for the slowing down, absorption, and multiplication of neutrons in a uniform 

reactor can be written (cf. Eq. ·3.59) 

(6.43) 

or, in terms of the slowing down density q(~,u) = ~ N0 s
0

(F0 (r,u), 

_D_..o...___ 6 q(~, u) - Naa q (~, u) + f( u) r
0
J k(u ') 

Nas
0 

~ ~ Nas0 

(6.44) 

In these equations, f(u) is the fission neutron spectrum in lethargy, u = ln Eh/E, 

Eh being the high energy cut-off of the fission spect~um, k(u) = vN::f is the 

number of fast neutrons produced per neutron abso~bed at lethargy u, Uo is the 

logarithmic energy loss corr~sponding to thermal energy, k(Uo) is the number of 

fast neutrons produced per thermal neutron absorbed, and ts is ~he thermal neutron 

flux. ~t is assumed that u11 the lower limit of the fission spectrum, is above 

thermal lethargy. 



For the thermal neutrons, 10 
-. 

(6.45) 

It will now be shown that asymptotic solutions of (6.44) and (6.45) in which 

space and lethargy are separable can be con~~ructed provided the neutron fluxes 

at all energies are distributed in space as solutions of 

(6.46) 

and Bg2 satisfies a characteristic equation which will be described below. 

In other words, the most general reactor equation (6.43), in which resonance 

fission occurs, has an asymptotic solution, and a characteristic equation, just as 

in the case of thermal fission reactors. Thus even when resonance fissions occur, 

the power distribution in a bare, uniform reactor with energy independent extrapo-

lation length,· is given by a solution of the wave equation (6.46). 

To prove this "generalized" fundamental.theorem of pile theory, set 

Then from (6.45), 

~s = 
(6.47) 

If this expression for Ps is substituted into (6.44), and if q is replaced by X(u)'(£), 

·6 q by - Bg2 X(u);{~), there results 

c~2 r~ Naa k(Uo) x(Uo) 1 = • X(u) Naa )X(u) * f(u) j· k(u. ') x,(u ')du' + 

- Jla~ ! + 
t Naso Naso ~ 1 + L2Bl au 

(6.48) 
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Equation (6.48) may be thrown into integral form by solving it as a first order 

differential equation in X(u). The result is 

_ f B/D0 (y) + Naa(y) 

X(u) =e. o ~ Na
60

(y) 

Now the assumption 

~[ u Naa(y) + Bg2D0 (y) - I 
X(u) = e o ~ Naso(Y.) 

z 
u + I 
J f,(z)e ~ 

0 

Bg2D0 (x) + Naa(x) dx 

~ Nas0 (x) 

(6.49) 

}· 1 

dz l BiD0 (x) + Naa dJI 

~ "as~ 

(6.50) 

vanishes, as it should at u = o, and solves (6.48) provided B
8

2 satisfies the fol­

lowing equation 

- Bg2 't'(z,w). uo · - B 2t'(z,Up) 

I f k(w) p ( z, w) e f ( z ) dzdw + k(Up} l p(z,Up) e g f(z)dz = 1 
1 + L2Bi 0 0 

In this equation u 
- I 

z 
p(z,u) = e 

(6.51) 

du . (6.52) 

is the resonance escape probability from lethargy z to u as computed from simple age 

theory, while 
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u 
't' ( z, u) = I du 

z 

is the neutron age from lethargy z to u, again according to simple age theory. 

The sense of this generalized resonance pile equation is the following: the 

second term, which is practically the same as (6.14) is the product of {l)k(u
0

), 

the· number of neutrons produced per thermal absorbed; (2), the probability of 

escaping leakage while slow, 1 .. and(}), the probability of.escaping 
l + L2ti 2 ' g 

resonance capture or leakage while slowing down, viz., 

The product of these three factors may be called the slow effective multiplica-

tion constant, kteff' Since ordinarily resonance capture does not set in until 

well below the lower limit of the fission spectrum, p(z,Ua) is replaceable by p, 

the total resonance escape probability. Also Uo may be replaced by u1 in the 

limit of the integral since f(z) is zero below lethargy u1. Then, since k(Ua) 

was defined as v Nat , k(Ua)P is the same as the usual multiplication constant 
Naa 

provided v includes t The thermal effective multiplication constant, with these 

&implications, is therefore 

E0 - Bg 2 't: (Es,E' ) 
k ~ r(E')e dE' 

l 

which is essentially (6.1}) since f(E) is assumed to be zero outside the energy 

range E1 to E0 . 
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The first t~rm may be called the eff~ctive resonance mULtiplication constant, 

kfeff{Bg2 ) = ·~ f k(w) Naa p(z,w) e- Bg
2 ~(z,w)f(z)dzdw. The integrand 

o o Naso ~ 

is the product of: {1) k(w), the number of neutrons produced per neutron absorbed 
~a . . 

at lethargy w; (2) , the probability that a neutron will be absorbed rather 
~ Naso . w 2 

than scattered in unit lethargy intervalJ and (3), I f(z) p(z,w)e- Bg ~ (z,w) dz, 
0 

the probability that a fission neutron will escape resonance capture or leakage 

while slowing down to lethargy, u, where further fission may take place. 

If the fission spectrum were a &-function, f(z) = 8(u1 - z), the generalized 

cbaracteristic.equation (6.51) becomes 

where ~ = 
dw 

w 
- I 

e )11 

.. l, {6.55) 

Naa dw 
~ Nas

0 
, being the derivative of the resonance 

escape probability, is the probability of resonance absorption per unit lethargy in-

terval. 

rr the reactor system·were ~nfini~ly lar~ 1 Bg2 = O, and the effective 

multiplication constants become the infinite multiplication constants. This sug­

gests that in any chain reactor in which non-thermal as well as thermal fission 

takes·place1 two multiplication constants, kf for non-thermal and kt for thermal 

fissions, ought to be defined. Putting Bg2 = 0 in the formulas for the effect­

ive multiplication constants and equating the results to kf and-kt, 

Uo w 

I I 
0 0 

v Naf(wJ p (z,w) f (z) dzdw 
Ncss

0 
~ (w) 
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ul 
I p (z,u

0
) f (z) dz 

0 

or, if an average resonance escape probab~lity is defined by 

w 
p(w) = I p (z,w) f (z) dz1 

0 

this being the same as the usual resonance escape probability, then 

v Bar 
since YJ f = ---=-­

Naa 

v Nar(w) · 

Nas
0 

~ (w) 
p (w) dw 

p (Uo)- "'lf p 

(6.57) 

(6.57a) 

(6.58) 

(6.59) 

The quantity kr is simply the number of neu.trons produced by non-thermal fis-

sian per neutron produced by all fissions. The total number of neutrons produced 

by thermal fissions that become thermal.per thermal neutron absorbed is·kt·. The 

tast effect, t. , is by definition the number of neutrons produced by all fissions 

per neutron produced by the~al fissions. Hence 

= t = 1 

1 

and the multiplic~t\ion constant 

1 
ao I v Nar(w) 

o Na . ~ (w) 
So 

(6.60) 

p (w) dw 

t -



- ., 

r 

k = 

15 
number produced by all fissions = 

number absorbed 

It is in this way that the continuous slowing down theory for a resonanc~ reactor 

can be related to the usual four-factor equation for k which has validity in a pre­

dominantly thermal reactor. 

Historically, formulas such as (6.57) forE were not introduced into the 

literature mainly because (6.57) assumes that the slowing down is given by elastic 

scattering age theory whereas in the Hanford reactors, for which the original theory 

was formulated, the slowing down below.the fast fission threshold of u238 is by in-

elastic scattering with U nuclei. This degradation of the energy below the fast . . 
fission threshold is most conveniently handled by tracing the first few collision 

histories of,a neutron as it is born inside a uranium lump until the neutron energy 

is degraded by inelastic scattering below the if38 fission threshold or the neutron 

escapes trom the lump. On the other hand, in a homogeneous reactor system where 

the energy loss of the neutron is by elastic scattering the theory of the fast ef-

f'ect described here is appropriate. 

A further simplification in the characteristic· equation can be effected by 

defining average ages for neutrons inducing resonance fissions and for neutrons 

inducing thermal' fission. Thus if' wf.and :pt are defined by the equations 

• 

2-e- Bg t:t 

,· 

uo w 

I I k(w) p (z,w) e 
0 0 

ul 

• 
k~uo>~ J p(z,Ua) e 

kt 

·n , Hg 't'(z,w) 
f(z)dzdw 

then the moat general reactor equation based on simple age theory is 

(6.61) 

(6.62) 
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:a 1 (6.63) 

which is a very reasonable generalization of the usual Fermi equation. Since ~r 

is always smaller than 17t, the.non-leakage probability ·tor the resonance fission 

cycle is greater than for the thermal neutron cycle. Renee resonance fissions are 

more effective in maintaining the chain reaction than are thermal fissions. 
~ 

The essence of the thermal reactor model is that all non-resonance fissions 

are assume.d to be induced by neutrons which do not diffuse; i.e., t't s 0. In 

other words, Y is increased by the factor E . Row if ~f • 0, and if the multi­

plication constant is put equal to k = kt (1 + kre ) = kt ~, then (6.t3) becoD!s 

B 2-- ~ 
k e g t 

.. l (6.64) 

which is the usual characteristic equation for the continuous slowing down model. 

The foregoing is the most general asymptotic theory- for reactors in which 

non-thermal fission occurs and in which the age theory slowing down model is ap-
. . 

plicable. The major weakness of the theory is of course the assumption that 

age theory is valid even though absorption is taking place. This weakness mani­

teets itself in that the correct formula for,the resonance escape probability 

involves aa while (6.52). involves aa· If the absorption is sufficiently weak -
err 

~as it ofte~ is in heavily moderated systems - aaeff and a a are nearly the same anc 

the errors are small. On the other hand, if ~he resonance absorption is heavy ~ so 
I 

heavy that q attenuates drastically in one slowing down interval - more nearly ac­

curate results will be obtained if aa is everywhere replaced by a&err· 

' -
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An attempt to derive the first order corrections to the age theory when ab­

sorption is present has been made by Go.ertzel and Gr~uling and by Edlund(l). The 

result is that the usual equation relating q and F, viz., 

q(u) = Nas .~ F(u) 
0 

should be replaced by the equation 

q(u) = [ ~ Nas
0 

+ "! L.~] F(u) 

where 

1 - a 
"/ = - a E. - af 

1 - a a 

M - 1 2 
l "/ = = - ln a. 

M+ 1 

2/2 

For further details the reader is referred to the original paper, CF No. 51-5-98, . 

Volume II, Chapter VI. 

(1) ORNL-1154. 

(' 
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VOLUME III, PART I 

MICROSCOPIC PILE THEORY 

The previous part of this book has been concerned primarily with macro-

scopic pile theory, i.e,, the calculation of the extensive'properties of a 

chain reactor. These properties include the over-all neutron distribution, 

the time behavior of the neutron flux when the reactor is non-critical, and 

the critical size of the system. In all these considerations, the intensive 

properties of the chain reactor, namely, the multiplication constant, the 

infinite slowing down kernel, the fine structure of the neutron distribution 

in a heterogeneous system, or the material buckling were given as preassigned 

quantities .. The calculation of the intensiye properties of a chain reactor 

comprisesmicroscopic pile theory, and the remainder of the book is devoted 

to an exposition of microscopic pile theory. 

Actually the division of chain reactor theory into microscopic pile· 

theory and macroscopic pile theory depends on the possibility of defining 

a clear cut "generation" or neutron cycle. In a chain reactor in which fis-

sions occur only at thermal energy, a generation is well defined: one starts 

with, 'say, an average fast neutron, which has a certain probability, p, of 
. 

escaping resonance capture, has a certain probability, f, of being absorbed 

by uranium, and, once absorbed, yields~ fast neutrons on the average. This 

complete _cycle constitutes a generation, and the multiplication factor is 

k = l1 pf. 
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In a natural uranium 'chain reactor, some non-thermal fission occurs. 

Since the number of fast fission-produced neutrons is small compared to the 

number of thermal fission-produced neutrons, the few fast fissions hardly 

alter the generation. Thus the generation is a relatively valid notion in 

a predominantly therMal neutron chain reactor such as a large natural uranium 

pile. 

The procedure for determining extensive properties of such a thermal 

' • .o '2 reactor consists of computing k, M~, and Bg , an~ then applying the ideas 

' of macroscopic pile theory to an equivalent uniform system having the same 

2 2 k, M , and Bg as the actual system. 

If appreciable fissions occur at non-thermal energies, the definition 

of a generation, and therefore the division into macroscOpic and microscopic 

theory loses much of its validity. Since neutrons go through complete cycles 

of absorption and reproduction at several energies, there is no unique way 

to specify the beginning aD4 the end of the neutron cycle. There are, so 

to speak, "multipltc:ation constants" for each energy at which fission oc.curs, 

and the true multiplication constant is the sum of the separate multiplica-

tion constants in each energy range cycle. It is customary in dealing with 

such non-thermal reactors to avoid reference to a neutron cycle or even to 

a multiplication constant; instead multi-group equations of the reactor are 

written down which involve only the absorption, scattering, and fission cross 

sections and number of neutrons per fission, rather than such quantities as 

multiplication constant, resonance escape probability, or migration length. 

The solution of these multi-group equations gives the relevant macroscopic 

information - critical size or neutron distribution - without recourse to 

any of the notions of micros.copic theory. 
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So long as a chain reactor is homogeneous, the derivation of the .ap-

propriate multi-group equations is straightforward, .and there is little 

incentive to separate microscopic reactor theory from macroscopic theory. 

However, when the reactor configuration is heterogeneous, as· in a natural ' 

' uranium lattice, the fine structure fluctuations of the neutron density ~n 

effect modify the cross sections which are to enter the macroscopic equa-

tions. It is the purpose of microscopic, or lattice, theory to compute the 

details of the neutron fine structure and to thereby obtain the modified 

values of the neutron cross sections. The calculations of this fine struc-
' 

ture and the multiplication constant, migration area, and material buckling 

in such a system is a complicated matter which.will be dealt with at length 
·, 

in Part III of this book. 
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CHAPTER XI 

THEORY OF HOMOGENEOUS SLOW NEUTRON REACTORS 

As an introduction to Chapter XII on the microscopic theory of hetero-

geneous reactors the microscopic·theory of a homogeneous thermal neutron 

reactor will be developed in this chapter. Many of the results have already 

been given in Chapter v, and so much of the discussion will be a review. 

While the microscopic theory of homogeneous thermal reac~ors is pre-

sented mainly because it points up the modifications required for hetero-

geneous theory, the homogeneous sJow neutron theory is nevertheless of con-

siderable practical importance. An example of a homogeneous slow neutron 

reactor is the Los Alamos water ·boiler which consists of a solution of 

enriched uranyl nitrate and H20. Chain reacting solutions or dispersions 

of natural or very. slightly .enriched uranium in heavy water have been suggested 

· since 1943 as a very attractive means for producing plutonium and power on 

a large scale. The inherent simplicity of such a homogeneous reactor makes 

it likely that su~h systems may eventually become very important in the . 
large scale release of nuclear energy. The homogeneous reactor theory·dis-

cussed here is particularly relev~~t to such slightly enriched, heavy water 

moderated chain reactors. 

The critical equation 

k 
p = 1 

· for a thermal chain reactor involves the quantities k, p, L2, and P00 (Es 1 Bg2). 
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As was pointed out in Chapter v, the multiplication constant k is the pro-

duct 

where 

k = l1 £ pf (11.2) 

)\ = number of. neutrons produced per neutron absorbed in uranium. 

6 = total number of neutrons produced by all fissions/total 
number of neutrons produced by thermal fission. 

p resonance escape probability. 

f = thermal utilization. 

Each quantity in this "four factor" formula will be computed separately 

below(l) ~ 

In addition, it will be necessary to know the diffusion area, L2, and 

the slowing down kernel, P00 (Es 1 r), in order to determine the critical size 

or the material buckling from {11.1). 

Determination of !1 

The number of neutrons produced per neutron absorbed in fissionable 

material was directly given, in terms of cross sections, in Chapter V• (Eq. 

5.2). Thus, if the mole ratio of u235 to u238 is denoted by R, then 

l) {R) = (11. 3) 

where~ is the number,of neutrons produced per fission, df(u235) is the 

fission cross section of u235, ~r is the radiative capture cross section 

(1) The "fissionable materi,al" in the system will be considered to include 
all isotopes of uranium or plutonium. Thus natural uranium as well as 
u235 will be called fissionable material. 
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in each of the uranium isotopes. 

As was mentioned earlier, ~ in general is a function of energy. This 

is so mainly because the cross sections, rather than Y, are energy sensitive, 

and further, the fission cross sections depend on energy in a manner differ-

ent from the way the capture cross sections depend on energy. The details of 

the energy dependence of ~r and ~f in the fissionable isotopes are given 

in Chapter IV. 

For natural uranium, R = .0071·. If the. following thermal neutron 

cross sections and~, given by the A.E.C. Neutron Cross-Sections Advisory 

Group (BNL-136), are assumed: 

'j (u235) 2.51 

~f(u235) 549 b 

' 
a-r (u235) 101 b 

(Jr(u238) 2.8 b 

then~ for natural uranium is 1.32. There is considerable uncertainty even 
8 . 

nov as to the thermal capture cross section of lf?3 1 and on this ft~rrn.mt the 

above quoted value of ~ cannot be considered reliable t.o better than perhaps 

three percent. The values of 1 for thermal neutrons in pure fissionable 

isotopes, as given by BNL-136, are as follows: 

_Thermal Neutron f for u233, u235, Pu239. --
Isotope 4-
u233' . 2.37 

u235 2.12 

Pu239 2.00 

-~ 
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The thermal ~ for natural uranium was of course a number of extreme 

importance in the early days of the Manhattan Project since, unless it vas 

appreciably larger than unity, it would not have been possible to establish 

a chain reaction in normal uranium. Several experiments were therefore 

performed to try to measure~ directly. One such experiment by Fermi and 

Anderson consisted of a long block of graphite in which was placed a Ra-Be 

neutron source. The total number of neutrons appearing as thermals through-

out this ~lock was measured both before and after a layer of u3os had been 

placed in front of the Ra-Be source. With the U308 in place the total 

number of fast neutrons spould be increased because of fissions. The experi-

ment was never entirely clear-cut, however, because many of the neutrons 

leak out of the sides of the block, and in addition, some of the neutrons 

produced by·the U fission are captured by the resonances in u238. Experi-

ments of this type were performed on two different occasions by Fermi and 

Anderson and the results were the following. 

Thermal ~ for Natural Uranium· 
~ Measured by Fermi and Anderson 

+ Date Measured 

1. 73 ' January 1941 

1.29 July 1942 

Historica~ly the very high· value ~ = 1.73 was significant since it made the 

outlook for a chain reaction with unenriched uranium very optimistic at a 

time when no chain reaction had even been established. 

The directly determined ~ disagrees With the valu~ obtained from Y 

and the cross sections. It also disagrees with the value of? deduced from 
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measurements of the multiplication in chain reacting systems containing 

natural uranium. The most directly interpretable experiments of this 

* character were done by Wattenberg, et al on solutions of natural U02f2 , 

in heavy water. The experimentally determined buckling as a function of 

UOzF2 concentration seems to be best fitted if ~ for natural U is assumed 

to be 1.35. This is in rather good agreement with the value found directly 

from the cross sections but is in serious disagreement with the value 

found by.direct measurements. It is generally believed that the directly 

measured ~ is the least reliable value. 

Recently it has been possible to measure t(' for u235 and other fi~-

sionable materials very directly by observing the effect that a small 

amount of ~35 has on the reactivity of a chain reactor. To increase 

accuracy, the sample is oscillated in and .out of the reactor, and the re-

suiting modulation of the reactor power is recorded. Su~h "pile oscillator" 

measurements have been performed·by Cruikshank, Littler and Ward at Chalk 

River and by Muelhause at Argonne. These measurements are now believed 

to give the most reliable values for the thermal yt of the fissionable 

materials, and they are tabulated below. 

* CP-3364 

Pile Oscillator Values of ~ 

Argonne Chalk River 

yt(u233) = 

Yl(if35) :: 

2.31 

2.10 ,---
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The Thermal utilization, ! 

The thermal utilization, f, is the number of thermal neutrons ab-

sorbed in the.fissionable material divided by the total number of thermal 

neutrons absorbed in the whole system. In a homogeneous system this must 

simply be the ratio of the absorption cross sections of uranium to the ab-

sorption cross section of the whole system: 

f = 

where N0 , N1 ~e the number of atoms of fissionable and non-fissionable 

species present per cubic centimeter, and aa , ~a ·are their respective 
. 0 1 

thermal absorption cross sections. In a natural uranium-graphite chain 

{11.4) 

reactor, f is about 0.9. For natural u, ~aa· is of course the sum of fis­

sion, 235 capture, and 238 capture cross sections. It is often more con-

venient to consider the reciprocal of f: 

1 
f 

= 1 + 

the ratio Nl~a1/N0~Bo is called the relative absorption since it is the 

ratio of absorption in non-fissionable to absorption in fissionable species. 

The thermal utilization, f, is the number of neutrons absorbed in fis-

sionable material divided by the number absorbed in ~he whole system; this 

is the same as the number absorbed divided by the number of thermal neutrons 

produced only if the system is infinitely large, since otherwise some of the 

thermal neutrons will leak out rather than be absorbed. This latter ratio, 

' -
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(number absorbed/number produced), is called the effective thermal utili-

zation and depends on the size of the reactor. It is therefore not an 

irite~sive property of·the reactor. Since the ratio 

thermal neutrons produced = 
thermal neutrons absorbed 

'· 

1 + thermal neutrons leaking 
thermal neutrons absorbed 

is, according to ( 5. 24) , just ( 1 + L 2B2) so long as the reactor is b_are, 

the eifective thermal utilization, feff in a bare reactor is 

feff = f (11.6) 

The name, effective thermal utilization, of course derives from the 

fact that the effective multiplication constant is 

or 

' 
k 

kerr = p 

if feff is defined as 

P00 (E,sB2) 

1 + L2B2 
·= ~£pf 

p 

kef:f' c: )/ f. Peff r eff 

P00 (Es,B2) 

· 1 + L2B2 

__ r__,.......,.,,- , and Perf is defined as 
1 + L2B2 

(1L7) 

(11.8) 

The effective reso11ance escape probability is 'the ratio of the, n:umber 

of neutrons escaping resonance capture to the number of resonance neutrons 

produced; it, like feff' depends on the pile size and is smaller t~an p by . 

I. 
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the fraction of neutrons which escape while slowing down -i.e., by 

to p rather than to 1 (cf. eq._ 5.14). 

The Resonance Escape Probability and the Fast Effect 

Since in a homogeneous slow neutron reactor the resonance escape, 

the resonance fission, and the fast fission all involve the probability 

that a neutron will lose energy by elastic collision with the moderator, 

it will be convenient to treat them all together. In a heterogeneous, 

natural U arrangement, on the contrary, it is inelastic collision with 

u238 _atoms or escape from the uranium lump and subsequent elastic slowing 

down which are the major.mechanisms for making a neutron unavailable for 

inducing fission in u238. Thus the fast effect in a heterogeneous arrange-

ment does not have the same direct relation to the resonance fission that 

the phenomenon has in a homogeneous, moderated reactor. 

The relevant theory for the resonance escape and the fast effect in 

a homogeneous system was already worked out in Chapter IV and Chapter VI. 

In Chapter VI it was shown that the critical equation for a homogeneous 

system in which resonance capture and non-thermal fission could occur, and 

in which elementary age theory is 

+ 

applicable, was 
2-

e- ~g tt 
= 1 

where t"f and ~ are average ages for fast and slow fission neutrons, 

kf is the non-thermal multiplication constant, and p was the average re­

sonance escape probability. For p there is the formula (6.57a). 

(11.9) 
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(11.10) 

f(g) being the fiss1on spectrum, Uo the thermal lethargy, u1 the low 

energy lethargy cutoff of the fission spectrum. Since there is ordinarily 

practically no resonance capture at fission spectrum lethargies, (11.10) 

is just the usual 

P = P = exp. ? 
0 

~ du 
o eff 

(11.11) 

where ~a has been replaced by ~A- , as in Chapter IV. In (11.11) 
o -u eff 

N1 is the number of moderator atoms per cc, ~ is the average slowing down 

parameter 

~ = 
Nlc:Tsl ~l + No~s0 l;o 

N1 <"sl + No""so 

and c:Ts1 and ""so are the scattering cross sections of moderator and 

absorber respectively. The resonance integral JIO"a
0 

eff du depends on 

(11.12) 

the scattering crosR ~ection per c~ &lu is in principle calculable according 

to (4.30) if all cross sections are known. However, it is much more prac-

tical to use the measured variation of the integral with cross section. This 

dependence is given in Fig. 4-VI. 

In an actual homogeneous slow neutron chain reactor using normal 

uranium, there is always some - though usually very little - non-thermal 

neutron fission. Below -cbe if38 thre~hold this comes from u235 fissions; 

above the u238 threshold (0.9 Mev) it comes predominantly from u238. How­

ever, the scheme for computing these effects based on (11.9) is entirely 
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adequate in a homogeneous, moderated reactor. According to (6.53) 

kr is to be computed from 

kr = (11.13) 

where N~f(w) is the fission cross section per cc. 

At energies above the ij238 fission threshold, contribution to (11.13) 

comes practically entirely from u238 fission. Below this threshold, which 

is shown in the accompanying graph of ~f(u238) to be about 0.9 Mev, the re­

sonance fission comes only from u235. The expression for kr can therefore 

be broken into two parts 

kr = kr28 + kt-25 (11.14) 

the first term coming from u238 fissions occurring above the u238 threshold, 

~8' the second from u23~ fissions. Thus 

kr28 (11.15) 

and 

(11.16) 

Now in the lethargy interval 0 - u28; there is practically no resonance · 
w 

capture, p(~,w)-;:::::; 1. If f f(~)d.S = F(w), then 
0 
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kr2a = I· 
0 

• 
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. ll28 N <1f28 (w) 

f(N0 a80 + N1<1s1) 
F(w)dw 

i.e., the fast fission probability per lethargy interval, 

• 

(11.17) 

N <1f28 dw 
-:2fii'T.(B:;-o-~-s-0.;;.+~'N:;-l-<1_s_l.,..)- ' 

must be weighted with that part of. the fission spectrum which, in the 

course of slowing, will enter dw, and this is F(w). 

For the true resonance fission contribution, kf25, the fission spectrum 

can be repla~ed by a 5 function, 5(S - ~a), since the actual spread of f(~) 

in ~ is relatively very smal~. Hence 

and 

p(o,w) =- exp. -

p(o,w}dw 

w 

f a8oeff du 
0 -

(11.18) 

(1!1..19) 

p(o,w) really should be written p(~a,w), but the two are the same since 

o8oeff = 0 above the 28 fission ~utoff. Actually (11.17) and (11.18) have 

very much the same form: in the one case the number of neutrons crossing 
-

lethArgy w is F(w), in the other case, p(o,w). 

The fa'st effect,-& , is given, as in Chapter VI, by 

E= l ~l+kr 
1 - kf 

(11.20) 

since kt is always much less than unity in a thermal reac~or. 

The relative importance of the u238 fast fis~ion and the u235 resonanc~ 

fission - i.e., the relative importance of kf28 and ~5 - is strongly de­

pendent on the enrichment and on the uraniUm to moderator ratio. In an un­

enriched heavy water moderateQ; system, kf28 will run around l/2tf, or less, 
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kt25 will be of the same order. As the enrichment increases, the relative 

importance of kf25 grows until in a completely enriched system kf'28 • 0. Fur­

ther increase in the u235 to moderator ratio will make kf25 grow at the ex-
v 

pense. of kt until finally, when kt~~ kf25, most of' the fissions are in the 

no~-thermal region and the reactor becomes a resonance reactor. 

The M1gra tion Area 

The critical condition (11.1} for a predominantly thermal reactor may 

now be written 

~ £. p f 

which reduces to 

... 1 

= B 2 g 

(ll.21) 

(ll.22) 

if' the reactor is. large. The slowing down kernel. is primarily an experimentally 

measured function; for materials such as graph! te, it is usual to consider it 

to be Gaussian. As usual, P00 (Es 1 r} is normalized to p. 

The buckling given by (11.22) clearly goes through a maximum as the ratio 

of' fissionable to moderator atoms is changed. At high B0 /B1 (relatively large 

amounts of U), the thermal utilization f approaches unity, while the resonance 

escape probability, p, approa~.:hes zero. At small B0 /B1 (relatively large amounts 

of' moderator), the resonance escape approaches unity whil~ the thermal utiliza-

tion approaches zero. Since e is practically constant, the maximum k, and 

therefore the maximum B2, must be somewhere between these extremes. 
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The diffusion length, L, has already been computed in Chapter I. If 

the thermal transport cross sections for moderator '(including impuri.ties or 

poisons) and fissionable material are Otr1 and Otro' and the thermal absorp· 

tion cross sections at the average Maxwellian velocity are aa
1 

anq aa
0

, then 

= 1 (11.23) 

provided the ab~orption is weak compared to the total cross section. This must 

be the case in a slow neutron chain reaction for otherwise a large fraction of 

the neutrons would be caught before they become thermal. 

The number of fissionable atoms is always small compared to the number 

of moderator atoms. Since the transport cross sections of practically allele-

ments are comparable (except for Hall are within a factor of 3 of each other) 

Furthermore, since 

l 1 
Nl aa1 

f = + 
No 0 ao 

(11.24) 

1 1 + 
No aaa 

= 
1 - f Nl Oa,l 

(11.25) 

the expression_ for L2 is often written 

= (1 - f) L~ (11. 26) 

where Lm is the diffu~ion length of the moderator alone. 

Physically, the reduction in diffusion length implied by (11.26) which 

results when a heavy absorber like U is dissolved in the system is the result 
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of the increase in. macroscopic_ absorption from N1 cra
1 

to N1 cra
1 

+ N
0 

cra
0

; 

i.e·., from 

-
No U 

to 

u 

Now the thermal neutron lifetime in pure moderator is 

.L = 

' I 
l 

v being the average neutron velocity. Hence with U dissolved in the moderator, 

the lifetime is reduced to 

l - f 
(11.27) 

provided the effect of the additional absorption on the neutron temperature 

is ignored. 

Since the thermal utilization is usually about 0.9, 12 in, say, a 

graphite chain reactor will be 1/10 the 12 in pure ~ similarly the neutron 

lifetime is shortened by a factor of ten. This is a fairly general rule - that 

in most slow neutron chain reactors using unenriched uranium the generation'time 

and the 12 are about ten times lower than their values in the-moderator alone. 

Temeerature Coefficient of Reactivity 

The temperature behavior of a chain reactor is of the utmost importance 

in devising an adequate control system, and for this reason the calculation 

-
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of temperature coefficients of reactivity is always a central part 

of any reactor design problem. Of the quantities ~, £, p, f, L2, 

and P which enter into the expression for k~ff' only the kf28 part of 

£ (which involves very fast neutron cross sections) is independent 

of the temperature.- All the others may vary with the temperature of 

either the moderator, the fissionable material, or the neutrons. 

In general, three temperatures are relevant in a slow neutron 

ch~in reactor: 

l) Moderator temp~rature: the moderator temperature determines 

the neutron temperature (though the two are usually not quite the same); 

in addition it determines the moderator density, and therefore the ~-

scopic cross sections of the moderator. 

2) Neutron temperature: this is in simplest approxima~ion the 

same as the .moderator temperature. More exactly, because of the U ab-

sorption, the neutrons never quite come into the~al equilibrium with 

the moderator, and their temperature is somewhat higher than the modera-

tor temperature. 

Experiments by L. Woods (CP-475) have shewn that·the neutron 

temperature in a graphite natural U reactor is perhaps 60 - 85°C 

higher than the graphite ~emperature. It is the neutron temperature 

which enters in calculations of microscopic thermal neutron cross sec-

tions. In lieu of a better theory, it will be assumed that a change 

in moderator temperature causes the same change in neutron temperature. 



3) Uranium temperature: if the U and the moderator are not in 

intimate contact, the uranium and the moderator temperatures can vary 

indePendently. This is particularly the case in a heterogeneous reactor 

where the heat transfer from U to moderator may be very poor. In such a 

system, a sudden rise in neutron level will cause the fission rate, and 

'therefore the teaperature, of the U to increase before the heat gets a 

chance to enter the moderator. The uranium temperature affects the 

t~ cross sections of U only insofar as the temperature-induced density 

chaqe attects K0 , and therefore the macroscopic cross sections. The more 

t.portant ettect ot changes'in U temperature is to change the resonance ab-

sorption because of Doppler. broadening. 

we turn nov to a consideration of each of the temperature dependent 

quantities, ' , p, k:f'25, f, L
2, and P. 

~rature Coefficient of ~ 

Since ~ involves the ratio of u235 to u238 cross sections, namely 

~ = 
R 'Y dr25 ' (11.28). 

(vbere subscripts refer to the nuciear species), ~will vary with tempera­

~ure only- it the absorption or fission c~oss sections of if35, and the ab­

sorption cross section of u238 deviate in different ways from 1/v behav~or. 

Data on this point are not entirely conclusive since ~r(u238) has not been 

•u~d in the region J,ust beyond .025 volts with any precision. 

If the cross .sections are consi~ered to deviate from 1/v, then 1 
qf course must be averaged over the neutron spectrum which is assumed to 

' 
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be Maxwellian, M {E)= .Ji e -E/kt Thus (11.28) should be replaced by 

= (11.29) 

where T is the absolute neutron temperature. The extra factor \(E in 

the average comes from the fact that the cross sections must be weighted 
. . 

with the flux, nv, rather than with the neutron density, n. 

To evaluate ~ (T) it is convenient to make some analytic approxima­

tions to the experimental cross section. Wigner, from analysis of ali 

available data has suggested t~e following analytic approximations (all a's 

in barns): 
.44 

= 

{E 

(11.30) <1"~5(E) = o-r25 + <1'r25 = 113 
[1 3.24 E + 12.8 E2] 

'-lE 

o-f25(E) 
113 

[1 - (3.24 + 1 : )E• + 12.8 E~ = "T:'rn 1.18 -JE 

vhere a = <1"f2 ~/~r25 ~ 0.18. Considerable uncertainty in the value of 

: exists. Recently (KAPL-511) J. Sampson and H. Hurvitz, Jr. have analyzed 

the neutron spectrometer data on u235 and experiments by Bragdon, Hughe~, and 
I 

Marshall (CP-1381) in which the change in u235 fissions to u238 captures was 

measured with ~d without a silver filter around the sample: the average 

temperature of the neutrons was higher with the silver filter than without. 

Their analysis gives the following: 
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da(kT). 
dT 

Brasdon et a.1 

Neutron Spectrometer 

- .46/ev to - .82/ev 

+ 0.6/ev 

- ?xl0-5/oc to - llxl0-5/°C 

+ loxro-5/0 c 

The true value of da/dT is thus seen to be in grave doubt. The range of 

values for d ~/dT of natural U found by substituting (11.31) into (11.30) 

are given by Sampson and Hurvitz thus: 

Bragdon 
Experiment - 0.74/ev - 10xlo-5/0 c - 6xlo-5/0 c 

Neutron 
Spectrometer + 0.6/ev + 10xlo-5/0 c - 29xlo-5/0 c 

Constant ex 0 0 - 18xio -5;oc 

I 

All that can be concluded from this is that d '7/dT is very probably 

negative, and-around 10 x 10~5;oc. 

Temperature Coefficient of p 

Since 

P = exp. - dE/E (11. 31) 

and since . S <1a dE/E increases vi th uranium temperature in the manner 
Oeff 

discussed in Chapter IV, the resonance escape probability decreases as a 

natural uranium chain reactor heats up. The' change in J era dE/E with 
Oeff 

\ 
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temperature becomes small as the scattering to absorption ratio increases; 

in the limit of oo scattering cross section, J ~a d.E/E becomes 
Oeff 

. temperature independent. On this account the change in p with temperature 

in a homogeneous reactor - in which the scattering per uranium atom is evi-
' 

dently very large - is of less consequence than in a heterogeneous system. 

There are no data available on the temperature coefficient of 

I cr25 d.E/E; nor are there data on temperature variation of J <1111 _ d.E/E 
eff . · -ueff 

except for natural U metal and U oxide. For these systems, the temperature 

coefficient of the resonance integral is about -4;o - 1.5 X 10 C. Since the-

fraction of neutrons "trapped" by resonance absorption is about ten percent 

in a natural uranium chain reactor, the temperature coefficient of p in a 

reactor such as Hanford is about 

1 
p 

In a highly enriched reactor such ·as the EBR or the SIR in which a con-

(11. 32) 

siderable fraction of the fissions occur at resonance energies, the Doppler 

broadening can of course ·increase the fission rate, i·.e., kf25' with in­

creased temperature. At the time of this writing not enough is known about 

the details of the u235 resonance struct~e to predict the sign of the 

Doppler-induced temperature coefficient in an intermediate energy u235 re-

actor such as SIR. 

. ' 
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The thermal utilization involves the ratio of absorption cross 

sections of uranium and moderator, etc. So long as all cross sections 

are 1/v, and the system is truly homogeneous, f will be independent of 

neutron temperature. If some of the cross sections deviate from 1/v, 

then f will be neutron temperature dependent, ,1ust as 'YJ is, viz, 

1 f (T) = 1 + 

-E/kT 
N1 5 O"al (E) E e dE 

-E/k'I! 
N0 S "'ao (E) E e dE 

In (11.33), the assumption is made that the thermal neutron spectrum is 

Maxwellian. No general conclusion regarding the variation of f with T 

is possible. In a homogeneous system it is customary to assume f is 

temperature independent, while in a heterogeneous system in which .the 

details of the thermal neutron distribution will be sensitive to neutron 

(11.33) 

temperature, the thermal utilization will be dependent on temperature even 

though all cross sections are 1/v. This effect.will be discussed in the 

following chapter. 

Te!Perature Coefficient of L2 

The diffusion area, L2 , in the reactor is given by 

L2 = (1 - f) ~ 

Hence 

1 dL2 1£ ari 1 df 
L2 (iif'""" = 

~ ·dT 1 - f "dr 

1 
dL2 

m -- ~ dT {11.34) 
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in a homogeneous system in which : ::::: o. The diffusion length of the 

moderator is 

and therefore 

1 

r.i 
dL2 

m 
dT = 

r! = 

2 d.N 
- NJ. CiT -

1 d crtr 
dT 

1 

(11.35) 

(11.36) 

Row ~ ~ is simply the negative of the reciprocal expansion coefficient 

1 dcta 1 
ot the moderator, ~; and a a ~ = - 2T if era is 1/v and T is the 

absolute temperature of the neutrons. Thus 

1 d crtr 
c1tr ClT 

(11.37) 

If the transport cross section, ~tr , is known as a function ot 

neutron energy, then the proper average transport cross section, which is 

to be used tor computing the diffusion length, is, according to (1.91), 

00 

J v M (v) dv 
atr (vJ 1 0 = O'tr 00 

s v M (v) dv 

(11.38) 

0 

provided the neutron distribution is nearly Maxwellian, and the scattering 
I 
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atoms are so light that the "amnesia" approximation discussed in I-38 

is ,justified. Although the complete justification for (11.38) has never 

been given, it has been customary in project literature to use it in com­

puting the average transport mean free path. The important point about 

(n.~ is that it is the reciprocal cross section which is averaged. 

Two mechanisms are of importance in imposing a temperature dependence 

on the transport cross section. These are 

a) .Crystalline effects 

b) Chemical binding effects. 

Although the theory of both effects in application to the problem of 

neutron diffusion in a chain reactor is not complete, it will be instruc­

tive to describe what has been done. 

Crystalline Effects 

The scattering of slow neutrons in crystalline material is of two 

kinds: coherent scattering, in which the neutron waves form diffraction 

patterns as the wavelets from the regularly sp~ced scattering centers in~ 

terfere or reinforce; and incoherent scattering, in which, for various 

reasons such as spin dependence of the scattering, presence of different ' 

iso~opes, or inelastic scattering, there is no regular phase relation be- . 

tween the neutron wavelets scattered from different scattering centers, 

and interference is therefore impossible. Coherent scattering will pccur 

· OJ?.lY if the scattering angle 9 and the neutron wave length i\ satisfy 

the Bragg relation 

n A = 2d sin 9 , 

n being the order of the reflection, and d.the distance-between lattice 



planes. 

If Aexceeds 2d, coherent scattering is impossible; only incoherent 

processes . can lead to sc'attering. The total incoherent scattering cross 

section is often very small (~ 0.7 b in BeO); thus, very slow neutrons 

will hardly be scattered at all in polycrystalline media. A long thin 

block of BeO can therefore be used to filter out neutrons of very low 
0 

energy .since neutrons of more than about 4.5 A wave length will be scattered 

only incoherentJy (with cross section of 0.7 b) while neutrons of shorter 

wave length will be scattered with a cross'section perhaps ten times higher. 
\ 

A striking demonstration of this is seen in the· accompanying graph of Fermi 

and Marshall(l) shoving the spectrum of neutrons filtered through a 

. 4o em x 10 em x 10 em prism of BeO when· a Maxwellian spectrum vas incident 

on the block. 

(2) 

. 
l 2 3 4 5 6 7 

If )( is short enough for the Bragg relation to be satisfied, 

coherent scattering can take place. Fermi, Sturm, and Sachs(3) have 
'· 

shown that the scattering cross section per nucleus correspondi~g to 

(1) Physjc& Review, Vol. 71, p.666, 1947. 

(2) Ibid. p.672 (Fig. 3). 

(3) Ibid. p, 592. 

. ' 
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scattering of a particular order from a particular set ot lattice planes 

in a randomly oriented polycrystalline aggregate is 

N F A2 e-2wb2 

8 1t b 

where N is the number of nuclei per unit volume, F is the crystal form 

factor (i.e., the scattering cross section of the crystalline unit cell), 

b ·- n 
- d ' n = order of the reflection, w = Debye-Waller temperature 

factor. The formula for w is 

where h = Planck's constant, m = the atom's mass, k = Boltzmann's 

constant, e = characteristic temperature, T = absolute temperature, 

and ~ .. Debye • s function •. 

The total coherent scattering is the sum of the scattering from all 

lattice planes for which diffraction can take place. Thus 

Cf = ~\ ~ 2/AF N .A 2 exp (- 2wb2)/8 1t b ; (11.39) 

the cross section given by (11.39) is zero until the energy increases enough 

for the Bragg condition for the most widely separated crystal planes to be 

satisfied. The cross section then decreases essentially proportionally to 

the square of the wave length. until the Bragg condition is satisfied for 

the next most widely separated planes at vhich'energy there is another 

sudden increase in scattering cross section. These discontinuous jumps, 

followed by monotonic decreases, are repeated until the wave length is so 

short th&t many planes contribute to the scattering, and the Bragg scattering 



becomes indistinguishable from the ordinary free atom scattering. This 

"jagged-tooth" variation of the cross section with energy in the case of 

BeO is shown in the accompanying Figure 11 - I. At very low energies 

where (11.39) gives no scattering, there is of course some residual 

incoherent scattering. 

To show how the crystalline scattering affects the average mean free 

path, the cross sections of.microcrystalline BeO have been averaged over a 

Maxwellian neutron flux according to (11.38). The resulting averages are 
• 

compared with the averages obtained from the high energy BeO scattering 

cross sections in the accompanying Figure 11 - II· It is seen that in 

BeO the crystalline effects increase the free atom mean free path by 

about 1~. 

Chemical Binding Effects 

It can be shown on rather general grounds that the cross section 

for the potential scattering of a neutron is proportional to the square 

of the reduced mass of the system neutron+ scatterer. [see, e.g., 

Bethe, Xlementary Nuclear Theory, (Wiley, 1947), p. 47) When a neutron 

ot.higb energy strikes an atom in a molecule, the struck atom acts as 

though it were free. However, when the neutron energy is comparable to 

the energy of chemical binding, the molecule will·tend to recoil as a 

whole. Thus the effective reduced mass of the scattering center + 

neutron rises as the neutron energy decreases; since the scattering cross 

section also increases with the reduced mass, the thermal scattering 

cross section tends to increase as the neutron energy decr~. 

Since the reduced mass of neutron-proton system changes from ~ m, 

the nuclear mass when the proton is free, to m when the proton is tightly 
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attached to an infinitely heavy molecule, the thermal neutron-proton 

scattering cross section increases by about a factor of four as the 

neutron energy decreases. The change in reduced mass with binding is 

greater for a proton than for any other nucleus. For deuterons, the 

reduced mass·of the system neutron+ deuteron changes from 

to 

2 -m 
3 

m 

free·deutron 

completely bound deuteron 

so that the deuteron scattering cross section ought to change by a 

factor of 9/4 as the energy of the neutron approaches zero. With 

heavier nuclei the effect is less important. 

Experimental eviQ.ence for the "reduced mass" eftect in neutron-
. ' 

proton and neutron-deuteron scattering is abundant. The accompanying 

~ph Figure 11 - III gives the n-d scattering cross section as 

measured in D2o at several neutron'energies. 

Since tlie strength of the binding depends on the particular com-

• 

pound containing the proton, it is not surprising to find the details ot 

the energy dependence ot the n-p scattering cross section are sensitive 

to the composition of the proton containing molecules. This is shown in 

Figure 11 - IV where the n-p cross sections as measured in H2 gas, 

methane, propane and cetane are given. 

It is seen in the graphs that the n-p cross section (as measured.in 

cetane) falls from about 71 barns to 21 barns~ while the n-d cross 

section falls from 6. 6 to 3·. 3 barns in going from • 01 e. v. to 1 e • v • These 

values are close to the theoretical values of 4 x 21 = 84 barns for H and 

·9/4 x 3·3 = 7.4 barns forD to which the cross sections should·extrapolate 

at zero energy. 
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The chemical binding variation of cross section must of course 

be taken into account when estimating the dependence of 12 on tempera-

ture. In fl20 moderated systems~ where the effect is by far the largest~ 

the variation in scattering cross ~ection accounts for about 4o~ of the . ' . 

temperature coeffic~ent of 12. The remainder comes from the 1/v absorp-

tion cross section. 

1-Temperature Variation of P P 

1-
Little need be said about the variation of p P with temperature. 
1 _ro 

Since ~ P is determined by the fast neutron scattering properties of the 

110derator, and since these depend on temperature only insofar as thermal 
9 • 

1-
expandon changes the number of nuclei per c .c., P P is affected also 

only insofar as the density of t~e .moderator changes with temperature. 

Examples of Homogeneous Reactor'Systems 
I 

The nuclear energy literature abounds with suggestions for slow• 

neutron chain reacting sy~tems in which fissionable material and mode-

rator are intimately mixed. In addition, there are the fast and inter-

mediate systems in all of which heterogeneities of fuel distributions are 

rather unimportant bec~use the mean free path of the system is large com­

pared to either the fuel element thickness or the space between the fuel 

elements. 

Of the true homogeneous chain reacting systems only two, the Los 

Alamos water boiler and the HRE1 have actually·been built and_are oper-

ating. Both of these, from a nuclear standpoint, are ~0 moderated and 

use u235 as fuel. Nuclear characteristics of the HRE are given in ORNL-1121 

and ORRL CF-:-51-11-94. 

(1) The factor ~ 11.ormalizea the slowing down kerne~ to unity, rather than 
to p. 
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.There have been numerous critical experiments performed on H2o so­

lutions of various c-oncentrations with both u235 and Pu239 as fuel. The 

u235-H20 solution experiments were performed by Callihan, et al. A com-

parison of their observations with·two-group calculations and with the 

variational method of Greuling is given in Fig. 11-V. 

Pu-820 experiments have been done at Los Alamos dtiring the war by 

P. Morrison, B. T. Feld, L. Slotin, et al. An es~imated minimum critical 

mass of 6o6 : 50 grams o·f Pu239 in a nitrate solution with an infinite ~0 

reflector was obtained by extrapolating these experiments. 

Fi~~ly, in the H20 moderate~ systems, there have been numerous ex­

periments in which the U is borne in plates which are so close to each 

other that in effect the system is practically hoJQOgeneous. The MTR (and 

its children, the LITR and BSF)· are all reactors of this type, 

the plates being aluminum. 

One characteristic of ~0 moderated systems is that because of the 

very large thermal neutron· scattering by protons, the thermal 'diffusion 

length in 820 systems is always extremely small. For this reason the fast 

leakage is always much greater than the slow leakage. In the MTR, for ex-

' ample, the fast leakage is eighteen- times the slow. Thus the characteris-

tics equation in a water moderated system can with good approximation be 

replaced by 

""-, 

(11.40) 

since the slow leakage,, L2B2, is small compared to ~ity. 

Greuling has worked out a complete variational treatment for water 

moderated, water reflected system~ which has been used extensively in cal-
' ' 

culations on such systems, and the reader is referred to this work 

' 
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(LA-393) for details. 

lleavy water enriched fuel systems have been studied by Snell. He· 

measured critical masses of n2o - u235 solutions which were essentially 

homogeneous. The results of his measurements are summarized in MonP-454 

and are analyzed ·in some detail by Garabedim ( 1) and N~rdheiufg) . Snell's ex-

periments were heavy water reflected~·and therefore bare reactor theory 

is inapplicable. The minimum critical mass he found· was 859 gm of u235. 

The critical mass in these. ~0 and D20 moderated systems as a 

function of fuel to moderator ratio shows a minimum. That the critical 

mass should be very large at very low concentrations follows because the 

more dilute the solution, ~he more neutrons are absorbed by the moderator. 

In fact, since k = f ~ ( E. and p are practically 1 at low concentrations) 

must exceed unity in order for the system to chain react at all, the con-

centration at which the system is inf~nite is given by 

1 
~ f = 

Since 1 is given by (11.24), 
f 

1 = 1 + 
NlCTal 

f Nocrao 

the minimUm chain reacting concentration is 

(l) CNL-36. 

(2) MonP-314. 
.. 

= {~ - 1) 

' 

(11..41) 

(11.24) 

(11.42) 
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In H2o and u235 this is 1200 or 10.9 gm u235juter; in n2o it is 

9.6 x 105 or .0135 gm u235jliter. 

At the high concentration end the critical mass also goes up, 

although the thermal reactor theory breaks down as soon as the concen-

tration is so high that an appreciable fraction of the fissions are epi­

thermal. At the high end of the concentration scale, the multiplication 

constant becomes practically constant and equal to ~ since eventually 

all the neutrons are absorbed by the fuel. The L2 approaches ze:ro as U 

concentration, and therefore absorption, increase, but, until resonance 

fission becomes important, the Z" remains practically constant. Conse-

quently the buckling, which roughly approaches 

(11.43) 

remains unchanged,as the·concentration increases, and therefore the total 

.ass grovs larger and larger. Actually the maximum critical mass on the 

high concentration side is just the mass computed for a fast neutron re-

action in a solid chunk of fuel. Since in a fast system almost every 

collision leads to a fission, the buckling is much more nearly 

n- 1 
1 A2 
b' tr 

(11.44) 

where Atr is of the order of the .. fast.~t:ransport m.f .p. Since ~ i\ 2 ~< Z" 
tr 

-.!>35 1 '\ 2 (for u- density 18.6, 0 ~ ~ 5.4, 
tr 

~H20 ~ 33) the actually maximum 

. ... 

& 



51 

critical mass is far S!paller than that obtained from (11.43). 

The thermal neutron homogeneous systems of perhaps greatest in­

terest are those which involve solutions of natural or slightly enriched 

U in D20. Such systems can in principle be used to convert uranium into 

plutonium, and they have therefore been studied rather extensively. 

'critical.mass as a function of u235 to u238 ratio and of concentration 

for U0~04, U02, and U02N03 in D20 is given in Fig. ll··VI. The method 

of calculation is simply to use (11.28), (11.11) ,· (11.4), (11.26), and 

(11.22) for ~ , p, f, L2 and B2 gnd assume that £ ·,. 1. 

Frqm the calculation it appears that any of the natural uranium 

systems, except the nitrate, can be made chain reacting at the appropriate 

U to n2o ratio. The optimum concentration, i.e., the concentration 

leading to minimum U investment, is about 60 - 70 gm U/11 ter. Below 

this concentration the parasitic thermal absorption by the ~0 tends 

to reduce k and therefore the critical mass is large; above this concen­

tration the u23B resonance absorption begins to become important, k 

decreases, and again the critical mass grows. 

No slightly enriched homogeneous D20 system has been made critical 

as yet. However, exponential experiments on sub-critical ~ssemblies of 

natural U02F2 in ~0 were made by Wattenberg in 1945, and the results of 

these compared with'Dancoff's calculations are.given in CP-3364. In such 

systems which contain natural U the resonance absorption integral, and its 

variation with concentration of moderator, is extemely important for de­

termining the multiplication constant. The values of f aBoeff dE/E 

' . 
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;rhlch Dancoff_had used t() achleve agreement with experiment are the 

same as given in Fig. VI of Chapter IV. The comparison with experiment 

is g!ven in the accompanying graph, Fig. 11-VII. 

"' 
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