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SOME ASPECTS OF REACTOR THEORY

Alvin M. Weinberg

My purpose in these remarks will be primarily to outline what seem to me 

to be the major issues in reactor theory; second, to stress some results which 

ought to be classical, but which I find sure not as well known as they should 

be; and finally, to ask some questions both of reactor theory, and of reactor 

theorists, to which I have not as yet heard convincing answers. I hope my re

marks will serve the purpose of placing in better perspective a few of the- 

classical problems in reactor theory which have not received as much attention 

as they ought. -

There is really only one problem in chain reactor theory, just as there 

is really only one problem in qusmtum mechanics. In quantum mechsmics it is 

the computation of the wave function, as a function of time, space, energy, and 

spin variable, given the physical parameters and initial conditions; in reactor 

theory it is the computation of the neutron flux as a function of time, space,k
energy, and angular direction, given the neutron cross sections, the source dis

tributions, and the initial conditions. The eigenvalues, in the one case the 

stationary energies, in the other the critical reactor multiplication constant, 

are computed more or less as a corollary to the computation of the fluxes or 

wave functions.

During the war the exposition of reactor theory proceeded independently, 

and along rather different lines, at Los Alamos on the one hand, and at Chicago 

and Montreal, on the other „ At Los Alamos the chain reactor systems were small 

and homogeneous. The properties of such systems could be computed in principle 

directly from the Boltzmann equation in which measured cross sections were used. 

At Chicago and Montreal, where interest was centered on the large unenriched
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heterogeneous chain reactors, the protein was always divided into two parts: 

first, the computation of the "intensive " or "microscopic" properties of the * 

chain reactor such as the thermal utilization, the resonance escape probability, 

etc., and second, the computation of the "extensive" properties such as critical 

size by using the locally computed properties in a fictitious equivalent uniform 

chain reactor. This division into "macroscopic" and " microscopic" chain reactor 

theory was natural because .the lattice structure so complicated the local neu

tron distribution as to make the capture probability in fuel of a thermal neu

tron, i.e., the thermal utilization, a problem of considerable proportion in 

itself. However, the resulting division of the theory into macroscopic and 

microscopic is one of its least satisfactory aspects. To this I shall return 

later.

Asymptotic Reactor Theory

From the macroscopic (or Los Alamos) viewpoint, the properties of a chain 

reactor are to be determined from solutions of an appropriate Boltzmann equa

tion. Hear a boundary - say the edge of the reactor - the solution of the 

Boltzmann equation is always much more complicated than far from the boundary, 

and so it is of interest to consider the asymptotic flux distribution - that 

is, the distribution far from boundaries. This asymptotic distribution is an 

intrinsic characterization of the reactor medium; consideration of the proper

ties of the asymptotic distribution is therefore centrally important in the 

theory.

Now an asymptotic distribution will exist only if the properties of the 

chain reactor do not change from point to point. We therefore concern ourselves 

with a uniform reactor; since we consider distributions which are far from 

boundaries, we can imagine the uniform reactor filling all space.
1
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We denote the total number of fission neutrons created per second per c.c. 

by F(r). Further, the probability that a single fission at r' will give rise 

to one primary fission neutron at r during the course of one generation we call 

G(|r - r’|). The kernel G is a displacement operator because one part of the 

reactor is just like every other part. Then, in the steady state,

F(r) = k / F(r') P(|r' - r |) dr' (1)

where k = / G(r)dr is the total number of primary fission neutrons created by 

a single fission neutron, and P(r) =, G(r) .
/ G(r)dr

An equation such as (l) in which the total fission neutron creation rate 

(independent of energy) is the variable was first suggested by Placzek and 

Volkoff. ^ Because the reactor is isotropic and homogeneous, P is a displace

ment operator, and the equation (l) is invariant under the Euclidean group. 

Thus, as can be verified.directly, (l) possesses a solution which satisfies

A F(r) + B2F(r) = 0

provided the buckling B satisfies

(la)

k P (B2) = 1 (lb)

— 2 r. where P (B ) is the three-dimensional Fourier transform of P. The result which

I have quoted here is the essential part of what is called the fundamental
. (2)

theorem of pile theory; or again, it is the basic idea of the so-called 

extrapolated end point method. For the buckling B^ is determined npt only by the



characteristic equation (lb) but also* in the actual finite system which is to 

be related to the fictitious infinite system* by the geometric relation

in the case of a slab of extrapolated height H. The power distribution in that 

case is .

F(r) = Fn cos 2JL . 
- ° H

It has always struck me as being entirely remarkable that perhaps the most im

portant fact about a chain reactor - that its power distribution is sinusoidal 

with wave number B - follows essentially from what are the group-theoretic 

properties of the basic transport equations* and is independent of any details 

such as slowing down properties* cross sections* etc. Of course this is not 

to say that the value of B is independent of these* rather, for a critical B* 

the asymptotic power distribution in a uniform reactor is a consequence of the 

essential identity of each point of the reactor.

A corollary of the preceding remarks is that the asymptotic solution of 

the reactor equations must be separable in space and in energy* i.e.* far from 

boundaries the neutron flux of every energy is sinusoidal with the same wave

number B. Instead of the very general* but uninformative, (l) let us write

(3) rthe reactor equation in age theory approximation for the neutron flux'-'7 £*

2&L 4,, f - I f f(u)
<y8(u)

Uq
/ k(u’) oa £ (*> U')du* + k(uQ) oa(u0) $s

(2)
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where os> oa are the macroscopic scattering and absorption cross-sections; D 

is the diffusion coefficient; u is the lethargy measured from the top of the 

fission spectrum; uQ is thermal lethargy; f(u) is the fission neutron spectrum;

k = -£J is the multiplication constant at lethargy u; | is the logarithmic

energy decrement.

The solution of (2) is

£ (*> u) * = \[f(r)X(u) .

provided

A \|f + Bc

X(u) exp - / dy
o i os (y)

/ f<») exp / B2DM * °»(x) dx
0 0 | Os (x)

u
Jo
/ f(z) p(z,u) exp - B2 7#(zjlu)dz

Herein is determined as the solution of

- r r2 - rsB2
kf e ^ + h. l._ - 1
f 1 + L2B2

where the "fast" and "slow" multiplication constants, kf and ks are

Uq w

/ /o o
V Of (v) p(z)(izd.w

S ffs
3 *8 * / p(z,Uo)F(z)dz •

<?a(uo) °
(5)

The "sldw and "fast" ages T& and 7f are then defined by

v- \

\
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kf exp - 7p2 =

J
uo w
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Qfa (w)/ / k(w) p(z,v) e
o o | o_

J2
- B2 T'Cz,w)

F(z)dzdv;

;Jxp-‘ r5B" k(u0) / p(z,uQ)
-B2/(z,u0)

F(z)dz

and p(z,u) is the probability that a neutron will escape resonance capture in 

slowing from lethargy z to lethargy u, while T’Xz^w) is the age from z to w.

In the usual slow neutron reactors, it is assumed that all fast fission 

occurs at the single lethargy, o. Thus 7^ ^ Ts - T, and (4) reduces to 

the customary
■ - ' _ «/q2

____ » 1
' 1 + L2B2

because, by definition, the fast effect is £ = ^.

Equation (4) is the most general characteristic equation based on age 

theory fo;r a reactor in which fission takes place at arbitrary neutral energy. It 

first appeared in the literature in 1944 in a paper by Wigner on breeders. In 

more recent years, it has been ignored to a father surprising degree - perhaps 

because most resonance reactors Eire strongly reflected, and therefore the 

asymptotic solution is not very important practically.

It is natural to inquire whether there is Ein asymptotic angular distribu

tion which, like the spatial distribution, is energy independent! i.e., whether 

the complete asymptotic neutron flux distribution can be written as a product

$ (r> jfL,E) » t (r) X (E) w Ul) .

-SE6BET r
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To appreciate what is involved in deciding this* we write the general one

dimensional Boltzmann equation in an infinite, multiplying medium in which 

moderation is by elastic collisions(cf."Theory of Neutron Chain Reactions," 

ORNL CF-51-5-98, p. III-15) ‘

'll (x„a,E) + = l1- +_M)2
ax 4 m

E/o£ 1
/ / cr (Ev)^fx,E’,u') sfu

E - 1 . 10 du'

+ - f (e) 
2

f° / Of 5(x,E,,n,)aE' du' 
o-l '

(6)

where

g(E,E’) = | [ (M + 1)(E/E O1/2 - (M - 1)(E'/E)1/2 J,

o fVL - 1^ 2Or - | j^-4—^ ) , M = mass of moderator, = S\. ° j\ ' = direction

cosine of scattering angle. The 5 function implies that the. angle of scatter

ing and the energy loss are correlated. Now 5 fuQ - g(E,E')J can be expanded;

6 [nQ - g(E,E')] = £ (n)P^ (n') [g(E,E' )]

+ azimuthal terms. Thus, the correlation between energy loss and angle means 

in a sense that the scattering law in the first place is anisotropic, and in 

the second place that the character of the anisotropy is energy dependent. Now 

it has been shown by Wignsr that on group theoretic grounds the angular distri

bution of the flux in the velocity independent case involves the same number of 

spherical harmonics as the scattering law for the individual events. It would 

therefore be reasonable to expect that in the energy dependent case, where



because of the correlation, an infinite number of energy dependent spherical 

harmonics are needed to describe ihe scattering, that the flux too will involve 

an'infinite number of harmonics, the coefficient of each harmonic itself being 

energy dependent. In other words, there does not exist an asymptotic solution 

of (6) which is separable in space and in angle.

To see how this comes about, it is worth recasting the Boltzmann equation 

into an infinite set of linear integralequations. ,

We put
. iBx

$(x,n,E) = -jj- \|r (p,E),

and expand the function ty(u,E) in a Legendre series:

p/+ i
t (n,E) = Z ty (e) r („) .

There results an infinite set of integral equations which can be written

*»<*> * ^Vsr- ¥ Pn [g(E,E’)J'f| VB'E'VE')^-

+ l f(E> Zi t ? V1-1'’ 6on H <E’>

where

■ 2 Qf (B,B) = a / Fa M dn .
2/ + 1 -1 a + iBp,



In terms of the

defined by

iBx a
*E (x,n,E) = e -'£+ . ^(E) P^ (p)

/ o S?n

the integral equations are

+ &0/,5f(E) /°af^ (E')dE'.

These integral equations have the.following interesting significance. The 

quantity o8 ^(E ’) is a sort of collision density of the n-th angular mode of 

the neutron flux; these neutrons after a collision are distributed in energy

non-spherically symmetric. The energy distribution of all n-th mode neutrons 

contributing to the energy E is given by the first integral ip Eq. (7), A 

certain fraction of these, Q^n(B,E), make a collision in the 1-th mode without 

escaping from the reactor.

The matrix Q^n, which Welton calls the non-leakage probability matrix, is 

therefore seen to be a generalization of the usual non-leakage probability.

Each component can be thought of as giving the probability that a collision 

of an n-th mode neutron will be followed by an 1-th mode collision before the 

neutron escapes from the ------"—

with a probability function (l + M)2 Pn jg(E,E '] 
. ' 2 M E

- i.e., the collisions are
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The lowest Q^n, Qq0> which relates the before collision to the ^ after 

collision is the familiar

too = (8)

i.e., it is the Fourier transform of the monoenergetic transport kernel.

To solve (7) for and the eigenvalue B in general, seems out of the

question. However, the infinite set of integral equations does reduce to a set

of linear equations if all cross sections are enezigy independent, as shown by B.
(4) ^

Davidson ; or the set reduces to a single integral equation in if the cor

relation between energy loss and scattering angle implied in the & function 

kernel of (6) is ignored. In this latter very simple case the equation (7) may 

be written .

■ {. „ u + M>g f/aS _ j sL
r\ ~ J ®S In T? *Qr

(9)

where, for -simplicity, we have assumed that the fission distribution is a delta 

function at energy EQ. Now (9) is just in the form of the equation for modera

tion in an infinite medium with total cross section a .
Qqo

An approximate asymptotic solution is

E/a2
f E | = const x exp - /

E

and from the extrapolated condition at Eq, viz.,

E,

<VQoo - ae dE'
S E1

°s0 $0 Eo & = v / (E' J®' >

""11
• . t -



i !
. —11 -

* "* 'i '
I ■ ; ■’

there results the characteristic'equation 

. * » „

. Qoo .,
1 = •--------- 2. / k(E') — (E . E') e E'

an o dE* 0 ..
-/,° [i - Q00 (fi2> x’)] dx'/x' (

which is a slight generalization of (4) for a resonance reactor. The main dif

ference is that the non-leakage probability here is

Eq

~E' t1 " Qoo x')] dx'/x' ’
e

which reduces, by virtue of (8), to the familiar

-B2r(E',EQ) '
e

if B is much less than a, i.e., if the reactor is large compared to the mean 

free path. .

"Practical" Multigroup Methods

The asymptotic theory has beauty and elegance. Its practical usefulness is 

limited of course because in small reflected reactors the non-asymptotic solu

tions tend to overwhelm the asymptotic solution. Largely on this account nu

merical methods have been devised - mainly at KAPL, but also at ORNL, at Rand 

and at GE-ANP, for handling the reactor equation in the age-diffusion approxi

mation. In the group method as originally expounded at the Metallurgical 

Laboratory in Chicago, only the hardiest calculator - such as F. L. Friedman - 

would allow the number of groups to exceed ). The demonstration by KAPL, and 

subsequently ORHL,. that with IBM equipment it is perfectly feasible to handle |

as many as 32 groups is Indeed a striking and, at leaettn ne, unexpected development.
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All things considered, the success of the multigroup methods has been 

extraordinary. I have listed here a table, prepared by R. A. Charpie, of some 

8 resonance reactor critical masses observed both at KAPL and at ORNL, together 

with multigroup computed values. The cross section uncertainties apparently 

are not so important but that good agreement is obtained in almost every case.

The multigroup equations, being based on the age theory approximation,

must be in error if the resonance cross sections are strongly self-absorbed.

In addition, transport corrections are not within its competence. On this

account it has often been suggested that an approximation directly to the

(5)Boltzmann equation ought to be developed, and Safonov has proposed such a 

"Boltzmann" group method; It is my impression that just as IBM equipment made 

the step from two-groups to thirty-two groups possible, so it may be that the 

new digital computers, such as the ORACLE, might make numerical methods based 

on the Boltzmann equation practical.

Other Post-war Advances

The flowering jf the multigroup method into a practical and effective 

method for computing reactors is, to my mind, the most important post-war de

velopment in the theory. There are, of course, several other advances which I 

have not time to discuss in detail, but which I should like to mention. These 

include Goertzel's investigation of the minimum critical mass problem; the 

thorough-going investigations of the non-linear kinetic properties of high 

powered chain reactors by almost all of the theoretical reactor groups; and, 

of course, the deeply penetrating and sophisticated analyses of the Boltzmann 

equation by our English competitors, notably B. Davidson. ‘

Unsolved Problems

I should like now to turn to a few of the theoretical reactor problems on 

which progress has been less marked. The list includes both problems which 

are of practical impc ' ’ ” ^ theoretical interest.
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The most interesting result that has emerged from the operation of the 

MTR is that the success of the whole operation depends on the careful program- 

.ming of the shim rod positions. This arises because, before the reactor burns 

out, the bulk of the heat must be extracted from less than the full fuel area, 

and this leads to gross peaks in the heat load. As the reactor burns and the
f

shim rods are withdrawn, the available effective heat transfer area increases;

the hot spot problem becomes correspondingly less severe as the reactor burns

out. Such flux peaks have of course been noticed in the Hanford operation;

however, in an enriched, high burn-up reactor where as much as 10* of the fuel . * r
is destroyed, the effects are extremely pronounced, This is seen in the ac

companying figure in whidrthe longitudinal power distribution at the MTR be

fore and after a 370 MWD run is plotted.

In a reactor like MTR where the purpose is to achieve a certain maximum

14-flux, the uneveness of the distribution is not so important. If 2 x 10 

anywhere in the reactor is acceptable, then the power of the machine can al

ways be tailored to match the effective heat transfer area. At the beginning

of the run, 10 megawatts will be removed from 1 kg.,* at the end, 30 Mff froja
- '■" iZ ■ • - - - ■_________ —r~ -i---------------------------- - - _ J

3 kg. However, in a reactor where a certain total power output Lr ' '

must be maintained, the■design, must•realistically take account of the condi

tion at the worst time during the run. If all the shim rods come in from one 

side, this will occur at the beginning of the run.

One possible way to overcome this burn-out peaking, which has been pro

posed several times, is to distribute a heavy poison such as boron throughout 

the reactor. The burn-out of the fuel is balanced by the burn-out of the 

poison; in this way the k excursion, and therefore the change in shim rod con

figuration, can be drastically reduced._________

A
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The realization that the" shim rod' programming would be crucial in oper

ating the MIR - or any high burn-out enriched reactor - while understood in 

principle, was not appreciated by those of us concerned with the MTR until 

after the gadget was put into full powered operation. Looking back at the 

calculations I realize now that the estimate of the absolute maximum to aver

age ratio was rather naive/ it did not take into account adequately that this 

ratio can change drastically during the operation.

To the reactor theorist this presents a real problem - how to com

pute the spatial details of the power distribution in a system in which ir- 

. regular shim rod positions cause serious local peaks. What is involved is the 

numerical solution of coupled wave equations - one equation for each neutron 

group. Evidently relaxation methods are extremely unwieldy in three

dimensional systems - and yet, the incentive to compute the flux peak with an 

accuracy of say 20$ is strong enough to warrant an attack on this numerical 

problem with the new high speed computing machinery which is available to the 

AEG. '

A second problem in nuclear reactor theory that I should touch upon is 

really a problem in hydrodynamics; it is the estimation of turbulent fluctua

tions in a high powered boiling or homogeneous reactor. The experiments de- • 

scribed by W. M. Breazeale on boiling the LITR and the SUPO show that the 

power output of a boiling system is subject to large fluctuations. In this 

case the fluctuations arise primarily because the boiling is not even, and the 

average bubble density, and therefore the average density of the reactor fluid, 

vary irregularly in time. Such density fluctuations imply quick reactivity • 

surges, and these of course sire reflected iri the observed power fluctuations.

There are, however, rather more subtle reactivity fluctuations which one 

can think of in a turbulent system. Consider a quiet, just critical chain 

reactor. The fission neutron creation rate F(r), in the steady state satisfl ~



where (3 is the delayed neutron fraction.

The term k ' / F(r') P(r ',r) dr1 represents the contribution to the
1 + P

total fission neutron creation rate of the prompt neutrons} the term 

kg / F(r') H(r',r) dr is the contribution of the delayed neutrons. The

kernel H(r',r) is the probability that a fission at r 1 wil' result in a delayed 

neutron somewhere in the system which will ultimately lead to- a new fission at

In a completely quiescent reactor, Q(r ',r ") = 6(r 1 - r") since the de

layed neutrons are created at the same place as the prompt neutrons, and 

H(r', r) = P(r' ,r),* in a circulating fuel system, H(r',r) will have a dif

ferent form, Hi(r’,r) which depends on the hydrodynamic details of the flow.

Now suppose the originally quiet reactor starts to circulate. Then to 

maintain criticality the multiplication constant will have to change to k^, 

and the new distribution, F^(r), will satisfy

1 + P

r. Thus if Q(r',rj') is the probability that a fission at r' will lead to a de

layed neutron emitted at r", then

H(r',r) = / Q(r' ,r") P(r ", r) dr" .

By the usual technique of perturbation theory it can be shown that



1 1 £__ JJ FjCr1') {H(r",r) - Hjjr",*)} F»(r) dr "dr 

k k-L 1 .+ 0 '/ F£(r) F*'(r) dr '

where F*(r) is the flux adjoint to F(r). In terms of Fd(r), the number of de-

because the delayed neutron emission pattern fluctuates in time, and this, 

according to (10) will make Ak change randomly. „

The turbulent fluctuations due to the delayed neutrons are evidently of 

second order importance since the whole delayed neutron contribution, 0, is 

only 0.8$ in U*^. However, in a very high powered chain reactor in which 

there is a very strong temperature gradient and a large temperature coefficient, 

a certain temperature profile corresponds to criticality; random fluctuations 

from this temperature profile will in general imply fluctuations in reactivity 

and in power. An estimate of these fluctuations by F. H. Murray is that for 

6 temperature coefficient of 10 /°C and a power density of 20 kw/l the root

mean square turbulent fluctuation would be 20$. The size of these fluctuations 

increases with the average temperature gradient - i.e., the power output. Thus 

the turbulent fluctuations could place an absolute upper limit to the possible 

power"which might be derived from a circulating fuel chain reactor.

In the case of an unstable slurry reactor, the turbulent fluctuation could

layed neutrons produced at r per c.c. per second, the difference Ak = ^ - k 

is ' ■

Ak
k (10)/ F*(r) Fx(r) dr

For a completely uniform!zed delayed neutron distribution in a bare reactor, 

(10) • leads to a reactivity loss of about £ 0. The turbulent fluctuations arise
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local variations, since the" concentration"of fuel is"likely to change from 

place to place as the swirling fluid creates its eddies. Such fluctuations in 

fission density again represent deviations from the critical fission distribu

tion; but this time the fluctuation is in the whole fission pattern, not just • 

the pattern of delayed neutron precursors. As compared to the delayed neutron

induced fluctuations, the direct density fluctuations could be — ^ /xylOO
P

times as great. Critical experiments with slurries which are planned at ORKL 

should'give us some feeling for how important these* flyctuations actually are. 

While the impression is that the intrinsic fluctuations due to turbulence will 

not prove troublesome, a complete theoretical analysis is still awaited on this 

point. •

The last problem which I should like to remark on is the old one of the

relation between microscopic and macroscopic pile theory in a heterogeneous
2

reactor, i.e., the computation of the diffusion area, L , in a multiplying 

lattice .*

This problem is almost the oldest one in reactor theory. It was consid

ered by Teller in a paper^ on the exponential experiment, and was then 

treated by Plass for a cubic lattice. Plass1 s results, expressed as numerical 

comparison between the usual relation L2 = (l - f) Li^ and exact are 

listed in the accompanying table. However, Plass*s results, being numerical, 

could never be put in a very neat form, and therefore the problem has never 

been considered entirely settled.

To restate the question, we consider an all-thermal neutron, heterogeneous 

reactor. From the usual microscopic, or. lattice, theory, we compute the thermal 

utilization, f, and the diffusion length, L2 = (l - fjLj2, LL being the modera

tion diffusion length. Both L and f are intensive quantities and are therefore 

computed for an infinite system of structure—similar to that of the finite system.
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, Now to compute the critical" mass - which is an extensive quantity - it 

is necessary to relate f, the number of neutrons absorbed in U per neutron 

created in the infinite system, to feff, the number of neutrons absorbed in U 

per neutron created in the finite system. The usual relation between ferr
f - which implies the relation between macroscopic and microscopic reactor 

theory - is

f f
feff '

1 + L2B2 2t>21 + (1 - f) L^B (11)

i.e.,

7|'feff
1 + (l— f.) Li B

It is not entirely convincing to assume a relation like (ll) and to make 
o

an estimate of L in a non-multiplying heterogeneous system of similar absorb

ing properties. Rather it is necessary to compute feff, ab initio, and. to see 

whether the resulting equation for fe^f can be written in the form

1 + lS2
(12)

and then express

L2 = (l - f) Li^ + corrections. (13)

There is one not quite trivial case in which the problem can be solved ;

exactly, and which I would like to mention since it has never been published.
4

Consider an infinitely long all-thermal slab lattice reactor whose transverse |
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We seek to calculate feff, under the assumption that the slow neutrons are 

produced in the moderator like

From its definition,

q = Q cos ^ cos ~ 
H1 ^

/ aa„ n(r) drau “'L'
■ f q(r) dr ' 
mod ~ ~

where n(r) is the neutron density at r, Oa0 is the absorption cross-section in 

uranium, and the integrals are over the uranium and moderator regions respec

tively. The neutron density is computed, as usual, from the pair of equations

°ai A nx - <jai nx + q = 0 in moderator

A no - C7a() ^ in uranium

together with the usual boundary conditions of continuity of flux and current. 

The result of this computation is

— = i1 + £2^ —1-— V^o2 + B2). x0 coth V^o2 + b2 xc
1 J uaD Ao

+ ^1 + j^o^V^i2 + B]2 X! coth ~^i2 + Bl^ X1

r ■4/
>,1

j't
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and xQ being the half thickness of the moderator and uranium slabs. The 

infinite reciprocal thermal utilization is, as usual, .

j 1 x^ .
™ ~ xq coth Xq + X]L coth x-L .

Prom (12), the correct value for the heterogeneous diffusion length is

L = p ^ * f//feff) •

which becomes, if the lattice parameters sire small compared to the dimensions 

and Hg ‘

L2 ^ (1 - f) Lx2 + f L02 - f -I^Xl (L^2 + 2) Xl2 . '

The first term, (l - f) L^2, is always the most important, and therefore in 

this very simple case, the usual formula is justified. It would, it seems to 

me, still be worthwhile to reinvestigate the problem with a view to obtaining 

second order corrections in more complicated cases.

Is Reactor Theory Worthwhile?

My remaining remarks are really non-technical. They concern the question 

of worthwhileness of computing critical masses - and by implication, the worth

whileness of reactor theory itself.

It is sometimes said that accurate calculation of a critical mass is 

really not so important, since one can always do a critical experiment. While 

such talk has been and still is surprisingly prevalent, I don't think it makes 

much sense. Granted that the exact value of a critical mass may not be crucially

)
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important - except, say, in the design of chemical plants - what is extremely 

important is a knowledge of the maximum uncertainty in a computed mass. One 

cannot escape the feeling that this tendency to deprecate the importance of 

being able to compute masses reliably is mainly a rationalization of our lack 

of confidence in our ability to compute masses reliably.

Whether we really should feel so defensive in this matter is a little

obscure. The examples which I have given of the many successes of multi-group

theory, or of the rather good agreement between calculated and computed MTR

critical masses should increase our confidence. Nevertheless, I -sometimes am

depressed at the very large number of experimental critical masses which are

now .known but for which there has been insufficient theoretical analysis, and

which therefore add little to the estimate of how reliable our calculations

(8^ • •are. The old compilation of Masket ' list some 52 sfeparate critical experiments 

or exponential experiments. Since this compilation there must have been 

several hundred more assemblies. Unfortunately too many of these experimental 

data have been amassed without thorough-going theoretical analysis: the re

sult is' that we are still tentative where we should be definite. What is 

badly needed is a thorough review of all critical masses. Our motto should 

be no measured critical mass without a calculation alongside it.

To some extent our lack of confidence in our computations is, I fear, a 

reflection of a sort of odd defensiveness which has grown up in this country 

in respect to the general subject of reactor theory. Reactor theory in many 

ways is a demanding discipline which requires physical insight of high order. 

Yet, I suppose because it has such strongly important practical overtones on 

the one hand, and because its development is outside of the university com

munity on the other, papers on the theory almost never appear in the regular

physical literature.
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In this.respect we are less sensible than our foreign competitors. Sev

eral papers on some aspect of theory have appeared each year in almost all of 

the standard British, Canadian, French, Swiss, and Italian (though not Russian) 

Journals. No paper on reactor theory has appeared in The Physical Review in 

the last 3 years, in spite of the 'fact that all reactor theory has been de- 

classifiahle during this period.

That there are problems of considerable physical validity in the theory I 

’think is evident to any who care to study the situation. That we who are pro

fessionally engaged in the enterprise have a strong responsibility to establish 

a firm scholarly tradition in the field is also self-evident. Insofar as we

have allowed reactor engineering to engulf all our effort, we reactor physi- ■ *- ■

cists have been guilty of short-sightedness for which, in the long run, we will 

not be thanked by those future reactor engineers who find the theory insuffi

cient . It is on this plea then that I close: that we insist on maintaining

both a deeply scientific and a deeply critical attitude toward the development 

of reactor physics; that we actively seek and find enough of interest in it to 

maintain the discipline of and by itself, as a valid scientific activity; and 

that we rest content that such scholarly enterprise will, in the long run, 

prove doubly worthwhile for being the foundation of what we all hope will be 

the eminently useful technology of nuclear power.

I
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