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SOME ASPECTS OF REACTOR THEORY

r e e

Alvin M. Weinberg

IMy purpose in these remarks will be primarily to outline what seem to me
to be the major issues in.reactor theory,; second, to stress some results which
ought to be classical, but which I find are not as well known as they should
be; and finally, to ask some questions both of reactor theory, and of reactor
theorists, to which I have not as yet heard convincing answers. I hope my re-
marks will serve the purpose of placing in petter perspective a few of the-
classical problems in reactor theory which have not received as much attention
as the&‘ought.

There is really only one problem in chain reactor theory, Just as there
is really oniy one problem in quantum mechanics. In quantum nechanics it is
the computation of the wave function, as a function of time, space, energy, and
spin variable, given the physical parameters and initial conditions; in reactor
theory it‘is the computation of the neutron flux as a function of time, space,
energy; snd angular direction, given the neutron cross sections, the source dis-
tributions; and the initial conditions. The eigenvalues,~in the one case the

statibnary energies;, in the other the critical reactor multiplication constant,

.are computed more or less as a corollary to the computation of the fluxes or

wave functions.

During the war the exposition of reactor theory proceeded independently,

‘and along rather different lines; at Los Alamos on the one hand; and at Chicago

and Montreal; on the other. At Los Alamos the chain reactor systems were small
and homogeneous. The properties of such systems could be computed in principle
directly from the Boltzmann equation in whiéh measured Cross sections were used.

At Chicago and Montreal, where interest was centered on the large unenriched ,7"
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heterogeneous chain-reactd}s, ‘the pfobéh-ﬁéé alwa&s aiaided into two parts:
first, the computation of the "intensive" or "microscopic" properties of the
chain reactor such as the thermal utilizatioﬂ, the resonance escape probability,
etc.; and second; the computation of the "extensive" properties such as critical
size b& using the locally computed properties in a fictitious equivalent uniform
chain reactor. This division into 'macroscopic” and "microscopic" chain reactor
theory was natural because .the lattice structure so complicated the local géu-
tron distribution as to make the capture probabiliéy in fuel of a thermal neu-
tron, i.e., the thermal utilization; a problem of considerable proportion in
itself. However; the resulting division of the theory into macroscopic and

microscopic 1is one of its 1¢aét satisfactory aspects. To this I shall return

later.

Asymptotic Reactor Theory

From the macroscopic (or Los Alamos) viewpoint, the properties of a chain
£eactor are to be determined from solutions of an appropriate Béltimgnn equa-
tion. Neq? a boundary - say ‘the edge of the reactor - the solution of the
Boltzmann equation is always much more complicated than far from the boundary,
and so 1t is of interest to consider the asymptotic flux distribﬁtion - that
is; the distributiop far from boundaries. This asymptotic distribution is an
intrinsic characterization of the reactor medium; consideration of the proper-
ties of the asymptotic distribution is therefore centrally important in the
theory. . | '

Now an asymptotic distribution will exist only if the properties of the
chain reactor do not change from point to point. We therefore concern ourselves

with a uniform reactor; since we consider distributions which are far from

boundaries; we can imagine the uniform reactor filling all space.

T
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We denote the total number of fission neutrons created per second per c.c.

by F(r). Further; the probability that a single fission at r' will give risg4'

te one primary fission neutron at r during the course of one generation we call
G(|£ - g'b. The kernel G is a displacement operator because one part of the
reactor is Just like every other part. Then, in the steady state,

Px) = k[P P(r' - r|) a' (1)

vhere k = [ G(r)dr is the total number of primary fission neutrons created by

a single fission neutron, and P(r) =, G(r) .
P~ ' : [ G(r)ar

"An equation such as (1) in which fhe total fission neutron creation rate
(independent of energy) is the variable was first suggested by Placzek and
Volkoff.(l) Because the reactor is isotropic and homogeneous, P is a displace-
ment.operatof, and the equation (1) is invariant under the Euclidean group.
Thus, as can be verified directly, (1) possesses a solution which satisfies

AF(x) + BPF(x) = O (1a)

provided the buckling 82 satisfies
kP (%) = 1 (1)

where P (B2) is the three-dimensional Fourier transfprmzof P. The result which
"I have quoted here is the essentlal part of wh;t is called the fundamental
theorem of pile theory;(e) or again, it is the basic idea of the so-called .
extrapolated end point method. For the buckl;ng B2 is determined mt only by the
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characteristic equation (1b) but also, in the actual finite system which is to

be related to the fictitious infinite system;, by the geometric relation

in the case of a slab of extrapolated height H. The power distribution in that

<4
case is

F(r) = F, coslIX |
(r) o =

'
..

It has always struck me as being entirely remarkable that perhaps the most im-
portant fact about a chain reactor - that its power distribution is sinusoidal

with wave number B - follows essentially from what are the group-theoretic

properties of the basic transport equations; and is independent of any details

such as slowing doﬁn properties; cross sections; etc. Of course this is not
to say that the value of B is independent of these; rather, for a critical B,
the asymptotic power distribution in a uniform reactor is a consequence of the
essential 1dentity of each point. of the reactor.

A corollary of the preceding remarks is that the asymptotic solution of
the reactor equations must be separable in space and in energy; i.e., far from
boundaries the neutron flux of every energy is sinusoidal with the same wave
number B. Instead of the very general; but uninformative, (1) let us write

the reactor equation in ége theory approximation for the neutron flux(5) §,

uo
-2132_.A'as P-0ad+2(m) | [ k(u)og (x5 u')du' + k(u,) og(u)) 9| =
ag(u) o

(2)
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where Ogs Og are the macroscopic scattering and absorption cross-sections; D i
is the diffusion coefficient; u is the lethargy measured from the:top of the

f;ssion spectrum; u, is thermal lethargy; f(u) is the fission neutron spectrum;

k ='(?;é> is thé-multiglication constant at lethargy u; ¢ is the logarithmic

energy aecremen£n-_

The solution of (2) is

-

b (x; v = wix)x(uw).

provided
Ay + B2y = 0
N u u
2 Z g2
X(w) = |exp=- [ oa(y) + B°D(y) dy [ £(z) exp [ BD(x) + 0ga(x) dx | dz.
o £ Og (y) o 0 E og (x)
u
= J () p(z,u) exp - B2 7(z,u)dz - (3)
Herein B2 is determined as the solution of
- 2 = 74532
7fB k‘S e . h
- ke e t e = 1 (%)
1 + LB~
where the "fast" and "slow" multiplication constants; ke and kg are
. Uo Wy g5 (W) v op (u,) Yo
f . _ £ \% .
A ke = [ 2 p(z,w) F(z)dzdw; k., = [ p(z,u,)F(z)dz
i f of o E ag ’ v og(ug) © *%o
.- » (5)
) The "slow and "fast' ages 7, and 7} are then defined by | +
= CEE 1 .
Cot T ) i ~“‘ ) 4
¢ e b
. g 2
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kp exp - 7}B2 = fo  k(w) Eé;izl plz,w) € e F(z)dzdw; ‘d
o o £ og
u '—327(z,u0)
F(z)dz

o o

kg exp - 7,85 = k(u) d! p(z;u,) e

-~ -

ard p(z,u) is the probability that a neutron will escape resonance capture in
slowing from lethargy z to lethergy u, while 7’(z;w) is the age from z to w.

In the usual slow neutron reactors, it is assumed that all tast fission

occurs at the single lethargy; o. Thus 7, = 75 = 7, and (4) reduces to

the customary

'

- B2
1 + L2B°

because;, by definition, the fast effect is £ = T lk
: A Tk

Equation (4) is the most general characteristic equation based on age
theory for a reactor in which fission takes place at arbltrary neutra cnergy. It
first appeared in the literature in 1944 in a paper by Wigner on breeders. In
more recent years; it has been ignored to a rsther surprising degree - perhaps
because most resonance reactors are strongly reflected, and therefore the -
asympiotic solution is not very important practically.

It is natural to inquire whether there is an asymptotic angular distribu-
tion which; like the spatial distribution, is energy independent; i.e., whether

the complete asymptotic neutron flux distribution can be vwritten as a product

§ (A E) = v ()X (B)v () .
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To appreciate what is involved in decidiﬁg"thisy we wriﬁe the general one-
dimensional Boltzmann equation im an infinite, multiplying medium in which
moderation is by elastic collisions(cfo“fheory of Neutron Chain Reactions;'

ORNL CF-51-5-98, p. III-13) ‘

E/o? 1

’ 2 3 [ ) ' [
== (x’“’E) t o § = ‘Q::’E)— Ef- lj Us(E )§(X9E—9H ) 5[!»10 - g (E;E )] 7;—?——&“'

X L M

E, 1 _
+ Y eE®) [ [ o (xELL)E af (6)
2 o -1
where
gEx) = I [+ 0EEI2 - - nE/mM2],
2 M-1 2 = . e '
o = | yT 3 s M = mass of moderator; p, = N .° N ' = direction

cosine of scattering angle. The & function implies that the angle of scatter-

ing and the energy loss are correlated. Now & [“o - g(E;E')] can be expanded:

o [1-ame)] &5 222 p (ip () 5 [alse)]
+ azimuthal terms. Thus, the correlation between energy loss and angle means
in a sense that the scattering law in the first place is anisotropic, and in
the second place that the character of the anisotropy is energy dependent. Now
it has been shown by Wigner that on group theorgtic grounds the angular distri-
bution of the flux in the velocity indepemdent case involves the same number of
sphericai harmonics as the écattering law for the individual events. It would

therefore be reasonable to expect tggfrig_the;eqergy7dependent case; where

oy
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beéause of the correlation, anrinfinite number of eﬁerg& dépendent spherical

harmonics are needed to describe the scattering; that the flux too will involve

an infinite number of harmonics, the coefficient of each harmonic itself being

energy dependent. IQ other wérds, there does not exist an asymptotic soiution
: - of {6) which 18 separable in space and in angle. '

To see how this comes about, it is worth recasting the Boltzmann equation

into an infinite set of linear integralequations. .

iBx

§(x:llsE) = EET'iTaE ¥ (u;E),

We put

LI

and expand the function v (4, E) in a Legendre series:

_ 2/+ 1
v (L,E) = X Yy (E) P/L (u) -

There results an infinite set of integral equations which can be written

2 E/a2 . i
1+ " 3 Pa [e®E0] % QB E) T

W (B) = e 2y o

(o]

3£ Q) (B,E) B, vy (B') B

O =)

+ -;-f(E) Zl

where

1
=g f Bew) Py (u) .
1 o + iBp

B

3
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In terms of the angular components of the flux, Q}[(E)’ where the § are

defined by

“ 1B .
§(XJMDE) = € xz‘j%;l

the integral equations are

. ' 2 E/a? - .
’ igz(E) ) iiniﬁgl— Zh “n ;{ n [E(E’E')] o O (E') E%T (7)

E :
+ BOL"Q)‘f(E) Q'lo £0 Uf§o (E’)dE'.

These integral equations have the following interesting significance. The
quantity o @h(E') is a sort of collision density of the n-th angular mode of
the neutron flux; these neutrons after a collision are distributed in energy

with a probability function ( M)2 P [?(E,E 9] - i.e., the collisions are

non-spherically symmetric. The energy distribution of all n-th mode neutrons
contributigg to the eﬁergy E is given by the first integral in Eq. (7). A
certain fraction of these, an(B,E), make a collision in the 1l-th mode without
escaping from the reactor.

The matrix an, which Welton calls the non-leakage probability matrix, is
therefore seen to be a generalization of thé usual non-leakage probability.
Each component gﬁn can §e thought of as giving the probability that a collision

of an n-th mode neutron will bve followed by an l-th mode collision before the

neutron escapeg from the reactorEA , *x

- X
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which relates the @5 before collision to the @6 after

The lowest an, Qoo’

collision is the familiar

1 B |
1 - 3 g8 for <=1, ) (8)

i,e., it is the Fourier transform of the monoenergetic transport kernel.

To solve (7) for §, and the eigenvalue B in general, seems out of the
question. However, the infinite set of integral equations does.reduce to a set
of linear equations if all crosssaﬂﬁonsareenergyindependént, as shown by B.
Davidson(h); or the set reduces to a single integral equation in @b if the cor-
relatioﬁ‘between energy loss and scattering angle implied in the & function
kernel of (6) is ignored. In this latter very simple case the equation (7) may

be written

% = (—l-hiﬁ}i)— Ef os § A (9)

where, for .simplicity, we have assumed that the fission distribution is a delta

function at energy Eo‘ Now (9) is just in the form of the equation formodera-
tion in an infinite medium with total cross section ¢ .
Qo0
An gpproximate asymptotic solution is
E/a?

o, 0, E¢ = const xexp - [ 9/Q0 - 3 &'
8 E os & E

and from the extrapolated condition at Eo’ viz., .

' E
oo B0t = v S od e,
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there results the characteriétf&'eqﬁé%ign
]

. %00, Eo ")

1 of k(B') EE'(E°’ E') ? E

%
which is a slight generalization of (4) for a resonance reactor. The main dif-

ference is that the non-leakage probability here is

Eo B
T B 0]
e

vhich’féduces, by virtue of (8), to the familiar

- BaﬁV(E',Eo)_
e

it B is.much less than o, i.e., if the reactor is large compared to the mean

<

free path.'

"Practical' Multigroup Methods

The.asymptotic theory has beauty and elegance. Its practical usefulness is
limited of course because 'in small reflected reactors the non-asymptotic solu-
tions tend to overwhelm the asymptotic solution. Largely on this account nu-
merical methods have been devised - mainly at KAPL, but also at ORNL, at Rand
and at GE-ANP, for handling the reactor equation in the age-diffusion approxi-
mation. In the group method as origina}ly expounded at the Metallurgical
Laboratory in Chicago, only the hardiest calculatér - such as F. L. Friedman -
would a{low the number of groups to exceed 3. The uemonstration by KAPL, and

subsequently ORNL, that with IBM equipment it is perfectly feasible to handle

as many as 32 groups is inceed a.striking and, a lesstto me, unexpected development.

p—t 4
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All things cohsidered, fﬁe suékéég’é?‘tﬁE‘EﬁiEIEESEL methods has been
extraordinary. I have listed here a table, prepared by R. A. Charpie, of some ;
8 resonance feactof critical masses observed both at KAPL and at ORNL, together
withlmuitigroup computed values. The cross section uncertainties apparently
are not~%o importauf but that good agreement is obtained in almost every case.

The multigroup equations, being based on the age theory approximation,
must be in error if the resonance cross sections are strongly self-ab;orbed.

In addition, transport corrections are not within its competence. On this
account it has often been suggested that an approximaéion directly to the
Boltzmann equation ought to be devgloped, and Safonov(5) has proposed such a
"Boltzﬁénn" éroup method. It is my impression that just as IBM equipment made
the step from two-groups to thirty-two groups possible, so it may be that the‘
new digital computers, sﬁch as the ORACLE, might make numerical methods based

on the Boltzmann equation practical.

Other Post-war Advances

The‘flowering >f the multigroup method into a practical and effective
method for computing reactors is, to my mind, the most important post-war de-
velopment in the theory. There are, éf course, several other advances which I
have not time to discuss in detail, but which I should like to mention. These
include Goertzel's investigation of the minimum critical mass problem; the
thorough-going investigationg of the non-linear kinetic properties of high
powered chain reactors by almost all of the theoretical reactor groups; and,
of course, the deeply penetrating and sophisticated analyses of the Boltzmann
equation by our English competitors, notably B.. Davidson.

Unsolved Problems

I should like now to turn to a few of the theoretical reactor problems on

which progress has been less marked. The list includes both problems which 2,

are of practical importance and ?thgﬁggggﬁather more theoretical interest. /{/ {5
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The most interesting result that has emerged ?éSthhe operation of the #

1
S

.,“ MIR is that the success of the whole operation deneﬁd§ on the careful program-
_.ming of the‘shim rod positions. This arises because, before the reactor burns
out, ' the bulk of the heat must be extracted from less than the full fuel area,
and this leads to gross peaks in the heat load. As the reactor burns and the

(

-, " shim rods are withdrawn, the available effective heat transfer area increases;

the hot spo£ problem becomes correspondingly less severe as the reactor burns
out. Such flux peaks have of course been noticéd in the Hanford operation;
however, in an enriched, high burn-up reactor where as much as 10% of the fuel
is destroyéd, tﬁe effects are extremely pronounced. This is seen in the ac-
companying figure in which'the ldngitudinal povwer distribution at the MIR bde-
fore and after a~370 MWD run is plotted.

In a reactor like MIR where the purpose is to achieve a certain maximum
flux, the uneveness of the distribution is not so important. If 2 x lOlh

anywhere in the reactor is acceptable, then the power of the machine can al-

N

vays be-téilored to match the effective heat transfer area. At the beginniji,////\“x/
/

of the }un, 10 megawatts will be removed from l‘kg.; at the end, 30 MW from

2 - M ) 7 T - f
5> kg. However, in a reactor where a certain total power output )

e it —— g -

must be maintained, the'desigd.must~rea}1stically take account of the condi-

tion at the worst time during the run. If all the shim rods come in from one
side, this will occur at the beginning of the run.

One possible way to overcome this burn-out peaking, which has been pro-
posed several times, is to distribute a heavy poison such as boron throughoht
the reactor. The burn-out of the fuel is balanced by the burn-out of the

poison; in this way the k excursion, and therefore the change in shim rod con-

figuration, can be drastically reduced.
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The realization that the’shim Féd programiing would be-crucial in oper-

ating the MIR - or any high burn-out enriched reactor - while understood ih

principle, was not appreciated by those of us concerned with the MTR until

éfter the gadget was put into full powered operation. Looking back at the
calculations I realize noﬁ that the estimate -of the absolute maximum to aver-
age ratio was rather naive; it did not take into account édequately tha; this
ratio can cﬁange drastically during the operation.

To the reactor theorist this presents a real problem - how to com-

pute the spatial details of the power distribution in a system in which ir-

. regular shim rod positions cause serious local pesks. What is involved is the

numerical solution of coupled wave equations - one equation for each neutron

-

group. Evidently relaxation methods are extremely unwieldy in three-

dimensional systems - and yet, the incentive to compute the fluk peak with an

" accuracy of say 20% is strong enough to warrant an attack on this numerical

probleﬁ wi?h the new high speed computing machinery which is available to the
AEC. | -

A second problem in nuclear reactor theory that I should touch upon-is
really a problem in hydrbdyna;ics; it is the egfimation of turbulent fldctua-
tiops in a high powerea boiling or homogeneous reactor. The experiments de-
scribed by W. M. Breazeale on boiling the LITR and the SUPO shoﬁ that the
powér output of a boiling systém is subject to large fluctuations. In this
case the fluctuations arise primarily because the boiling is not even, and the
average bubble density, and therefore the averége density of the reactor fluid,
vary 1rreéularly in time. Such density fluctuations imply quick reactivity
surges, and these of course are reflected in the observed power fluctuationms.

Thgre ére, However, rather more subtle reactivity fluctuations ﬁhich one

can think of in a turbulent system. Consider a quiet, Just critical chain

reactor. The fission neutron creation rate F(E)’ in the steady,staﬁé ;atisfies
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%F(g) = ﬁ_‘g J F(r') P(x',r) ar' + I—E—gf F(r') BE(r',r) ar'

where B is the delayed neutron fraction.

The term __k [ F(r') P(r',r) dr'represents the contribution to the
l1+B

total fission neutron creation rate of the prompt neutrons; the term

xB J F(z') H(r',r) dr is the contribution of the delayed neutrons. The
1+ _

kernel H(r',r) is the probability that a fission at r' wil® result in a delayed
neutron somewhere in the system which will ultimately lead to a new fission at
r. Thus if Q(r',r") is the probability that a fission at r' will lead to a de-

layed neutron emitted at ™, then

H(r%r) = [Q(c',r") P(z", r) dr"

In a coméletely quiescent reactor, Qrurm = 8(r'- r") since the de-
layed neutrons are created at the same place as the prompt neutrons, and
H(r', r) = P(r',r); in a circulating fuel system, H(r'r) will have & dif-
ferent form, Hl(E':E) which depends on the hydrodynamic details of the flow.

Now suppose thé originally quiét reactor starts to circulate. Then to
maintain criticality the multiplication constant will have to change to kl’
and the new distribution, F;(r), will satisfy |

rlgiFl(E) = "1‘%’3 [ Fy() P(z'sx) ar' + —1—%—6 J Fy(z") Hl(z",;) dr .

By the usual technique of perturbation theory it can be shown that
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I] Pylr) {H(r",r) - Hl(r”,r)}F*(r) ar'ar
kK k;  l+p J Pi(x) F*(x) ar

|
'l-'
w

where F*(r) is the flux adjoint to F(r). In terms of Fq(r), the number of de-
layéd neutrons produced at r per c.c. per second, the difference &k = kl -k

is

/1 [ Fe(r) - F, (r)] (r,r') F*(r') dr dr:

- ¥ [ Fx) FL() ar ' (10)

- Ak
k

For a completely uniformized delayed neutron distribution in a Sare reactor,
(10) ‘leads to a reactivity_loss of about § B. The turbulent fluctuations arise
because the delayed neutron emission pattern fluctuates in time, and th;s,
according to (10) will make Ak change randomly. |

The turbulent flﬁctuations due to the delayed neutrons are evidently of
second order importance since the whole delayed neutron contribution, B, is
only 0.8% in U?B?. However, in a very high powered chain reactor in which
there 15 a very strong temperature gradient and a large temperature coefficient,
a certain temperature profilé corresponds to criticality, random fluctuations
from this temperature profile will in general imply fluctuations in‘reactivity
and in power. An estimate of theése fluctuations by F. H. Murray is that for
a.temperatufe coefficient of 10-5/00 and a power density of 20 kw/ﬂ the root
mean square:turbulent fluctuation would be 20%. The size of these fluctuationﬁ
increases viﬁh the average temperature gradient - i.e., the power output. Thus
the turbulent fluctuations could place an absolute upper limi£ to the possible
pover which might be derived from a circulating fuel chain reactor.

I; the case of an unstable slurry reactor, the turbulent fluctuation could

in principle be even greater. Here the fission density itself is subject to

_ pal
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local variatioms, since the;cOﬁc;ﬁ%rétioﬁ'of fuéirié'ifkely to change from

Place to place as the swirling fluid creates its eddies. Such fluctuations in
bfission density again represent deviations from the critical fission distribu-
tion; but this time the fluctuation is in the whole fission pattern, not jusf

the pattern of delayed ﬂeutron precursors. As compared to the'delayed neutron

induced‘fluctuations, the direct density fluctuations could be 1 é B ~~ 100
times as great. Critical experiments with slurries which are planned at ORNL
should give us some feeling for how important these flyctuations actually are.
_ While thelimpression is that the intrinsic fluctuations‘due to turbulence will
not prove troublesqpe, a complete theoretical analysis is still awéited‘on this
point. | |

The last pro?lem vhich I should like to remark on is the o0ld one of the
relation between microscopic and macroscopic pile.theory in a heterogeneous
reactor, i.e., the computation of the diffusion aresa, L2, in a multiplying
lattice. |

‘This problem is almost the oldest one in reactor theory. It was consid-
ered by Teller in a paper(6) on the exponential ;xéeriment,.and was then
treated by Plass for a cubic lattice. Plass's results, expressed as numeric:l
comparison between the usual relation L2 = (1 -¢f) L12 and exact L2 are
listed in the accompanyiﬁg table. Hrwever, Plass's results, being numerical,
could never be put in a very neat form, and therefore the problem has never
been considered entirely settled.

To restate the question, we consider an all-thermal neutron, heterogeneous
reactor. From the usual microscopic, or lattice, theory, we compute the thermal
'utilization, £, and the diffusion length, L2 = (1 - f?lle,Ll being the modera-
tion diffusion length. Both L and f are intensive quantities and are therefore
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computed for an infinite system of s}rnqtn;e,iimilar to that of the finite system.
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Now to compute the cFItica) Fass - Which is an extensive quantity - it
is necessary to relate f, the number of neutrons absorbed in U per neutron
created in the infinite system, to feff’ the number of neutrons absorﬁed inU
per neutron created in the finite system. The usual relation between feff and

f - which implies the relation between macroscopic and microscopic reactor

theory - 1is
o £ £ .
£ = = 1
¢ 1+1%82 1+ (1-g) 1% (22)
i.e.,
k = N'fepr = k
eff Tt = oo L,°B°

It is not entirely convincing to assume a relation like (11) and to make
an estimate of L2 in a non-multiplying heterogeneous system of similar absorb-
ing properties. Rather it is necessary to compute feff’ ab initio,_and.ﬁo see

whether the resulting equation for féff can be written in the form

L)

£
Topr ¥ =2 ’ (12)

and then express
2 - (1-1¢) L12 + corrections. (13)
There is one not quite trivial case in which the problem can be solved
exactly, and which I would like to mention since it has never been published.
Consider an infinitely long all-thermal slab lattice reactor whose transverse

dimensions are H, and Ha, so that its-buckling is

A

if N ¥
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We seek to calculate feff’ under the assumption that the slow neutrons are.

produced in the moderator like

[le]
"

Ty Tz
Q cos == COS = .

B By
From its definition,

[ gy nlx) &
etf = 7 q(x) ar
mod " — —

f

’

where n(g_) is the neutron density at I, Ogo. is the absorption cross-section in
uranium, and the ‘integrals are over the urdnium and moderator regions respec-

tively. The neutron density is computed, as usual, from the pair of equations

4]

' yi‘% Any) -0g) 0 +q = O in moderator
r-aao bng -03, 00 = O in uranium
€2 ° ‘

together with the usual boundary conditions of continuity of flux and current.

The result of this computation is

2 "
B Og, X d
. (1 * 7 o nY 4 ‘32 + Bg)_ X, coth -\/%02 + B® x,

fe fr 1. Uao xO

0 _
+ (1 + 2,%)’\./1612 + B12 x; coth '\/212 + BlE X1 O
K :




X, and x, being the half thickness of the moderator and uranium slabs. The

infinite reciprocal thermal utilization is, as usual,

1 Oal Xl
. Sa %o ﬂ; X, coth lg Xo + 4{ X

1 coth '(l Xy .

From (12), the correct value for the heterogeneous diffusion length is

b

1
= 7 (- f/fee)

which becomes, if the lattice parameters are small compared to the dimensions

Hl and He

: 2 2
2 2 2 fa x
L ’n‘f(l-f)Ll+fLo-f-—hgl—(Llaa2+2)xl2.

The first term, (1 - f) Lle, is always the most iﬁportant, and therefore in
this very simple case, the usual formula is justifieﬁ. It would,'it seems to
me, still be worthwhile to reinvestigate the problem with a view to obtaining

second order corrections in more complicated cases.

Is Reactor Theory Worthwhile?

M& remaiﬁing remarks are really non-technical. They concern the question
of worthwhileness of computing critical masses - and by implication{ the worth-
whileness of reactor theory itself.

It is sometimes said th;t accurate calculation of a critical mass is
really not so important, -since one can always do a critical experiment. While
such talk has been and still is surprisingly prevélent, I don't think it makes

much sense. Granted that the exact value of a critical mass may not be crucially
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important - except, say, in the design of chemical plants - what is extremely

important is a knowledge of the maximum uncertainty in a computed mass. One

'cannot“escape the feeling that this tendency to deprecate the importance of

being able toA;ompuie masses reliably is mainly a rationalization of our lack

of cogf;dence in our ability to compute masses reliably.

Whether we really should feél so defensive in this matter is a little
obscure. The examples which I have given of the many successes of multi-group
theory, or of the rather good agreement between calculated and computed MTR
critical masses should increase our confidence. Nevertheless, I .sometimes am
depressed at the very large number of experimental critical masses which are
now known but for which there has been insufficient theoretical analysis, and
which therefore add little tovthe eéstimate of how reliable our calculations

) . . . ~
(B'list some 52 separate critical experiments

are, The old compilation of Masket
or exponential experiments. Eince this compilation there must have been
severgl hundred more assemblies. Unfortunately too many of thése experimental.
data hgve been amassed without thorough-going theoretical analysis: the re-
sult is that we are still tentative where we should be definite. What is
badly needed is a thorough review of all critical masses. Our motto should

be no measured critical mass without a calculation alongside it.

To some extent our lack qf confidence in our computations is, I fear, a
reflection of a sort of odd defensiveness which has grown up in this country
in respect to the general subject of reactor theory. Reactor theory in many
vays is a demanding discipline which requires physical insight of high order.
Yet, I suppose because it has such strongly important practical overtones on
‘the one hand, and because its development is outside of the university com-
munit& on the other, papers on the theory almost never gppear in the regular

e ———— T
physical literature. !
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In this respect we are less sensible than our foFeign competitors. Sev-

eral paﬁers on some aspect of theory have appeared each year in almost all of

the standard British, Canadian, French, Swiss, and Italian (though not Russign)

Journals. No paper on reactor theory has appeared in The Physical Review in

‘the lesp 3 years, in spite of the fact that all reacfor theory has been de-
classifiable during this period.

That there are problems of considerable physical validity in the theory I
“think is evident to any who care to study the situation. That we who are pro-
fessioﬁally engaéed in the enterprise have a strong responsibility to establish
a firm scholarly tradition in the field is also self-evident. Insofar as we
have allowed réactor engineering to éngulf all our effortg‘we reactor physi-
cists have been guilty of short-sightedness for which, in the long run, we will
not be thanked by those future reactor engineers who’find the theory insuffi-
cient. It is on this plea then that I close: that we inéist on maintaining
both a deeply scientific and a deeply éfitical attitude toward the development
of reactor physics; that we actively seek ;nd'find enough of interest in it to
maintain the discipline of and bf itself, as a valid scientific activity; and
that we rest content that such scholarly enterprise will, in the long runm,

prove doubly worthwhile for being the foundétion of what we all hope will be

the eminently useful technology of nuclear power.
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