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·THEORY OF NEU'J.'RON CHAm REACTIONS 

The following notes comprise Part I, Volume II, of a book 

on neutron chain reactions \mich is largely an outgrowth of a 

course given in the original Clinton Laboratories Training School. 

A first draft of some of these notes has already appeared. Because 

of the demands of the reactor program, we have considered it best 

to put out a second preliminary edition even though there are in

adequacies in the text. 

Part .II, _Vol~e. II, is still in preparation as is Volume III 

entitled "Lattice Theory". 

·. 



VOLUME II, PART I 

HOMOGENEOUS NuCLEAR CHAIN BEACTIONS 

INTRODUCTION 

The previous section of thie book deals with the general problem of 

neutron diffusion. In .. che sequel we shall apply the results obtained al-

ready to the theory of slow neutron chain reacting systems. 

A neutron chain reacting system or "pile" is a device containing fis

sionable material (such as TJ235, ·Pu239, '£F33) which produces neutrons as 

the result of neutron induced fission in the fissionable material. It 

is not necessary that the rea.c·tion be divergent or potentially divergent 
V• 

for it to be called a chain reaction: a small piece of ordinary uranium 

is a chain reacting system (although a very inefficient one) s~ce, if 

neutrons are introduced into the system, more neutrons will be produced 

from neutrons which are absorbed in the u235 and induce fission. The word 

"chain" thus refers to the fact that the agency which causes fission, name-

ly, the neutro:ns, are themselves produced as a result of fission. In this 

way every fission event gives rise to a chain of subsequent fissionsj every 

neutron gives rise to a sequence of daughter neutronso 

A chain reaction can be divergent, convergent, or critical. If more 

neutrons are produced by neutron induced fission(l) than are absorbed in 

·t:ne system or leak out, the system is said to be 2:.!Yergent. If fewer neu

trons are produced than are absorbed or leak out, the system is couvergent. 

(1) Neutrons produced by an extraneous source, such as Ba-Be, are not 
counted here. 
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And if the number of neutrons produced is just equal to the total number 

which a:a:-e absorbed or which leak out, the system is critj.cal. 

Eviden·lily any chain reacting system in which more neutrons are produced 

than are absorbed can be made dive:rgent by building ·che system large enough. 

For, as the size of the system is increased, the relative importance of neu-

tron leakage becomes ieee; in an infinite system no· neutrons are lost by leak-

age. The size of a chain reac·Ging system at which the neutron production 

from neut~on induced fission is just balenced by the leakage and the absorp-

tion is called the critical size. Of course the critical size will depend 

on the shape of the system -- a critical sphere requires less material than 

say a cylinder, since, because of its amallar s~face to volume ratio the 

leakage of neutrons out of a sphere is smaller than out of a cylinder of 

the same volume. For a given shaped system the critical size depends both 

on.the number of neutrons produced per neutron absorbed inside the system--
- . . . 

that is, on the multiplication constant (denoted by k00 or simply, k) -- and 

also on a length, the migration lepgth (denoted by M), which characterizes 

the scale of the neutron diffusion p:rocessea. 

The multiplication co:nsta..·•r'G and the-migration, ,length depend on the nu-
. ·- .· ~ .... 

clear propel~ies, such as capture cross sections, mean free paths, number of 

neutrons produced per fission, etc., of the materials contained in the chain 

reacting syatem. They a.J.so depend on the conf'iguxation of the materials con-

tained in the system -- whether the fissionable material is lumped or spread 

out, the mass ratio of fissionable to non-fissionable material, etc. The 

calculation of the multiplication constant and migration length comprises 

"microscopic" pile theory -- "microscopic" because the multiplication constant 

and mi~ration length are intensive properties of a pile which are character-

(. 
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istic of' the small scale structure of' the pile and are near~ independent 

of' the gross size of the system. 

From the microscopic properties of a chain reacting pile it is possible 

to deri~e various extensive quantities -- for example, the critical size of 

the system or the neutron distribution. All of these quantities depend upon 

the size of "the chain reacting system; they can be computed without reference· 

to the detailed structure of the pile once the multiplication constant and 

migration length are known. For this reason their calculation is said to 

comprise "~croacopic" pile theo:cy. In the preaent section we shall give· 

an exposition of macroscopic pile theory. Microscopic pile theory will be 

treated in the final section. 
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lml'l'RON CHAIN REACTIONS 

Nuclear Reactions in Fissionable :ti.LB.ter:1.a.J.s -- ~~==~ =..;....;..;;o..;;.;.;~ 

The possibility of establishing a neutron cbain reaction depe.nds upon 

the fac"'G that certain heavy isotopes, notably those with an odd number of 

neutrons, such as u235 and Pu239, undergo fission when they absorb neutrons. 

The ·fission ac·c is _accompanied- by .. .:;he emission of several fast neutrons i the 

energy of these fast neutl"ons is grea·Ger than .. Ghe neutron energy required to 

iuduce fission. 

It is important that the energy of the fissioll ne~trori.s exceed the fie-

sion threshold; otherwise the produced neutrons could not induce furt~r fis-

sion. It may be mentioned that t~e idea of a neutron chai~ reaction based 

on the Be9(n,2n)Be8 reaction was proposed by L. Szilard in about. 1933, at 

which time the reaction was erroneously believed to be exothermic. Since 

then all n-2n reactions have been shown to be endothel~ic. 

For fissione.ble species con·ca.inillg an odd num.ber of neutrons, the fis-

sion ·cbreshold is below thennal energy. ('"""0.025 0v), and so these nuclei 

fission 'Nith thermal neutrons. Probably all the known even neutron fission-

able nuclei, except some isotopes oZ elements 94 or higher, have fission 

thresholds many kilovolts above thermal energy. This difference between the 

even and odd neutron isotopes of the same element is attributed by Bohr and 

Wheeler to the higher binding energy per neutron in an even neutron nucleus 

compared with an odd neutron nucleus. An odd neutron heavy nucleus gains 

an excitation energy of about 6 Mev when it captures a neutron while an even 

neutron nucleus gains only 5 Mev excitation energy. This difference in exci-
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tation energy accounts for the fact that odd neutron heavy nuclei are ther-

mally fissionable, while even neutron nuclei have finite fission thresholds. 

The fission threshold of a heavy nucleus depends, according to the 

drop model, on the ratio of the Coulomb energy to the surface tension energy; 

that is, upon the ratio z2/A where Z is the atomic number and A is the atomic 

weight. Thus, o:f two isotopes, both lWving even neutron numbers or both 

having o~d neutron numbers, the lighter.isotopee will have the lower fission 

threshoM and will ·probably be mo:;.~e ree.dily fissionable. 

In the follm~ing table we list the thermal neutron fission cross sec-

tiona, af, of all the. knmrn thermally fissionable nuclei and the fission 

excitation threholds, Ef, of tho~e isotopes ~mich undergo fission only with 

fast neutrons •. See Table· on :page V-3. 
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Thermal Fission Cross-Sections and Fission 
Thr b ld f H I t es o s 0 eavy so opes 

af(xl024)cm2 
Rererence 

Element z A Ef{Mev).** Vol. Paper 

Ba· 88 223 (100 l4B 19·5* 
Ra{TbX) 88 224 4 Ba 88 226 41.1 X 10 l4B 19.6 
Ra(MsTh1 ) 88 228 <2 l4B 19·5 

Ac· 89 227 (21·~·. 14B 19·5 
Ac(MsT~) 89 228 

Th 90 227, 6oo + 200 l4B 19·5 
Th(RdTh) 90 228 ~ .l l7B 9.10 

Th 90 229 40 + 10 l7B 9·1 
Th(I0 } 90 230 ..(. .001 l7B 9.12 
Th(UY) 90 231 

-'2 x lo-5 Th 90 232 6.40 l7B 9.12 
Th(UX1 ) 90 234 

Pa. 91 230 15,000 - 20,000 l7B '9.15 
Pa 91 231 .010 ± .005 5·89 l7B 9.12 

. Pa 91 232 700 ± 200 17B 9·15 
Pa 91 233 < 0.1 17B ~9~10 

Pa(UZ) 91 234 
Pa(~) 91 234 

u 92 232 70 ± 10 17B 9.11 
u 92 233 505 . LA_.140A 

U(UIO) 92 234 ~ 2.1 LA-l40A 
U(Ac ) 92 235 550 LA-l40A 1 

u 92 237 
U(Ur) 92 238 6.02 

u 92 239 
Np 93 237 .018! .005 5·55 14B 22.26 
~p 93 238 ~000 - 1500 14B 22.28 
Np 93 239 
Np 93 240 
Pu 94 238 ~18 14B 22.24 
Pu 94 239 765 LA-140A. 
Pu 94 240 &180 14B 22.10 
Alll 95 241 2.9 ± 0.5 l4B 22.11 
Cm 96 242 ,-vl500 14B 22.25 

* This and similar numbers are PPR reference numbers. The data was obtained 
privately from W. N. Manning and represents work of' A. Ghiorso, F. T. Hageman, 
M. Studier, A. VanWinkle, S. Peterson, E. Westman, P. w. Osborn and others. 
The data in this table were taken directly from the draft of' K~ Way's report 
"The Fission Process". 

** Ef = Neutron Threshold Energy + Neutron Binding Energy 
(measured) {calculated) 
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At the time (1939) Bohr and Wheeler wrote their papers on the theory of 

fission it was believed that fission was a very much faster process than r-ray 

emission (lifetime against fission "-" lo-16 sec compared to lifetime against 

r-emrssion ~ lo-13 sec) •. Thus the fission width even at thermal energy was 

believed to be so great that narrow fission resonances were out of the question. 

In 1943, McDaniel et al observed low lying resonances in the fission of u235; 

subsequently such resonances were found in all the fissionable isotopes. The 

total widths of these fiss~on resonances, ~ 0.1 ev, were not particularly dif

ferent from the usual 7-ray widths found in elements at the heavy end of the 

periodic chart, which would imply that radiative capture could compete success-

fully with fission at thermal energies. This proved to be the case: measurements 

of the thermal fission cross-sections and the total capture cross-section in 

fissionable isotopes showed that the two were appreciably different. The cap-

ture cross-section, which includes both fission and radiative capture, was as 

much as 40% higher than the fission cross~section, in same·cases. 

In the following table we g1 ve the ratio of thermal radiative capture to 

fission cross-sections for the three important fissionable species, ~33, u235, 

and Pu239. 

u233 

u235 

Pu239 

Table V-II 

Ratio of Thermal Radiative Capture 
(ar) to Fission (af) Cross-sections 

~ = ar/at Reference 

0.12 Rf-126· 1•. 

0.18 LA-158, LA-140A 

0.48 LA-140A, LA-91 
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Production of Neutrons in Fissionable Materials - . -- -~;;;;.......;_._ 

The fission process is accompanied by the emission of several fast neutrons. 

We denote the number of neutrons produced per fiaeiau by ~ • This number is 

greater than ~ , the number of neutrons produced per neutron absorbed in the 

fissionable material, because not all the neutrons absorbed in a fissionable 

isotope· lead to fission. Evidently y :l.a related to ~ by the relation 

(5.1) . 

The process of neutron en(lssion during fissiQ~ is rather obscure, and so 

predictions of the energy dependence of V and Y) are apt to be misleading. 

The quantity Y is usually believed to be rather constant at low neutron 

energies ( < 1.0,000 ev) o On the other band there is experimental evidence 

that Y) is very strongly energy dependent even at energies of a few volts. At 

very high energies processes can be imagined in -w·hich the incident neutron is 

· scattered inelasticalJy but leaves the nucleus so highly excited that it can 

still undergo fission. Such a ~'fission-nr' reaction would lead to a rather 

·higher ~ than ordiDB.I"Y fission. Actually there is some evidence that .Y for 

very fast neutrons is a little greater than .,;> for slow neutrons. 

At high energies other processes, such as n-2n, will compete with fission. 

Since ~ from true fission is larger than 21 a strong n-2n process would tend 

to reduce 1 as observed experimentally o 

If the fissionable isotope is mixed wlth a non~fissionable isotope of the 

same element, as for example ~tural u, in which the isotopic ratio of 0235 to 

u238 is about Oo7%, the quantity ~R is defined as the number of neutrons produced 



----------

V-6 

per neutron absorbed in the mixture. If the isotopic ratio u235:u238 is R, 

then 

(5.2) 

For ordinary uranium this quantity is about 1.33. The values. of '1 and ..; 

for thermal fission in various ~issionable species are given in the accompanying 

table. 

Table V-III 

,; Reference 

if33 2.37 2.67 LA-140, CP-2297 

u235 2.09 2.47 LA-140 

Pu239 1.97 2.91 LA-140 

The Fission Spectrum 

It is generally believed that the neutrons emitted during fission are 

"boiled off" from the moving fission :fragments. The ene:t>gy of the fission 

neutrons according to this picture should be distributed e.ccording to an ----
evaporation fo~ule. suitably modified to take account of the motion of the 

fission fragments. 

Several measurements of the en~rgy spectrum of the fission neutrons 

(briefly, the "fission spectrum") have been made. The most satisfactory 

measurements --those of H. T. Richs.rds (LA-84, LA-200), and of P. Demers, 

(MP-215) -- were performed by irradiating a photographic plate with fission 

neutrons from uf35 and observing the recoil proton tracks. The results of 
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these experiments are given in Figure 5-I.. The fission spectrum rises to a 

maximum at about 2 Mev and then trails off; the average neutron energy is about 

2.3 Mev .. The maximum neutron energy obsez-ved in f»J..Y of these experiments is 

about 10 Mev; probabJ.y there are neutrons of higher energr then this. According 

to D; Hughes, the taiJ. of the fission spectl~ is an exponentially decreasing 

-E/1.6 
:f'unction e . , where E is measured in Mev. 

There is some ev1.dence that the fission spectra from slow and fast neutron 

fissions are not identical {LA~200). This is not su1~rising since essentially 

n.ew processes which result in neutz-on. emission· (inelastic scattering + fission, 

n-2n) probably occm- at high energy. 

Most of the neutrons produced dlAriug fission are emitted practically in-

stantaneousl.y. According to measurements of R. R. rlilson the delay between 

separation of the fission fragments and emission of the neutrons is less than 

lo-9 sec. Besid.es these J>rompt X!.eutrons a few neu.trons a.1·e emitted only after 

very much longer time de~s. These del§Yed neut~ons comprise about 1% or less 

of the instant~eous ~eutrons. The exact number of delayed neutrons depends 
. 

strongly on ·che fissionable species a.ncl prciba.bJ..y, to a. much lesser extent, upon 

the energy of the neutrc•Y.lS j.nduc:i!lg fission. 

~ne origin of the deleJed neutrops ~s elucidated by Bohr and Wheeler 

{Phys. Rev • .2§., ~-26, 1939). They poir1ted out the;£; C.h"\X'ing the successive t3-decays 

of the fission fragments it is probable tha:~ some nuclei are formed in very highly 

excited ste.tes. If the exci ta.tion energy exceeds the binding energy of a neutron, 

then the nucleus will decay by neutron emission instead of t3 particle emission. 

The neutr~ emission follows immediately upon the formation of the highly excited 

nucleus; but this nucleus, being a daughter of a. chain of previous t3-deca.ys, is 
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formed rather long after fission. the neutrons emitted by it 

· follow fission after a time determined by the half-lives of the previous ~-

emitters. 

Identification of the fission fragments which emit two of the delayed 

neutrons was accomplished by Snell et al ( CP-1967) • He found that the delayed 

neutrons of half life 56 sec were emitted by Br87 and the delayed neutrons of the 

halt life 22 sec were emitted by r137. Recently Sugarman has identified the 

6.5 sec emit.ter to be a Br isotope with mass number between 87 and 90 (CP-2621). 

The delayed neutrons are emitted with definite mean lives, t"i, as to be 

expected considering the fact that they follow ~-decay of certain fission products. 

Various observers have established the existences of at least five delayed 

neutron periods. These are given along with the abundances, ~i' relative 

to the total number of prompt neutrons per fission, in the following table: 

Table V-IV 

Del~ed Neutron Mean Lives and Relative Abundances 

'Z'i. = mean lite; ~i = relative abundance 

~33' rf35 f\1239 

'Z"i (sec) ~i 'Z'"1(sec) ~i '2: (sec) 
J. ~1 

8o.2 
. . -4 

l.83xJ.O 79.8 2.6o.xlo-4 79·5 l.l6xlo-4 

31.74 5.82xlo-4 32.1 l7.26xlo-4 32.4 9·35xlo-4 

6.51 8.57x1o-4 6.46 22.8l.xlo-4 7.0 ll.l8xlo-4 

2.19 6.22xlo-4 1.9 24.45xlo-4 1.55 l0.5lxl0-4 

0.61· 1.82xlo-4 0.61 8.50x1o-4 
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The energy or the del~ed neutrons is, according to Wolland Burgy, con-

sider~bly lower on the average than the energy of the prompt neutrons. 

The mean delayed neutron energy is about 0. 7 Mev; this may be compared 

with the average prompt neutron energy which is about 2.3 Mev. 

The prompt neutrons probably come from virgin fission fragments before 

they lose any of their energy by ~-decay. It is therefore not too surprising 

that their energy should be higher than that of neutrons emitted from nuclei 

The existence of the delayed neutrons is of paremount importance t.or the 

practical operation of a chain reaction. If the multiplication constant is so 

low that the delayed neutrons are necessary for maintaining the reaction divergent,. 

1b.e delayed neutrons will act as upacemakers" for the :reaction. The time scale 

of any temporal ~hange in the reaction will be largely determined by the delayed 

neutron periods. Since these periods are of the order of seconds, while the 

lifetime of a neutz·on in a slow neutron chain reaction is about 10-3 seconds, 

fluctuations in neutron density which, in the absence of the delayed neutrons, 

would occur in times of the order of mill,iseconds actually are slowed down to 

times of the order of several seconds. This makes the control of a chain 

reacting pile relatively simple. 

Other Neutron Producing Nuclear Reactions in ! ~ 

~uclear reactions other than heavy isotope fission produce neutrons in 

certain types of piles. The most important of these, particularly in piles 

employing heavy water or beryllium as moderator, are r~n and n-2n reactions. 

The threshold ~or the reactio~ D2(r,n)H1 is 2.2 Mev; for the reaction 

Be9(r-n)Be8 it is 1.65 Mev. Since there are several r-r~s with energy greater 
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than this among the fission product radiations, photoneutrons are present in 

any chain reacting system containing D or Be. Such neutrons have been observed 

in the Argonne heavy water pile. 

Since the photoneutrons are produced from r-rays ~mitted by the fission 

products, they are delayed with respect to the prompt neutrons. Their intensi-

ties and periods depend to some extent upon the time during which the fission-

able material has been exposed to neutrons. This is because the long-lived 

fission products saturate only after long irradiations; the composition of the 

fission products present immediately after an irradiation, and consequently 

the number of r-n neutrons produced by fission product r-rays, therefore, 

depends upon the total time of irradiation. 

Available measurements on the periods·and. relative abundances of photo-

neutrons produced in heavy water by fission products do not agree very well. 

In the following table we give the relative abundances of heavy water photo

neutrons following very long neutron irradiation of u235. The data of Bernstein 

and·P.reston is probably more reliable than that of Hughes, Spe.atz and Cah.n. Both 

sets of data indicate that the photoneutrons f'rom heavy water do not amount to 

more than l/3 of the delayed neutrons. 

Table v-v 

Mean-Lives, Ti, and Abundances, ~i' (Relative to Total Prompt Fission Neutrons) 
of D photoneutrons following long irradiation of u235 
Bernstein and Preston Hughes, Spaatz and Cah.n 

~i Z'i t3i Zi 
0.0122 x lo-4 76 hr o.0054 x lo-4 
0.0387 x lo-4 6.3 11r 0.15 x J.o-4 
o~284 x lo-·4 2.4 hr o.2o x lo-4 
0.250 x lo-4 39.3 min 0.35 x lo-4 
o.4oo x lo-4

4
. 11.1 min 1 .• 20 x lo-

4
4 

1.32 x 10- 2.7 min 7.61 x 10~ 
2.14 x lo-4 47 sec 10.91 x 10~4 
7.32 x 10~ 35 sec 

35 hr 
2.9 hr 

46 m1n 
9-4 min 

1~0 sec 
3-3 sec 
9-65 sec 



, I~ V-ll 

The n-2n reactions in Be and D have the same thresholds as the 7-n 
- .. 

reactions, 1.65 Mev and 2.2 Mev. Some of the prompt neutrons have greater 

energy than this; and in fact, evidence for a fairly strong n-2n reaction in 

Be_moderated piles bas been found. We shall consider this matter in greater 

detail in the section on microscopic pile theory. 

Elementa;r Characteristics of ~ Chain Reaction 

Slow Neutron Chain Reactions 

The fission cross sections of the fissionable nuclei are remarkably large 
- _Q 8 

at thermal energy (Table-V-I): the ratio of cross-sections of u-35 and if3 

is about 250 at thermal energy as against an average ratio of about 2 over the 

resonance region. Thus, in ordinary u, where the isotopic contents of u235 

is 0.7%, only about 1 out of every 75 neutrons absorbed above the Cd cutoff 

(0.4 volts) causes fission, while roughly one out o~ every two neutrons ab

sorbed thermally causes fission. For this reason, 1t is adyantageous to re-

duce the energy of t~ -fission neutrons in a chain reacting system to ~hermal 

energy and thus insure that most of the neutrons are absorbed when they are 

very slow. 

The slowing down of neutrons in a pile is accomplished by mixing the uranium 

with a moderator of low atomic weight, such as H2o, D20, Be, BeO, C, etc. All 

moderators (except He, which is impractical because it is a gas) absorb some 

neutrons. Consequently the amount of moderator which can be used in a slow 

neutron chain reacting system is limited by the requirement tba t not too many 

neutrons be lost in the moderator. The best moderator. from a theoreticai view

point is the one for which the ratio of slmoJing down power (as f) to captm.e 

cross-section (aa) is a maximum, for, the higher this ratio, the fewer neutrons 

will be absorbed parasitically by the moderator for a given amount of moderation. 
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This ratio for several moderators in the following table: 

Moderator He Be c 0 

1600 00 126 169 1000 

Of course the choice of moderator in any given practical case depends not 

only on this ratio but also on such quantities as density, availability, structural 

properties, etc. 

While a fission neutron is being slowed in a medium containing uranium and . . . 

a moderator it may be absorbed in one of the resonances o~ u238• If too many 

n~trons are lost in u238 resonances a chain.reaction is impossible; hence 

methods must be devised to reduce the resonance absorption in u23B. 

The moat obvious method is to use separated u235 or Pu239 in the chain 

reaction. Un:f'ortunate.cy- this method is expensive. The discovery of alternative, 

much cheaper methods.to ~~tablish a chain reaction was one of the main achieve

ments of the Plutonium Project. 

The use of a moderator in itself reduces the resonance absorption in u238• 
•. 

Accord.~ng to equation ( 4.28) the p\-obability that a neutron escape resonance 

capture in a homogeneous mixture of uranium ~d moderator is 

P = exp- Nm::fm (faau ~)eft 
where Nu is 1he:number of· ~;ttams of rf2.3Bjc.c., NmamJm is the slowing down power 

of the moqerator per c.c., and (t:au aE' is the effective resonance absorp-. Jc ' E}eff 
tion.integral per atom of u238• As the slowing down power of 

the moderator per atom of U is increased and this is most easily accomplished 

·~~· 
~ ,. . 
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escape res~nance capture increases. If increase of p were the only con-

sideration, it would be advantageous to increase the amount of moderator 

without limit. However, as has been pointed out, all practical moderating 

substances capture some thermal neutrons • This sets a limit to the amount 

of moderator ~hich can be ~sed. Because of this competition between two 

oppo~ing requirements, namely, large amount of mod~rator to reduce u238 

resonance capture, and small amount of moderator to reduce thermal neutron 

capture in the moderator, there is an optimum moderator to u ratio for which 

the multiplication constant of a chain reacting system is highest. One of 

the problems of microscopic pile theory is .to calculate this optimum; 

Heterogeneous versus Homogeneous Arrangements 

·There is another way to reduce the reso~ce absorption in u238: ~his 
.. 

is to dispose the uranium heterogeneously as a lattice of lumps throughout 

the moderator. The advantage of such an arrangement is that 1 because the 

reson.ance absorption is largely confined to sharp, very deep l.evels, the 

uranium atoms inside the lump are shielded from resonanQe neutrons by the 

atoms on the surface. The effectiveness of this self-shielding in reducing 

the resonance absorption has been calculated in Chapter IV. 

It :was found that the value of 

can be reduced by lumping from 240 x lo-24 cm2, the value for finely divided 

Uranium to perhaps 15 x lo-24 cm2, depending on the exact dimensions of. the 

lump (Eq.4.5l). 
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This decrease in the resonance absorption of uranium. caused by lumping 

is crucial for the establishment of a chain reaction in a system containing 

unenriched uranium. In fact it was the idea of lumping, p~posed independently 

by Szilard in this country and by Harteck in Germany, which 11IB4!3 it possible 

to build a successful chain reaction out of graphite and ordinary uranium. 

The main reason that lumping l.!m>roves the multiplication constant is that, 

because of the discrete character of the reso!lB.D.Ce absorption, ~evelSi :(.and ... 

their very great he~ght) the value of .(J aau ~'\. is le~s in a lump than in 
Jeff . . 

a homogen.eo·11s mixture. There is a second effect of lumping, namely, that 

moderation of neutrons through the resonance absorption energy region takes 

place away from the uranium. This also reduces, though rather slightly, the 

resonance absorption. However, this effect is more than balanced by the fact 

that, since thermal neutrons are absorbed .in the uranium lump, the thermal 
. -

neutron density is depressed there relative to the density in the moderator. 

Consequently the absorption in the moderator is increased by an amoun~ which, 

in lattices of practical interest, more than offsets the improvement in res-

onance absorption caused by the fact that the neutrons slow down far from the 

lump. 

The total effect on the multiplication constant caused ~y lumping is the 

sum of three effects, two of which are advantageous, and one disadvantageous: 

Advantages of Lumping 

~) Reduction in ([aau ":)e:r:r 

2) Reduction in number of resonance neutrons near lump. 

Dis3.dvantage of Lumping 

1) Increase in thermal absorption by moderator because of increase in 

relative number of thermal neutrons in moderator. 
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The net effect of lumping is advantageous since advantage ( 1) much 

more than balances the difference between disadvantage (1) and adva.Ditage (2). 

Since advantage (1) accruea only because the absorption is concentrated in very 

deep lines, there would be a net loss instead of a net gain from lumping if 

the resonance absorption in u238 were not confined to discrete levels. It 

~be mentioned that in many semi··popular discussions of the chain reaction, 

the only advantage claimed for lumping is ( 2); this is evidently erroneous. 

In the calculation of the critic~l size and other macrosc9~ic properties 

of piles the lattice structure complicates the analysis very considerably. · 

·' We shall in this section ignore the J.attic~ structure, and shall consider the 

actual pile to be replaced by a homogeneou~ one whose· microscopic properties, 

on the average, are the same as those of the lattice pile. This procedure is 

approximately correct as long as the dimensions of a: cell are small compared 

to the size of the pile. I~ Chapter the error which is involved in this 

simplification will be calculated. 

The Multiplication Constant 

Uranium chain react.ions of the type we consider, i.e. , slow neutron chain 

·reactions may be described by tracing the life history of a·neutron from the 

time of its birth ·as a fast neutron to the time of its death, by capture, as 

a slow neutron. For the moment we shall not be concerned with neutrons which 

might leak out; we therefore imagine a chain reacting system having a c·ertain 

definite arrangement of uranium and moderator and whose overall size .is in

f'ini te. In such an iri:f'ini te system neutrons can be lost only by capture. 

Four distinct steps can be distinguished in the life cycle of a pile 

neutron; these are · 

a. Birth as a fast neutron as the result of fission. 



b. Absorption above the fission threshold in u238 and production of 

new neutrons as a result of fast fission. . . 

c. Radiative capture by u238 during moderation ( so-called resonance 

capture), or resonance capture by u235 followed by fission. 
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d. Radiative capture as a slovr neutron in the moderator or in impurities 

(so-called parasitic capture), or capture in fissionable material 

·with production of fast neutrons from fission. 

Evidently any given neutron cannot experience all phases of this cycle. 

A few neutrons in the slow neutron chain reactions of primary interest will 

be multiplied as a result of fast neutron fission in u238 or other fast neutron 

fissionable material. Some will be captured at resonance energy and therefore 

will not be available for further fission. The majority of neutrons will sur-

vive to thermal energies ( ....v .025 ev) and will there be captured parasitically 

or will produce new neutrons by thermal fission. 

Fast and Slow Neutron Chain Reactions 

The fraction of neutrons which survive any particular part of the cycle 

will depend upon the composition of the pile. If there is little moderator 

present and if the fissionable material ("metal n) is lumped in large lumps, 

more neutrons will cause fast fission than if the lumps are small or the metal 

to moderator ratio is small. Again if there is a large amount of moderator 

present 1 most of the neutrons will be slowed to thermal energy, and the bulk of 

the fissions will be produced by thermal neutrons. 

Thus a uranium chain reaction can be characterized• .by the energy of the 

~eutrons which cause the fissions. In a bomb practically all the fissions are 

caused by neutrons Whose energy is above l/2 Mev; such a chain reaction is 
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referred to as a ":fast neutron reaction", or simply "fast" reaction. In 

a chain reaction which operates on unenriched uranium only a few percent o:f 

the fissions are caused by fast or resonance neutrons; almost all the fissions 

are caused by thermal neutrons, and such a reaction is therefore called a "slow" 

reaction. 

The Generation Time 

Basic to the discussion of neutron chain reactions is the notion o:f the 

generation time. We define this quantity for a slow neutron reaction in the 

:following manner. Each slow neutron fission in a pile is induced by a neutron 

which was born as a direct result of slO\v fission occurring at a time .li 

before, or it is induced.by a neutron which is a direct fast fission or resonance 

fission descendant of neutrons produced by slow fission at time ~ earlier. 

The time .1i may be called the effective lifetime of the neutron causing 

fission. Because of statistical fluctuations in the neutron capture process, 

and because some neutrons do have fast and resonance fission descendants while 

others do not, the time intervals .R.i between successive directly related slow 

neutron fissions will not all be the same. Let N(~) denote the number of slow 

neutron fissions per second per c.c. induced by neutrons whose effective life

time is .R.. • Then we define the average generation time ( i..) as 
l. 

.Li .R..i N(.ii) 
~=-----

~i N(ii) 

the summation being over all neutron lifetimes. 

, (5-3) 

The generation time is a measure of the average time between successive 

generations of slow neutron fissions. In a pile whose macroscopic composition 
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is not uniform the generation time will vary from place to place. Where 

there is a large amount of moderator the generation time will be larger than 

where there is a small amount of moderator. 

If the pile is so rich in fissionable material that no thermal fission 

takes place, this definition of the generation time evidently becomes inappro-

priate. In that case it is more relevant to define a generation time as the 

average time interval between successive fissions -- not successive thermal 

fissions. However, for slow neutron piles it is more convenient to define the 

generation time as the average time between successive slow neutron fissions. 

During one generation time a certain number of slow neutrons are created 

and another number of slow neutrons a.re captured in the infinite ~ystem. The 

ratio of the number of neutrons which become slow (i.e., are "produced") in one 

6eneration time to the number of slow neutrons captured in one generation is 

called the multiplication constant of the system. It is denoted by k00 since 

it -is defined for an infinitelY large system. 

The multiplication constant in a slo"t-T neutron system is evidently the 

product of four _factors, corresponding to the four phases in the neutron cycle. 

Suppose a single slow neutron is captured in the system. How ma.ny slow neutron, 

on the average, will be produced one generation time later~ The slow neutron 

~ be captured either in the moderator or other inert material present in the · 1 

system, in which case it does not produce fission, or it ~ be captured in the 

fissionable material. (In this connection we call· any isotopic mixture of u235 

and u238 "fissionable material"). The number of fast neutrons which immediately 

result from the· capture of one slow neutron is therefore· the product 

where f is the probability that the slow neutron is captured in the uranium, 
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and ") is the number of neutrons produced per slow neutron captured in the 

fissionable material. The quantity f is called the thermal utilization. 

Some of the fast neutrons produced by slow neutron fission induce fast 

neutron fission in the fissionable material. Most of these fast neutron 

fissions occur in the u238 in a system in which unenricbed U is used. The 

total number of fast neutrons produced in one generation as the result of the 

capture of a slow neutron is, thus, greater than f¥'J by a factor €. { > l), 

the fast multiplication constant. This factor is defined as the ratio of the 

number of neutrons produced by all fissions in one generation to the number of 

neutrons produced by slow neutron fission in one generation. 

During the slowing down process the fast neutrons which leave the uranium 

have only a probability p {resonance escape probability) of escaping resonance 

capture in u238. The total number of slow neutrons created in one generation 

per thermal neutron absorbed is therefore 

(5.4) 

For every slow neutron absorbed in one generation time, there must have been 

1 - l neutrons absor~ed in the resonance absorption energy range. The total 
p 

number of neutrons absorbed {both as slow and e.s resonance) per thermal neutron 

absorbed per generation time is therefore 1/p. Similarly the total number of 

neutrons which are produced in one generation time per thermal neutron absorbed 

this includes both those neutrons which are destined to be captured at resonance 

and those which are destined to be captured thermally -- is koo/P· The ratio 

is k00 • Hence an alternative definition of the multiplication constant is the 

total number of neutrons produced, on the average, in one generation time, 
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divided by the total number of neutrons absorbed, on the average, in one gen

eration time. 

The Elementag Pile Equation 

We now consider a chain reacting system 'tvhich is of finite size. The 

neutron density in this system evidently will remain stationary if the average 

number of neutrons produced in one generation is equal to the average number 

lost in one generation. In an infinite system neutrons can be lost only by 

capture. In a finite system neutrons can be lost by leakage out of the system 

as well as by capture. Hence it is customary to define an "effective" multi-

plication constant, keff' defined as the number of neutrons produced on the 

average in one generation time, divided by the total number of neutrons which 
_..// 

are absorbed or leak out on the average in one generation time. The quantity 

keff is to be contrasted with k, defined as the total number of neutrons pro

duced on the average in one generation time, divided by the total number of 

neutrons absorbed in one generation. The conditiop. that the neutron density 

in a chain reaction be stationary is evidently ke:ff = 1:· For any finite system 

keff is less than k. The difference between k and keff is less than k. The 

difference between k and keff depends on the size of the system; as the chain 

reacting pile becomes infinite the value of kerf approaches k. 

If the energy spectrum of the neutrons in the finite system is the same 

as the spectrum in the infinit~ system having the same uranium-moderator con

f,iguration, then k is the same\as koo. The neutron spectra in the finite pile 

and in its infinite prototype will be nearly the same provided the dimensions 

of the pile are large compared to the range of fission neutrons. We shall be 

interested in unenriched systems which are always large enough for this to be 

true. It is for this reason we find it appropriate to introduce the quantity 

13--1Br~rfC5 
-------------------------------------------------------------------~~---



1ta,, and in fact, to divide pile theory into microscopic. and macroscopic 

parts • If the pile is· so small that; the neutron energy spectrum is very 

different from that in the infinite prototype, the quautity k is still a 

usef'ul one, but it 5.s no longer necessarily equal to ka:, • In such a case 

the introduction of ku, as defined here,* is ::;.~Ed:;her irrelevant, and, in fact, 

the distinction between microscopic and l.'liB.croscopic p5.1e theory is blurred. 

Near the b~~ndaries of even a large system the neutron energy spectrum 

will deviate t.'rom that characteristic of an infinite pile. This is usually 

not too important, as will be sho~ leter,,since the macroscopic properties .. 

V-21 

of a pile are hardly affected by its microscopic properties near the boundaries. 

There are same cases, however -- notebly the calculation of the effect of re-

flectors -- vlhere the change in energy. spect:rum near e. boundary is important. · 

In this case the distinct1on between macroscopic and microscopic theory is 

not very useful. 

With these preliminaries in mind, we proceed to derive an equation de-

scribing the neutron distribution in a slow neutron chain reacting pile. We 

consider a homogeneous and isotropic pile which contains no extraneous neutron 

sources (e.g. Ba._-Be). <Fur task w.:l.ll be to compute the criticaJ. size of such 

a pile, and to determine the distri~ution of neutrons in it. Two assumptions 

will be made in most of the work of this chapter. First, we assume the pile 

is homogeneous. Since most piles utilizing unenriched uranium have a lattice 

structure, this a.ssmnption apparen:(;ly eliminet.es unenriched piles from con-

sideration. In order to include such lattice piles in the theory we use the 

stratagem mentioned previousJ~~ namely, we replace the lattice pile by a 

homogeneous. p~le having the same microscopic properties as the lattice. The 

neutron distribution calculated for the homogeneous model vd.ll then reproduce 
* It is still possible, however, as :pointed out by F. L. Friedman, to introduce 

a multiplication constant which is explicitly a function of the neutron_energy 
spectrum. . .... ; .. ~ \ 

' 1!;11 < .<·' iii, __ ~}!~ . 
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the large scale features of' the distr.ibution in the· lattice pile but will not 

include the local irregula.rities introduced by the lattice structure. These 

local irregularities are perturbations superposed on the large scale neutron 

distribution; they will be dealt with in Part 3 of' this volume •. 

A second assumption which will be made in much of' what follows is that 

' the multiplication constant, kj of' the pile is close to unity. This is almost 

al:ways the case for. piles using Un.enriched uranium. The requirement . k ~ l is 

equivalent to the assumption that the p:i,le is large compared to the mean dis~ 

tance that a neutron· travels from birth to death. 

In order to write down an equation .which describes the steady state neutron 

distribution, we use the fact that in a steady state ·the number of neutrons 

which become slow per second in a cu~ic centimeter must equal the net number 

which diffuse out of, pl~s the number captured in, this cubic centimeter per 

second. Let is(!:) denote the thermal flux (i.e., number times velocity of' 

thermal neutrons per c.c.) at the point whose position vector is!:· Since 

the angular distribution is not used· in this section, no confusion will arise 

from our use of fs instead of ~os for the total slow flux. We assume the system 

is so large that elementary diffusion theory is applicable; then the net diffusion 

of slow neutrons otit of a unit volume in one second is 

where D0 is the diffusion coefficient for slow neutrons.· The diffusion co-

efficient D0 is related to other constants by the equation 

(5·5) 
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where Naa is the average macroscopic absorption cross-section of the pile, 

(evaluated for the average velocity),.and l/Jt(=L) is the diffusion length in 

the pile. 

Let q(Es 1£) denote the number of neutl·ons which becane ,thermal per e.c. 

per second at r. In the steady state 

(5.6) 

The number of neutrons q(Es 1~) which become thermal per e.c. per sec., 

that is, the "thermal slowing down:· den~ity", evidently comprises all those 

neutrons Which were produced by fission throughout the pile and which, in 

diffusing a~ from their points of origin~ happen to became thermal at ~· 

Let P(Es 1~1~') be the probability that a fission ~eutron, created in unit 

vol.ume at ~· inside the pile, becomes a slow neutron in unit volume at .!:.; 

We call· the function P(Es1~,~·) the "finite slo~ng down kernel" -- "finite" 

since it describes the slowing.down probability in a finite pile. Since the 

number of fission neutrons produced pel" c.c. per second at r' is~ Naa<lsC!:'), 

the total number becoming thermal per c.c. per second at ~ is 

. q(E,,£) = f ~ Naa~s(!:') P(E6 ,£,!:' )d£' '· 

pile 

the integral being extended over the pil.e. 

Upon substituting (5.7) into (5~6), we obtain 

(5.7) 

(5.8) 

an integro-differential equation whose solution determines the slow neutron 

density in a slow neutron chain reaction. We cal.l (5.8) the "pile equation". 



------ ~-~- -----

.-. 

V-24 

If the pile is uniform, the pile eque;cion lDB\V be writ ten 

L2 C.§,(!:l + J f ~(!:' l P(Es,!:>!:' )cl;£' - M!:l = o; 
pile· 

(5-9) 

since the square of the pile diffuaion length, L2, -is Just 

The Fast Flux~. the l3ound.ary_.Conditions 

Before the thermal neutron density or critical size can be determined 

from the pile equation, it is neceesa.ey to first specify the distribution of 

the non-thermal neutrons, and f!e_cond to impose boundary condi tiona on the neut• 

ron fluxes of all energies. 

The slowing down density at energy E, that is, the number of neutrons 

which cross energy E per c.c. per second is denoted,.as in Chapter III,·by q(E,~). 

If P(E,~,~·)·is the probability that a fission neut~on created in unit volum~ 

at r' crosses the energy E in a unit volume at ~~ then evidently 

q(E,!:) = f J Naa~·(!:') P(E,!:,!:') dr' ; 

pile 

(5.10) 

when E = Es, q(E,~) is jus.t the thermal slowing down density, q(Es 1~) which 

appears in the pile equation. If ~6 (!:) and P(E,~1,!:') are known, (5.10) deter

mines the slowing down density, and therefore the fast flux, at every energy. 

If the chain reacting system contained only slow neutrons, the boundary 

condition would . be essentially the one stated in Chapter I; namely, ~8 (~) 
extrapolates to zero at 0. 7J. ~ beyond the physical boundary, At being the 



· V-25 

the~~.neutron transport mean free path~* 

The boundary condition on the fast neutron flux -- that is, on q(E,!:) -

will in general d:iffer from the bound.a.ry condition on ~(,!:), since the mean 

free path is always energy dependent. ' The fact that the ·extrapolation dis-

tances for.q(E,.!:) and ~6 (_!:) ~differ complicates the.theory tremendously. 
' j '. ' 

To simplify matters it j.s usual~v custorna.ry to assume the two distances are 

the same. This is not at all correct :?or chain reactions whose critical size 

is comparable· to a mean free path; however, in slow neutron piles the extra-

polatiou distance is always so sraa.:u compared to the pile dimension that the 

error introduced by assuming the e:.\.'trapola.tion dista,nce to be energy independent 

is unimporta.nt. The sj.ze of this error is discussed in Chapter VII • 

There are t1m slightly different v.'ays in which the extrapolation dis-

tance bounds-~ condition can be formulated. Either the condition can be taken 

as 

vanish on extrapolated boundary' 

or, it can be taken as 

on physical boundary' (5.11) 
..;1 

.! 29. = t . 71 At(E)l 
q d~ t ~ . 

T.7here da.. h he d 1 -' .. is the deri vatj. ve wit respect to t outwa.r norma ,. Y • 
' '/ 

* The exact ntunerical coefficie~G of ~t in the extrapolation distance for.mula. 
depends on the curvature of the boundXng surface, an~ on the ratio of capture 
to scatteriug cross-section. The constant 0.71 applies if the curvature is 
small compared to ~' and if cra/a8 << 1. 

--
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The two ways of writing the bounda.'ry conditions are identical if the 

fl.uxes inside the pile are linear uea.r the pile boundary. This is always 

the case if the pile is sufficiently large. The theory of the pile turns out 

to be more straightforward if the bound.a..'"y- condition is stated in terms of the 

normal logarithmic derivatives, Eq. (5.11), although actual calculations are 

easier with the other form of the bounda.ry condition. 

· For convenience lve collect togethe:r the pile equation and the boundary 

condi tiona: . 

q(E,!:_) = f ~ l!aa~e(!:') P(E,:£,!:' )d,!:' 

pile 

on physical boundary 

(5.9) 

(5.10) 

(5.ll) 

For the remaining discussion vre she.ll assume the pile to be uniform, 
,. 

and the transport mean free path -- that is, the extrapolation distance 

to be energy independen~·unless otherwise stated • 

. The Asymptotic Pile Equation 

Far from the boundaries of the pile the moaeration of neutrons proceeds 

~s though the pile were infinitely large. In the expressian for the slowing 

down density (5.10) it is therefore permissible to write P00 (E, I!_-!,'/), where 

P00 (E, I!_-!_'( ) is the slowing down kel"'D.el in an infinite system, rather than 
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:P( E, ;:_,!: 'J . Thus 1 the slowing down. density far from a bound.Sry 1 which we 

denoted by q
00 

(E,£) 1 is 

= .L ~ Na .. l,(!:') P00 (E, h:-!:'1)<1!:' · (5.12) 

space 

The integration can be exteJld,ed over all space rather than over the pile 

provided PoJE,J'£-!:'1) falls off so l·apid.J.y with !:-!:' that there is no 

appreciable contribution to the slowing down density tram points close to 

the boundary. In all cases of pbysicai. importance P
00

(E, l,!:-!'1) falls off 

sufficiently fast with !:-!:' fo~ this to be true. 

The pile equation at points far from the boundary is, for a uniform 

pile, 

(5.13) 

space 

This equation may be referred to as the asymwtotic pile equation, and its 

solutions, since they are valid in general only far fram boundaries, may be 

called asymptotic solutions of the pile equation. 

The asymptotic pile equation is simpler than the exact pile equation 

on two accounts: first, because the range of integration is over all space; 

and second, because the slowing down kernel P
00

(E, l!:-!:'1 ) depends only on 

I!:-!:' 1; that is, it ~·a a symmetric, displacement kernel. 

The finite slowing down kernel, P(E,£1!:') will ordinarily satisfy the 

same linear differential equation asP (E,lr-r'l) --for example, the Fermi 
00 --



age equation, or the group equation -·· depending on the picture ___ u~ed t~ 

represent the slowing down process .. : Thus P(E,r,r') in such cases is ex-
.. . .. . --- ·- . ... ---··. 

pressible as a sup~rposition of P00(~!1!-~'l). The process of superposing 

~(E,I~-~· I) to yield P(E,!J~') corresponds to distributing a system of 

images Whose effects mutuallY cancel on the extrapolated boundary and so 
' 

cause P(E,~1i') to vanish there. Since these images must be placed at 

various distances from the bound.e.ry it is not surprising that the finite 
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kernel, P(E:,~,_;:') is not;: in gelieral, a displacement· kernel, while the in

fiilite one is. Another way of putting it is that the presence of boundaries 

introduces the possibility of leakage and therefore makes the probability 

that a fa~t neutron created at !' will appear at ! depend not only on 1!-~'1 , 

but also on the distance from! or~· to the pile boundary. 

The infinite slowing down kernel is normalized so that the P.:robabili ty 

that a neutron will cross energy E·is the resonance escape probability, p(E): 

00 f P00 (E, 1!:-!:'1 )d!_' = 4• r Pro(E,r),-2a,- = p(:i:). . (5.14). 

. . 
The resonance escape probability to t~ermal energy p(Es), is denoted, as usual, 

simplY by p. 

As an example-which will make the distinction between P00(E,I~-~·f) and 

P(E,~1!') clear, consider a semi-infinite slab in which the Fermi age slowing 

down picture is applicable, and in which p lE) = l. ~nen P (E,Ir-r'l) is 
Q) --

1 
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wlUle the finite kernel, which vanishes on the slab 'bound.a;ry (x = 0) is 

The second term represents an image which.is p~ced at -x' and whose 

effect is to bring the finite kernel to zero at-~e boundary. 
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Asymptotic Solution of the ~Equation; the Fundamental Theorem S2!. Pile Theory 

~le now prove the following "fundamental theorem of pile. theory": 

The asY!Ptotic uniform pile equation 

all 
space 

is satisfied py any solution of 

(5.15) 

provided B2 is a root of the characteristic equation 

- 2 ) where P00 (Es,~ ) is the three-dimensional F<;>urier transform of P00 (Es 1 I! I ; 

~.e.' 

00 

f ·i.B·r 
= e· 

(]) 

P00 (E8 ,1!:1l~ = 4n f.··~ Br Pop(E8 ,r)r2d:i-. 
. 0 ·(5.17) . -oo 
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The slowing down density at energy E is 

. (5.18) 

that is, ~ (E,r) is proportional a.t every energy to L<~). 

To prove this theorem we first prove the last statem~nt (5.17). 

Co~ider a solution ~s(~) of 

(5.15) 

Tn1s function may be expressed as a Fourier i~tegral 

where a = a~~ + a i + a k is a vector integration variable. Since ~ - -- y~ z- !a 

satisfies (5.15), the function A(~) must be zero un1e~s Q2 = B2; i.e., 

it is a 8._function on the surface of a. sphere of rf¥].;l:qs B. From (5.12), 

space 

rr ia·r' 
= ~ Naa JJ A(a) e P00 (E, IE.-!:,' I )d£' da • 

· ia· (r-r) 
IntJ;"oducing the factor e - -- , we obtain 

.. ~~ . . 

~ --.. 
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where P00 {E,B2) is the three dimensional Fourier transform of' P
00

(E, h:-!:' I)· 
The tm·ee dimensional transf'onn ca.:-..'1 be '-rri tten 

where B = B i + B _j + B k. 
:x:- r z-

On shifting to :polar coordina~es r, p. =- cos91 f-, this becomes 

PoJE,B2 ) = 4• ] 
(I 

Thus (5.17) is proved. 

sin B:r p ( H! r) r2dr Bi-- oo ""' • 

To prove the remainder of' the th<·~orem, itTe 1-1ri te 

and substitute into the uni:form pile equation. The result is the char-

acteristic equation (5.16): 

?_2 k·- 2 
-L-~ - l + - P(E~,B ) = 0; 

p "' 
. (5.16) 

thus we ·have proved tP~t a solution of (5.15) will satisfy-the asymptotic 

pile equation if' n2 is a root o:f (5.16). 

The solution of' the asymptotic pi;t.e equation is, according to the funda-

mental theorem, equivalent to the solution of' the wave equation (5.15) in which 

B2 is a root of' the characteristic equation {5.16). The quantity B2 is called 

the "bu'ckling" of' the pile.* Since it is determined as the root of' an equation 

(5.16) whose parameters (L2,k,~,p), depend only o~ the microscopic properties 

of' the pile, the buckling B2 is also a microscopic property of' the pile. 

*The word buckling, proposed arises tram the fact that B2=• ~-~/~s 
and is therefore a measure of' of' the slow neutron density. 
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Relation Between Asymptotic 

The asjr,mptotic pile equation an~ its asymptotic solution are valid in 

general only at distances from the bounde~ which are large compared to the 

slowing down range of the neutrons" Closer to the boundary than this there 

will generally be non-asymptotic solutions for wbO.ch the rather remarkable 

proportionality between the slowing down density end the slow neutron density 

implied in equation (5.18) no longer holds. 

There is one very important case, hollever, in which the asymptotic 

solution is rigorously correct to within a distance of a mean free path, 

rather than a slowing down range 1 of' the boundary and the breakdown of the 

asymptotic solution then arises or~ because elementary diffusion theory ceases 

to be valid eo close to the boundary.· This ·important case is stated in the 

following theorem: 

If the extrapolation d:!.ata.nce 2_ as d.ef:ined by (5.11) is independent of 

neutron energy, and if the finite ~nd infinite slowing down kernels satiety 

the s~e linear equation, then the a.g.nptotic solution holds· ev~mhere in a 

critical pile, except within a distance of the order of a mean free path from 

the bouruis.zy. The slowing dmm density in the pile is identical with the 

infinite slo"";oTing down density excent within a dis"GGnce of the order of a mean 

free ~ath from the boundary. 

To prove this theorem we first use the fact that the infinite slowing down 

density is proportional to the elm; neutron flux ~s 

provided 

A~8 + B~ = o. 
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Since qoJE,~) is proportional to ~B(~), the two functions ~ and fa satisfy 

the same boundary conditions on the pile surface. 

The finite slowing ·down kernel P(E,~1~') and the infinite slowing down kernel 

P
00 

(E, J~-~'-1) both satisfy ~the sa.t:J.e linear equation by hypothesis. Consequent·ly, 

the finite slowing .down density 

q(E,;:) = .~ Naa I- ~(;:') P(E,;:,;:')d!:' 

:pile 

and the infinite slowing dowu density 

qJE,;:) = ~ Naa f ! 8 (;:') 

ell 
space 

being linear superpositions of functions which satisfy a linear equation, 

also satisfy the same equation. The slowing down density q(E,~) in the pile 

satisfies certain boundary condit:i.ons which, by hypothesis, &rE;I 'identical with 

the boundary conditions satisfied by ~s. But we have already shown that 

~ (E,,r) being proportional everywhere to ~8 (::) satisfies the same boundary 

conditions es ~8 (~)· Hence qoJE,~) and q(E,~) are identical, and the asymp

totic solution ~(~) satisfies the pile equation wherever the pile equation 

and the extrapolation distance botmdel7 condition are valid, i.e., within a 

distance of the order of a mean free path of the boundary. 
. ~J 

Physically, ·the sense of this theorem is somewhat as follows: the neutron 
, 

distribution in a finite pile can be calculated (under the restrictions stated . 

in the hypothesis) by extending the pile out to in.fini ty and finding the asymp~ 

totic neutron distribution in this infinite system. This.solution oscillates, 

-------'----------------------------- -----
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positive neutron densities alternating with negative ones ad infinitum. The 

positi:ve and negative densities e.:re so distrj_butad that on the pile boundary, 

their superposed effect satisfies the oouP-dary conditions. 

The regions in which the neutron density is negative may be called 

"negative" pil~s. The positive and negative. piles are very similar to the 

system of images which are cornmon~v used to solve ordinary boundary value prob-

lema. Ordinarily the system of images can be constructed only if the bounding 

surface has sufficient symmetry -~· for exwnple 1 if it is an infinite slab, or 

a cube, etc. The theorem shows that even f'or arbi t1·ary shaped surface, an 

appropriate image system of positive and negative piles can be constructed; 

in fact, the intensity and distrib·ll.tion of -~he ima~es is automatically given 

by the analytic continuation of the asymptotic neutron distribution outside 

the pile. 

'llhis. manner of solving the f'inite pile equation by analytically contin-

uing the pile out to infinity ·was suggested by Fermi. It is analogous to the 

Born-von Karme.n method of calculating the lattice vibrations in a finite crystal 

by extending the crystal lattice o'ut to infinity. 

At first sight the requirement that P(E,r,r') and PerlE,~~-~· I) satisfy 

the same linear equation may seem too restrictive. Actually this is not the 

case: the three slowing down kernels -which are used in pile theory, namely 

the Fermi age kernel, the group picture kernel, and the transport kernel all 

satisfy linear·equations. This holds true, <Df course, for kernels obtained 

by convolution of these three. 

The requirement that the extrapolation distance is independent of energy 

is very inaccurate in a hydrogenous mi2~ure, but it is fair in most othe~ cases. 
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If the pile is very large compared to a mean free path the assumption that 

the extrapolation distance is energy independent is evidently not very 1m-

portan,t. 

In any case, as we have already remarked, the whole argument breaks 

down within a mean free path of the boundary because diffusion theory is 

invalid there. Since the overall size of a fast neutron pile is often of 

the order of a mean free path~ the theorem is not applicable in such a case. 

~us the actual neutron distribution in a small fast neutron pile falls off 

much faster near the boundary tl~n does the asymptotic density. For slow 

neutron piles, on the other hand, the size is always so large that the de-

viations from diffusion theory near the boundary are almost always unimportant. 

Existence of a Critical Size -- -
According to the fundamental theorem of pile theory, a solution of the 

wave equation 

(5.15) 

will .sa.tisfy the pile equation provided the buckling, B2, satisfies the 

characteristic equation 

~- 2 k- 2 .. 
-L~ - 1 +- P (Es,B ) = O. p 00 . 

(5.16) 

The buckling in (5.15) determines the v'wave length" of the Ilj)utron distri-
2 ~ 

bution; i.e., for a given value of·~ the neutron density has nodes on some 

surface. Only if the extrapolated pile surface coincides with the surface on 

which the neutron density has its first node will the:·solution of (5.15) satisfy 

both the pile equation and the boundary conditions (neutron density.positive 

inside the pile, neutron density zero on the extrapolated boundary). Thus, 
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for a pre-assigned set of microscopic parameters, 

the pile must have very particular physical dimensions in order for the 

buckling of the solution which satisfies the boundary conditions to simul

taneously satisfy the characteristic equation (5.16). This size is called 

the "critical size" of the pile. 

If the pile is critical,: B2 must simultaneously fulfill two conditions: 
. 2 2 
first, B must satisfy the characteristic equation (5.16);·arid second, B 

must have such a value that the neutron density determined from (5.15) vanishes 

on the extrapolated boundary. Two different "bucklings" can therefore be dis-

tinguished. On the one hand th,ere is the numerical value 

which the buckling must have if the neutron density is to vanish on the ex-

trapolated boundary of the pile. This number is called the geometric buckli~ 

and is here denoted by B~. For a sphere of radius Be its numerical value is 

clearly 1t2,f.R~, sin,ce the solution of the wave equation 

is positive inside a sphere of radius Rc and vanishes on the surface of the 

sphere. On the other hand, for any ·disposition of the fissionable material 

tor which the microscopic quantities L2, k, p 1 PoJE,I~-~'1) are pre-assigned, 

there is a value of B2 which satisfies the characteristic equation. Thus 
2 . 2 . 

B , the 11material" buckling, 1lJ13:3' be denoted by :s;,; it is a.microscopic char-· 

acteristic of a particular disposition of ·fissionable material in a moderating 

~edium. 
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The remarks are summar;l.zed in the following theorem: 

A chain reacting p;l.le will be critical if its geometric buckling Bij and 

its material buckli~, Bi,, are equal. 

In o~der for a finite critical size to· exist at all the buckling of the 
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neut;ron density must be positive. For the buckling1 being propol,"tional to 

-~~a/~, determines the cur~ture of the neutron distribution •. It the buckling 

is positive (B2 > 0) the neutron density distribution is concav~ downward. Con-

versely1 if the buckling is negatiye the distribution is concave upward. Evi

dently, if a solution of the pile equation whiph falls t9 zero at the boundary 

is to exist, the curvature of the neutron distributiop. must be d,ownward. For 

a given po~itive value of the material buckling, and a given pile shape, there 

i·s one and only one critical pile size for which the neutron density will fall 

to zero at the pile boundary. If the pile is smaller than this, the neutron 

density will not reach zero at the boundary; if the pile is larger, the density 

will fall to zero before the bouridary is reached. 

On physical grounds there will be a finite cri~ical s:f,.ze -- that is 1 the 

buckling will be positive-- only if k) l. 

Thif! is readily seen ma·thematicall.y in the following manner: 

The critical equation may be written 

where 

Q).J 
-P., 'E B2) 4 ·sin Br 'P(E r)r2dr. 
~ S' = ~ Br ~ a' 

0 
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I:f' the buckling vanishes, B2 = 0, 

CX> 

'Pcx!E,,O) = 4~ f Pcx!E8 ,r)r2
dr. = p; 

0 . 

hence, wh~n B2 = 0, 

(5.18) 

Since B2 = 0 implies a.n infinitely large pile, equation (5.1) means that the 

critical size is infinite i:f' k = 1. 

I:f' B2 ) O, 

- 2 fa> sin Br , 1 ) 2 
:PcJEs,B ) = 41I Br POO'Es,r r dr ( p 

0 

since I si~rBr I ..::::. l. Hence, when B2 > o, 

i.e., i:f' the critical size is finite, k must exceed unity. 

I:f' B2 < 0, 

since sinh /Brl > 1 IBrl · · 
2 

Hence, when B < o, 

k < 1; 
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i.e., if k is less t?an unity there is no finite critical size. 

The Critical Equation for ! Large Pile 
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If the pile·ia very lar~e the general critical equation always reduces to 

a particularly simple. form. Since large critical size means small B2, the 

~ritical equation for a large pile can be obtained by expanding ~(Es 1B2 ) in 

powers of B2 • Thus 

00 . CD 

P..,(E
8

,B2). = 4~ J si~rBr P
00

(E8 ,:z-lr2dr., l;ii PJE8 ,r)r2
dr 

0 0 . 

The first integral is equal to p because 

been normalized. The second integral is 

square distance that a neutron travels from the point of its birth as a fission 

neutron to the point at which it becomes a slow neutron .. Substituting (5.20) 

into (5.16) we obtain for the characterisUc equation 

(5.21) 

The approximate form of the characteristic equation serves to verity the 

statement that B2 is positive (i.e., critical size is finite) only if k~ > 1. 

·2~ 
The expansion of.P (Es,B2 ) is valid on.ly ifB:r is small; i.e., if the 

CD . " 

reciprocal of the buckling is much larger than the mean square range. The 

reciprocal 'Of B is always the same order of magnitude as the dimension of a 

chain re,a.cting system, providing the extrapolation distance is small compared 

with this dimension. Hence, if th~ linear dimerlsion of a chai~ reaction is 

large compared to the slowing down range {l2.(E6 ), the simple relation (5.21) 
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between B2 and k - 1 holds. In particular, this result is independent of 

the particular form of P00(E611~-~'I ). 

- The simplified characteristic equation can be written , 

where M2 = L2 + 1 r2 (E ) is called the migration area. Since this equation . 6 s 
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is derived in the first place on the assumption that k - 1<..<.1, ~t is correct, 

to the first order in k - 1, to write 

(5.22) 

this simplest form of the pile equation 'is applicable in a:ny pile in which 

unenriched uranium is used, since ~ - 1 is always small ~n such piles. 

The square root of the migration ·area· is called the migration length. 

Since L2 = * x mean square distance that a slow neutron travels before capture, 

the migration area is i x mean square distance a neutron travels from birth to 

death. The migration l~ngth determines the length scale of a chain reacting 

system in which k is close to unity. 

Physical Significance of the Characteristic Equation; keff and kex 

The characteristic equation (5.16) which the geometric· buckling satisfies 

if the pile is critical has a simple physical interpretation. This interpre-

ta.tion follows from the fact that the Fourier transform of the slowing down 

kernel/ P00{E,B2), is the average probability that a fission neutron, born in 

a pile whose geometric buckling is B2, crosses energy E inside the pile. To 
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see this we recall·from the fundamental theorem that the slowing down density 

at energy E in a pile whose geometric b'l,lckling is B~ is 

Since •.:.q~ 1 !) is the number of neutrons which cross E per c.c. per sec at !,1 

the total number Q(E) of neutrons which cross E per second inside the pile is 

Q(E) = J q(E,£)<1!: = ·~ P0,(E,B~)Iiaa f i;(i_)il! 

pile pile 

while the number of fission neutrons created per second in the pile is 

.! Naa f ifl~(-r )dr. · p :t.,.. ,_ 
' ' 

pile 

The ratio of these two expressions is P00(E,B~), and this is therefore the 

aver~ge probability that a neutron crosses energy E inside the. pile. 

Suppose we start with N fission neutrons and follow their history through 

one generation. Of these neutrons 

became slow inside the pile. Some of these slow neutrons leak out of the 

pile; the rest are absorbed. The ratio of slow neutron leakage out of the 

pile to slow neutron absorption is . · 

Do f 'i7fs • ds 

Naa f fs dr 

pfle 

( 5· 23) 
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where I VIa · d!, deno:tes the in~egral over the pile surface of the normal 

derivative of the slow neutron flux. By Gauss' theorem, and the fact that ~s 

satisfies the wave equation (5.15), this ratio can be Written 

Hence 

slow neutron leakage = L2B2 
slow neutron absorption -g 

slow .neutrons absorbed = -1:-:+-" ;? 2 
slow neutrons created ~~ g 

(5.24) 

The total number of neutrons absorbed as slow, if we started.with N fission 

neutrons, is the product of N PaJEs,B2) and (~.24); that is 

and ~herefore the total number of second generation fission neutrons is 

(5. 25) 

In a steady state, i.e., if the pile is critical, the number of fission neutrons 

at the beginning of the second'generation must be the same as N, the number at 

·the begb:mirig O.f the f'-irs?tJ:Jgener·at16Ii:!l ;:1Ie·nc'e :the0cr·i~tic'a'l :<±on:Ci'4ti·on: ·:±·~{· :···~ 
·.':. " . 

. ·' .· .. :• 

which, upon cancellation of N, is seen to be the characteristic equation (5.16). 

Since 

~(E6 ,B~) 
1 + L~~ 
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is the total number of slow neutronsabsorbed in one generation per neutron 

either absorbed or leaking, the quantity 

p 1 + L2J32 
g 

(5.26) 

is the number of neutrons cr~ated in one generation per neutron removed either 

by leakage or absorption. According to p. 20 this quantity is the "effective 

multiplication constant" which was there denoted by keff Evidently kerr depends 

on B2, i.e., on the pile size, and is therefore a macroscopic pile property. g 

The critical condition (5.16) is simply· 

kerr = 1. 

If the geometric buckling is reduced -- that is, if the pile size is increased 

beyond the cr.itical size -- then more neutrons will be produced in one generation 

than are lost by leakage or absorption~ The keff will be larger than unity by 

an amount which is called the "excess" multiplication factor, kex; 

(5.28) 

The excess multiplication factor dete~ines the rate at which the neutron 

density grows in a super-critical pile. It is therefore of fundamental im-

portance i~ the theory of pile kinetics. 

Fast ~ Slow Leakage 

According to (5.24) the number of slow neutrons which leak out of the pile 

per slow neutron absorbed is 

L2J32. 
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Since every slow neutron which is .created in the pile must ultimately leak 

out or be captured, (5.24) leads to: 

slow neutrons leaking out of pile = L2B2 

slow neutrons created inside pile 1 + L2B2 
(5.29) 

We now compute the fast neutron leakage. The relative fraction of 
.I 

fast neutrons which leak out or' are captured in resonances will, of course, 

depend upon whether the resonance capture occurs predominantly at ver,r high 

energy, before the neutrons have s~owed down, or at low energy after their 

moderation has bee,n completed. It is fairJ.y·realistic, in most slow neutron 

piles, to assume that all the resonance capture occurs at a single energy 

just above thermal energy. Then if N fast neutrons start to slow down 

N ~(Es,B2) became thermal inside pile 

Pro 2. 
N -p- (Es,B ) reach the resonance line inside pile 

N [~ - P; (E6 ,B21 ~eak out of pile vhi~e being a~owed. 
- 2 

P - Poo(Ea,B ) fast n~utrons leaking out of pile 
= - ( 2) slow neutrons created inside pile 

P Poo Es,B 

Hence we can write, by combining (5.29) and (5.30), 

~f fast neutrons leaking out of pile 
;C

8 
? slow neutrons leaking out of pile = 

where J:f 

1 + L2B2 

- 2 P00 (E
8

,B ) 

and oe denote fast arid slow leakRges respectively. 
s 

= ~ , we have in a critical pile 
p 

Since 

(5.30) 

(5-31) 
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- 2 
k( p - Pc& Es1 B )) 

' 
( 5. 32) 

-JL2B2 

and this becomes, in a large pile ( k ~ 1), 

(5-33) 

Aside from the factor ~~ which is necessarily close to unity in a large pile, 
p 

the fast and slow leakages are just in proportion to the contributions of the 

fast and slow neutrons to the migration area. 

The r~tio ~~~ given in (5.32) is correct only if the resonance ab

sorption occurs after the slowing down process bas been completed. A corres-

pending formula can easily be derived for the case of resonance absorption 

before moderation begins. In a slow neutron pile resonance absorption may 

occur at all energies, although it is usually heaviest a few volts before 

thermal energy. 

Neutron Distributions and Critical Sizes in Bare Piles with Various Geometries 

I~ this section we calculate the neutron distributions and critical· si,zes 

for piles of rather simple shape. 

The method used is to solve the wave equation (5.15) in which B2 is the 

real root of the characteristic equation (5.1~). In all cases we eonsider here 

piles which are uniform so that the buckling is independent of position. We 

also suppose that the extrapolation distance is energy independent; the density 

of slow and fast neutrons are therefore proportional throughout the pile. The 

mathematical problem, then, is the same as finding the fundamental mode for a 

vibrating medium of a particular shape and size. 
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Infinite Slab 

The pile equation for a slab which is infinite in the y and z directions 

is 

(5.34) 

with the solution 

~ = it, cos Bx, (5.35) 

where 0 is the neutron flux and ~0 is the arbitrary value of ~ at x = o, 

· which we take to be the center plane of the pile •.. We do not distinguish 

between slow and fast neutrons since the two are proportional.. The boundary 

condition f = o at x = ± a, where a is the extrapolated half thickness of the 

pi.le, can be satisfied only if 

1( 

a=-' 2B 

and this is the relation between the critical half thickness and the buckling 

of an infinite ·slab pile. The critical neutron distribution (5.35) is a maxi-

mum in the center of the pile and falls to zero at the extrapolated edge. This 

is characteristic of the neutron distribution in any b~re pile which is simply 

connect.~d and which has a constant buckling everywhere. The average neutron 

flux, ~~ is given :t>y 

a . 

~ -~ J COS 1CX dx = g iii j 
~ 2a 2a 1C ~o (5.37) 

-a 

i.e., the. central fltix is ~ = 1.57 times the average flux. The center to average 

·! 
I 
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neutron flux is an important quantity in the design of an actual pile since 

. it determines how much more intense than the average is the heat production 

at the pile center. 

Another average which is important in pile theory is the average of the 

square of the neutron flux. For a slab pile this is 

+a 
~ 

~! =t j2 f cos2 .'!!'; dx -=- 1 2a 2a 2 
(5.38) 

-a 

~ 
i.e., ~ is 1/2 the square of the neutron flux at the center of the pile. 

The structure of the critical size formula (5.36) deserves some study 

since it has the same basic form for all geometries. The critical dimension 

a is in general proportional to 1/B. If the pile is very large, then the 

approximate formula (5.22) for B2 can be used. The critical-dimension then 

becomes 

a = _....;:1tM:.:..._ (5.39) 
2 ,Yk - 1 

i.e., a is proportional toM._ Thus for a large pile the migration length 

determines the-; scale of a chain reacting system. The dimension a is al~o 

inversely proportional to 1fk - 1 ; only if k exceeds unity is there a finite 

critical size. If k is just equal to one. The pile is infinitely large, and 

if k is less than one, a is imaginary; that is, there can be no critical pile 

for which k is less than one. The constant of proportionality between a and 

M/1/k- 1 is n/2 in the case of a slab; in other geometries this constant has 

different values. 



Sphere · 

~he pile equation is 

with the solution (regular at the origin, r = o) 

The critical radius Rc is 

! 

R =!. c · B 

which, for a larg~ pile becomes 

and the critical volume, Vc, is 

v = ~ 7tR3 ::.. ~ ~ - 129. 9 • 
.c 3 . c 3 }33 - B3 . 
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(5.40) 

(5.41) 

(5.44) 

The critical volume is inversely proportional to the 3/2 power of the buckling. 

This is a general result which follows from dimensional cons;i.derations • 
. · - ~ ·~ ~ . 
The value of !! is _.2_

4 
, and the value of ~ is _o_ . 

3.0 . 6.08 
Infinite_Right Circular £ylinder 

The pile equation is 

2 
d ~ 1 d"" 2 
-+-~+B~=O iir2 r dr · ~ 

with the solution (regular at the origin) 

(5.46) 



where. J 0 is the Bessel function of the first kind of zero-th order. 

cri t_ical radius is 

R = 2.405 
c B 

which becomes, for a large cy~~er, 

and the value of p is 

R · = 2 .'405. M 

c yk- 1 

. : 2 
~2 . _? ( 4 ) ~2· ~0 
1'· = J:-1 2. 05 l'o = -

' 3-71 

The 

The integrals used to evaluate ~hese averages are given in Jahnke-Emde, 

Tables_ of Functions, p. 146. 

Finite_B~ght Circular Cylind~r of Height He, Badius Rc 

The pile equation is 

with the solution which vanishes. at. (Rc,.:t i He) 
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. (5.46) 

(5.47) 

(5.48) 

(5-50) 
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This equation determines the critical radius in terms of the pile height 

and buckling. The minimum radius of ·a critical cylinder is found when He = co; 

this leads to the critical equation (5.47) for an infinite cylinder •. The mini-

mum height is found when R = co and· is just the value found for the infiliite 

slab in (5.42). In both these extreme cases the pile volume is infinite. · 

There must therefore be an optimum radius to height ratio for which the pile 

volume, for a given buckling, is a minimum. To find this minimum volume, Vinin' 

we write, from (5.50) 

and the minimum occurs when 

-- = o. 

Solving this equation we find 

(5-51) 

The diameter of the minimum volume critical cylinder is 1.08 times its height~ 

The distribution (5.49) in t:P,e finite cylinder is the product of two dis-

tributions, the one characteristic of an infinite cylinder, the other _character-

istic of an infinite slab,., Corresponding ·:t'o tni:s~:fa6tdrabil~·ty :of 'the solution 

is. ··the .fact ··'that the .critica~· radius of .t·he fi_nite·.cyc.linder·, .whi.ch. i.s. deterc;.. · ·: 

mined from ,: 
o:. 
·, ~: 

I ', d 

is the same as that of an infinite cylinder whose buckling is less than B2 by 
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an amount n2/H~. The quantity, B2 n2/H~, which is denoted by~, is called 

the "radial" buckling. Similarly, the critical height is given by 

2 
where ~ = B~ - 2 ·~~5 is called the longitudinal buckling. The total 

. c 

geometric buckling is thus the sum of the b_ucklings in each direction. This 

example illustrates the general princi~le that whenever the pile equation ().15) 

is separable, the criti_cal dimension in any direction is calculated_ as though 

the pile were infinitev~iu all other directions but with a buckling which is 

reduced :f'rom B2 by the partial bucklings which are "assigned" to the other 

directions. 

Because the finite cylinder ~olution is factorable into infinite cylinder 

and finite -~lab solutions, the density averages are also.products of the averages 

for the two infinite shapes. Thus 

and 

Rectangular Parallelepiped of Sides 2a1 , 2~, 2a.3 

The pile equation is 

(5.52) 

with the solution which vanishes on the pile boundary (x = .± ap y = _.± ~' 

'z = .± a3) 

. (5·53--) 



provided 

~2 ~2 ~2 2 
-+-+-=B 
4a2 4a2 4a2 

1 2 3 

The solution is the · PP.9dtJ.t,t . of .. three infinite slab solutions, one :for each 

of the coordinate directions. ';['he critical condition (5.54) determines one· of 

the critical dimensions in terms of the other two, which are arbitrary so long 

as they exceed a certain minimum value. This minimum value is found by putting 

a1 = a2 = oo~ • Equation ( 5. 54). then reduces to the :formula already found for 

the critical infinite slab. 

For a cube, a1 = a2 = a3, the critical dimension is 

and the critical volume, V ., is c 

(5-55) 

Comparing the critical volumes·for a sphere (5.44), an optimum cy.linder 

·.( 5. 51),, and a cube all with the same buckling, 

v . v . v - 1 1.142 .: 1.240 ; Csphere· Ccylinder~ Ccube -

i.e·., the figure with the smallest surface to volume ratio requires the 

smallest critical volume for a given buckling. This result is not surprising 

since the smaller the surface to volume ratio, the smaller is the probability 

that a neutron will escape from the system by leakage. 

The averages for a parallelo~iped are again the product of three·slab 

averages since the neutron distribution (5.53) is factorable~ These averages are: 
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- (2)3 ~0 ~ = ;- ~0 = ~ 

i2 = (1)3 ~2 = ~ .• 
ll 2 .. 0 8 

More Complicated Shapes 

Various more complicated shapes have been solved analytically; essentially 

any shapes for which the fundamental vibrational mode is known is a solvable 

pile shape. We list same of these shapes below: 

Sec~or of ~ Sphere: 

The function 

is a solution of ~he pile equation which satisfies the boundary condition 

i = 9 on the boundary of a spherical sector (Fig.5\..II), provided the half 

angle a of the sector is a zero of 

:t (cos a) = o, 

Figure 5-II 

':.e.. · is a zero of 

(5.56) 

(5.57) 

(5.58) 

\ 



and 

2 
H.£.- B2 . 2- , 
Rc 
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(5.59) 

where Rc is the radius of the sphere from which the sector has been cut. 

Thus (5.56) gives, for different values of ~~ th~ neutron distribution in 

a discrete set of sectors whose apex half-angles are given by (5.57) . For 

a hemisphere, .J. = I, a = rc/2, and the neutron flux is 

where 

and the critical volume of the hemisphere is 

Vc = 190/B3. 

The critical volume of a hemisphere is 1.46 times as large as that of a sphere 

having the same buckling. This is another illustration of the fact that for 

a given buc~ing the figure with the smaller surface to volume ratio requires 

the smaller critical volume. To tind. the critical volumes of sectors whose 

half-~gles are not zems of the Legendre P·olynomials, interpolation between 

the·values of Vc found for sectors whose angles do satisfy (5.57) can be usedo 

Sector of ! Cylinder: 

To solve a pile which is shaped like a cylindrical sector we proceed in 

a similar manner.. The function 



/ 
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is a solution of the pile equati·on which sat"isfies the boundary condition 

j_ = 0 on the boundary of a cylindrical sector pile whose height is H0 , pro-

vided the half apex angle, a = n/2 . 
' 

and 

. ' 

2' 
1-L_e.. n2 2 
-2+-2=B R · H 
.c c 
I , 

~ t I J 

gives the neutron distribution in a discxete set of cylindrical . . 'Again (5.(53) 

sector piles 
i- . I · · . 

whose .half-8.Dgl.es' ·aXe ·a.= 1t./2Q (.f. "f 0). The critical size 

for sectors whose half-angles are:not n/~ can. be estimated by interpolation 

just as in the previous example. 

Elliptic Cylinder: 

The pile equation in circular coordinates is 

where r and 9 are the circular coordinates of a point measured from the center 

of the ellipse. If the eylinder is of finite height the total buckling B2 

must be replaced by the radial buckling; otherwise the equation for the radial 

distribution is just (5.65). The solutions of this equation appropriate to an 

ellipse are the Mathieu functions; however, since these are not tabulated very 

extensively it is more convenient to write the solution as· 

"f(r,.9.) = L A2m J2m (Br) cos 2mQ • (5.66) 

(This amounts to expanding the Mathieu'functions in a series of Bessel functions; 

cf. Whittaker and Watson, Modern Analysis (1927) p. 427). The even multiples 

of mare used because, on an ellipse, r(Q) = r(l80-Q). The problem is to 



'() ~ 
determine the Aam and the value of B so that ~(r,9) vanishes at every 

point on the boundar,y of the ellipse. 

A simple way to satisfY the boundary conditions approximately is to 
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first cut off the series at, say, m = 3· This places at our disposal B and 

three Aam's; they can be so adjusted that {vanishes at three points on the 

ellipse in the first quadrant ( 12 points in all qua<.l.rants) • The value of 9i 

at ,.,hich to make ~(r,9i) vanish are rather arbitrary. A choice which gives 

excellent convergence, and which is suggested by the necessity for~~(r,9)ds 
to vanish along the boundary of the ellipse, is to take the ~i to be the 

roots of 

P2m(cos 9) = 0. (5·57) 

This choice ensures, according to Gauss' integral approximation formula 

(Whittaker and Robinson, The Calculus of Observations P· 159), 

that the integral of ~ along the boundary will be small at each stage in 

the approxi~tion. , I 

Form= 3, the roots of (5.57) 'are 91 = 76° 12', 92 = 48°,37', 9
3 

= 21° io'. 

Corresponding to these three angles are the three radii r 1, r 2, and r 3 ! The 

approximate boundary condition i~ therefore satisfied if 

and this ·set of homogeneous linear equations in ~ is solvable if the deter-

mina.nt of coefficients vanishes: 

Jo(Brl) [J2(Brl) cos 29j ~4(Br1 ) ·cos 491] 

·Jo(Br2) f2(Br2) cos 29~. f4(-Br2) cos 49~ = o. (5.68) 

. Jo(Br3) ~2(Br2 ). cos 29J' f4(Br3) cos 49~ 
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This is a transcendentai equation .in B which can be solved numerically for 

any particular ellipse. We list below some values which have been obtained 

essentially by this method by N. Morehouse: 

Critical Dimensions of an Ellipse 

Eccentricitl Semi-Major Axis B 

0 (circle) 1 2.405 

o.Bo 1 2.51 

0.85 1 2.63 

0.90 1 2.84 

0.94 1 3.12 

The Variation Method 

In many cases the pile shape is so co~plicated that ~ exact solution 

of the pile equation is out of the question. It is then often appropriate, 

in order to find the critical size and the neutron density, to apply a var-

iation method, e.g. the Ritz method. 

We review the method very briefly. The solution of the pile equation 

is that function ~(x,y,z) which, among all functions which satisfy the pile 

boundarY conditions (~ everywhere non-negative, ~ vanishes on extrapolated 

pile boundary), makes the integral over the pile volume 

(5.70) 

an. extremum. . The pile equation is the Euler equation corresponding to 

this variation problem~ 



The idea of the Ritz method. is to assume some·arbitrary form of~ 

depending on parameters 0:,>, substitute into (5. (0), and then determine 

ay so that I is a relative minimum. Thus, if we consider a set of func

tions f.y (x,y,z) which satisfy the boundary conditions, we may set 

C:Xj f.y (x,y,z); 

we then seek the values of a~ which make the functional. I an extremum 

among all functions representable as a linear combination of Y fUnctions 

of the form (5.71). If the fy are chosen to be members of a complete 

orthogonal set which satisfy the boundary conditions, then the infinite 

V-58 

( 5. 71) 

set of linear equations in a,_> obtained by requiring that I _be an extremum 

will indeed determine the a.y and B exactly. Usually it is simpler to choose 

the f .y as a sequence of polynomials because in that case the evaluation of 

the integral is simplified. 

As an example we solve the sphere problem by the variation method. 

We consider the sequence of functions (which vanish at ·r = Rc) 

and set 

pupstituting this assumed foT;m of~ into (5.70), integrating; and then 

setting the derivatives of I with respect to a1 and a 2 equal to zero, we 

obtain 
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These homogeneous equations have a solution only if the determinant of 

their coefficients vanish: this will be the case if B2R2 = 11.6. The exact , ·c 

Numerical Methods 

When analytic methods are unfeasible, it is always possible to integrate 

the pile equation numerica]ly. If the pile is two-dimensional the solution is 

relatively simple. When the pile is three-dimensional the numerical work 

becomes great. It is usually more convenient in setting up the prob+em to 

assume the pile size in advance and ~hen to determine the characteristic 

value B2 for the equation 

~if+ B~ = O. 

The .available numerical methods are too numerous to mention; an excellent 

summary is given by H. W. Emmons, Quarterly of Applied Mathematics, g, 175, 

(1944) 0 

Critical Size of Anisotro~ic Pile 

The critical size and the neutron distribution in a pile which. is ani-

sotropic is found by an easy generalization of the previous results, provided 

the pile is large i.e., :si ~ k-l/M2. Consider a pile which is so con-

structed that its diffusion properties are different in the three coordinate 

directions. A pile which is traversed by a large number of parallel cylindrical 
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air cooling channels neutrons.diffUse more 

easily in the direction of the channels than perpendicular to them. The age 

of a neutron is now different in the three directions, and instead of one 

~ge, ~' three ages, ~' ~' z;, (where subscripts refer to x,y,z) are re

-quired to characterize-the fast neutron diffusion. Similarly three diffUsion 

lengths, Ly, L~, Lj, which are. respectively l/6 the mean square distances that 

a slow neutron travels in each of the three coordinate &irections, are needed 

to characterize the slow neutron diffusion. The pile equation in the simplest 

approximation must therefore be replaced by 

(5.72) 

where~= . th . t . . th . th d. t. ~s e ~gra ~on area ~n e ~ ~rec ~on. The solution 

for a rectangular parallelepiped of sides 2a
1

, 2a
2

, 2a
3 

is 

:1\ il\ :rrx !IX_ :rrz 
~ = ~o cos 2al cos 2a2 cos 2a3 (5.73) 

provided 

(5.74) 

This equation reduces to (5.22) when the pile is isotropic (M1 = ~ = M3). 

The ratio of the parallel to the perpendicular migration lengths when 

the asymmetry is caused·by an array of parallel empty channels is given 

essentially in Eq. (1.122). Thus the diffusion length ratio ~s 

Lil 1 + f(l + 6yj[/A) -- • 

Li 1 + f( l + 3Y)]).. ) 
( 5. 75) 
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where f is the fraction of the total volume occupied by the channels_, J is 

the hydraulic radius of the channel, . .,-. is a form factor depending on the 

shape of the channel, a.nd A is the mean free path for thermal neutrons. 

The ratio of ~ in the parallel and perpendicular directions is given by a 

similar formula, but )\ must be ~veraged over the fast neutron energy spectrum~ 

Effect of Density ~ Critical Size 

Each .critical dimension of a pile is inversely proportional to the square 

root of the material buckling, B;1 • Since B~1 has the same dimensions as the 

mean free path, it must depend on the density, d, of the pile material in the 

same way as the mean free path, namely B;1 
r./. d-l. This is strictly true if the 

pile is homogeneous. If the pile is heterogeneous with lumps of fissionable 

material scattered throughout the moderator, .the proportionality to l/d is in 

general not quite exact. In·this case a change in density will change the 

details of the _thermal neutron distribution, and this will change the relative 

number of neutrons absorbed in the moderator and in the fissionable material. 

-l 
As a result, L, and hence Bm will not be strictly-proportional to ljd. 

Since each critical linear dimensfon is always proportional to ~l, 
-l 

which in tUrn is proportional to d , the critical volume of a homogeneous pile 

must be proportional to d-3, 

provided the multiplication factor k is independent of densi,ty. The critical 

is V d. c Hence 
• I 

(5.76) 

i.e., the critical mass of a homogeneous chain reacting system is inversely 

proportional to the square of the density of the system. 

,._ _______________________________________________________ __ 
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No such sim@le result can b~ heterogeneous system because 

-1 -1 in this case Bm is not strictly proportional to d and k is. not strictly 

independent of' d. Hmvever, in most examples of practical interest, the re

lation mcrV d-2 is sufficiently accurate to be a useful approximation even for 

heterogeneous systems. 

The Approach to Critical 

The effective multiplicat.ion constant, kef'f' in a pile which is sub

critical is less than unity. A source of' neutrons placed in such a pile will 

be multiplied .in stre~h a finite number of. tim~s. It is easy to calcu~te 

the total multiplication of the source provided the source distribution is the 

same as the steady state critical distribution, and the energy of the ~ource 

neutrons is the same as the energy pf the fission neutrons. 

2 We consider a sub-critical pile whose geometric buckling is Bg. Suppose 

a source of fission neutrons is distributed over the pile according to a func-

tion Q(~) which satisfies the wave equation 

AQ(~) + B~ Q(!:) = o, . ( 5. 77) 

and extrapolates to zero on the extrapolated boundary. We call such a dis-

tribution the "fundamental" or "zero·-th harmonic" distribution. In a slab 

pile of thickness 2a, for example, this means that the source strength is dis-

tributed like 

rex 
Q(x) = Q0 cos 2a • (5.78} 

A source neutron which originates close to the pile boundary evidently 

will produce, on the average, fewer than keff' neutrons in one generation, 

while a source neutron which originates at the center of' the pile will produce 



on the average more than keff neutrons :in one generation. However, if the 

source distribution is the same as the fundamental distribution then the 

number of neutrons produced in one generation by a source neutron will on 

the average be just keff• 

It is a simple matter to compute the total number of daughter neutrons 
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produced in all successive generations by a fundamental distribution of pri:o. 

mary source neutrons. We start with one average neutron produced at the be-

ginning of the first generation. In the first generation this neutron has 

the _probability P00(EsjB~) of becoming slow inside the pile. Each neutron 

which slows down produces kerf slow ~eutrons in the first generations, k~ff 

slow neutrons in the second generation ••••••• k~ff slow neutrons in the nth 

generation. The total number of slow neutrons produced. in all generations is 

clearly 

- 2) P00(Es,B 
•• 0.) =~----

. 1 - kerf 

.1 
Since for every slow neutron produced, fast neutrons must have 

~(Es,B2) 
started a slowing down act, the total number of neutrons produced 

per prima.rY source neutron is ----1-- Thus the prima~ source distribution, 

which in the case of the slab 
1 - kerr 
pile was 

) 
lfX 

Q(~. = Qo cos 2a ' 

is increased by multiplication in successive generations until it becomes 

Qo lfX Qo lfX 
COS n~ = - -- COS -

1 ·- kerr ~ kex . 2a 

~~· 
~·· 

~/; ~-I 
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where the excess 

The excess multiplication constant is,- according to (5.28), 

- 1. (5.28) 

As the pile is made larger and therefoTe keff approaches 

unity. Thus the effective source strength in. a sub-critical pile, 

according to (5.80) increases toward co as the size of the sub-critical pile 

is made to approach the critical size. 

This fact is of great practical significance since it is the basis of the 

experimental method for determining how near critical a sub-critical pile is. 

The ratio of the primary source intensity to the multiplied source intensity 

A counter placed near a chain rea.cting system containing a fission 

source distributed (in a slab) like cos ~ , will record a number which is pro

portional to the multiplied source intensity. The ratio of this reading to 

the counter reading when the chain reacting system is removed but the source 

remains, is - kex· In assembling a chain reacting system it is customary to 

record this ratio as a function of the volume of the system. The volume at 

which this ratio extrapolates to zero is the critical volume of the system, 

since at this point kex is zero. 'l"'hus it is unnecessary to build a chain 

reacting system all the way to critical in order to estimate very reliably the 

critical volume. 

. From kex is is possible to determine k 
P00:E6 ,B~) if . 
P (1 + L2B2 ) g 

is known (~q. 5.28) . 

This quantity can often be estimated from a knowledge of the moderation and 

thermal diffusion properties of the medium. Measurement of the multiplication 



rate in a finite system can thus be used to estimate k, the multiplication 

constant in an infinite system. This is the method which Was used extensively 

at Los Alamos and on the German atomic energy project. 

To assume that a neutron source will have the same spatial dependence 

as the fUndamental distribution or the same energy dependence as the fission 

neutron!'! is of course unrealistic. Multiplication experiments are ordinarily 

done with point Ra-·Be sources, or with neutrons from spontaneous fission. In 

neither case does the space distribution of the source satisfy 

in addition, the energy of the .. Ra-Be neutrons differs from the energy of the 

fission neutrons. Because of' this energy difference, the slowing down function 

for a source neutron PODs (E,Ir-r'l) will in general differ from the corres

ponding function for a fission neutron. We therefore must generalize the fore-

going considerations to the case of a source distribution which is arbitrary 

in both space and energy. 

We write the pile equation for a bare, uniform pile in which the extra-

polation distance is energy independent (or failing this in which we consider 

· only asymptotic solutions) as 

In this equation, q(Es 1 _;:), the number of slow neutrons produced per c.c. and 

second at~~ consists of two parts. One part arises from those neutrons which· 

were produced by neutron induced fission; the other arises from neutrons which 

were emitted by the source. We can therefore write 

q(Es,r) = __ a ~ (r') kNa f 
- P 1!s -
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where Q(_!:') is the number of source neutrons emitted per c.c. and second 

at.!:'· For a point source Q(_!:') is a 8-function. 

In order to solve Eq. (5.82) we shall expand Ps(!:) and Q(,!:) in a series 

of the characteristic functions Zn(!) which satisfy the wave equation 

and the boundary condition Zn(!) = 0 on the extrapolated pile boundary. 

The numbers B~ are the charact~ristic numbers for this problem; they form 

a monotonically increasing sequence 

B2<B2<B2 t o 1 2' e c. 

The lowest characteristic number B~ is identical with B~, the geometric 

buckling of the pile. 

(5.83) 

. (5.84) 

where ~ and ~n are coefficients in the expansion,. and substitute into the 

pile equation (5.82). Since each~(~) satisfies a wave equation, then by 

the same argument that led to the fundamental theorem of pile theory it 

follows that 

j(;_(~') P(E8 ,1r-r•l)dr' 

Consequently q(_!:) can be written 

(5.86) 
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The pile equation reduces to 

from which 

(5· 87) ' 

The slow neutron density can therefore be written 

- - 2 
= - '2: ~~~.P:Ft:os (Es;Bn)Zn(!:) 

kex<Bn) 
( 5. 88) 

where 

- 1 

and 

(5.90) 

According to (5.88) the slow neutron density consists of a sum of 

harmonics each of which.has the factor kex(B~) in the denominator. According 

to the definltion of kex(B~), this quantity can be interpreted as the excess 

multiplication constant in a pile whose geometric buqkling is ~· Since the 

B; form a monotone increasing sequence, the successive kex(B~) remain negative. 

Thus, as the pile approaches critic~, the first term in the series (5.88) 

grows indefinitely -- i.e., the neutron intensity increases, and the distri-

bution acquires more and more nearly the shape of the fundamental. Close to 

critical then, the slow neutron density appro·aches 
-

. Qo'Y eo Pros ( Es ,B~)Zu(!:) 
ID (r)~- 2 · 
s - kex(Ib) 

(5.91) 

:~ 



Now the lifetime multiplied by v of a slow neutron in an infinite pile is 

N
l ; in a finite pile of geometric buckling ~~ it is shorter because of 
O'a 

the leakage -- in fact, it is just 

The quantity 
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(5.92) 

therefore must be the number of slow neutrons produced per second per c.c. at 

! in a pile whose geometric buckling is B~. The zero-th harmonic of the original 

source s~rength is Q
0
Z

0
(!); the fraction of those which become slow is evidently 

Hence the ratio of slow neutrons produced per second to the zero-th harmonic 

of the primary slow neutron source strength approaches 

1 

as the pile approaches critical • 

. To compute the ratio of the multiplied source strength of fast neutrons 

to the original s9urce strength, we need only calculate the total number ~(!) 

of neutrons born either by fission or'by emission from the primary source per 

second per c.c. Evidently 

(5.93) 
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and from (5.88) this can be transformed to 

(5.94) 

Close to critical only the zero-th harmonic appears. Hence the multiplication 

of the zero-th harmonic approaches 

J 
If the primary source neutrons have fission energy, then ~(Es,B~) .= 

2 P
008

( Es 1Bii), and the multiplication of the zero-th harmo~ic of the source 

strength becomes simply 

~1 

This is identical with the result (5.80) obtained by counting up the gen-

( 5·95) 

eration by generation daughters from a primary fission source whose spatial 

distribution included only the zero-th harmonic. 

Elementary Kinetics of ~ Slow Neutron Chain Reaction 

Thus far in this chapter we have considered only stationary chain reacting 

systems -- tbB.t is, systems in which the neutron density is constant in time. 

In this section we shall develop the simplest properties of chain reactors in 

which the neutron density is time depend~nt. 



If a localized transient disturbance of the neutron density occurs in 

a critical pile, this disturbance will be propagated over the pile (in the 

manner described in Chapter I) until it dissipates itself and the neutron 
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intensity returns to its original distribution. The propagation of a neutron 

intensity wave can be described by a decomposition of the instantaneous neutron 

distribution into a superposition of many spatial harmonics, each of which de-

cays with a different decay time. The details of how the neutron density re-

establishes itself following ~ localized disturbance will be described in 

Chapter X • In this section we consider the simpler problem of how the 

neutron density as a whole -- i.e., the fundamental rises or falls in a 

pile which is super-c.ritical or sub-critical. 

A simplifying assumption will be made throughout the discussion. We 

shall assume that the time required for a fast neutron born at !' to appear 

as a slow neutron at r is negligible compared to a generation time. In a 

graphite pile the average slowing down time is only about 1/50 of the slow 
. 

neutron lifetime, so that here, as in fact in all slow neutron piles, the 

slowing down time is really a small part of the generation time. ·According 

to this assumption, the production of slow neutrons at time t may be taken 

to be proportional to the fast neutron production at time t rather than at some 

earlier, "retarded" time, determined by how long it takes for a fast neutron 

to become slow. 

The time dependent behavior of a chain reaction is complicated by the 

fact that not all the neutrons are produced instantaneously after fission. 

rn addition to the delayed neutrons from fissionp there may be delayed photo-

neutrons produced by fission product y-rays interacting with atoms of the 
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moderator. The presence of s, generally speaking, expands 

the time scale of a chain reaction. Instead of the fUndamental time being 

the generation time, it is a much longer time determined by the delayed 

neutron periods and the importance of the delayed neutrons to the chain 

reaction. 

We now set up the time dependent equations for a slow neutron chain 

reaction. Let ~s(~1 t) be the slow neutron flux and let Ci(~,t) be the 

density of radioactive nuclei which will emit, with a mean life ~i' a 

delayed neutron. The yield of the ith group of delayed neutrons we denote 
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by ~i; that is, per prompt neutron produced, ~i delayed neutrons of period 

~i are emitted. The ratio of all delayed to prompt neutrons in one fission is 

~ = ~ ~_i; the ratio of all delayed to all neutrons is therefore @ 
1 + ~ 

Since each fission neutron is accompanied by ~i 
1 + ~ 

ith type delayed 

neutrons, and each such delayed neutron originated from a radioactive nucleus, 

the production rate of nuclei c1 (~1 t) is 

~ ~i. No ~ (r t) 
p 1 + ~ a s -' 

while the rate of destruction is 

The time rate of change of Ci is therefore 

aci k ~i 
- (r,t) =- Noaifis(r,t) at - P 1 + ~ ":! -

For the slow neutron flux we have 

( 5·96) 

(5.97) 
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where q(Es;!,t) is the production rate of slow neutrons at!· The appro

priate velocity v in (5.97) is clearly the average velocity; for the term 

1 a~s 
v dt 

is just. the time rate of change of n, the total slow neutron density. Since 

1 8Is on 
v at = at ' 
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v = 
~s(!, t) 

n(!,t) 
= 

f vn(E,!,t)dE 

f n(E,"£_1 t)dE ' 

(5 ·98) 

the integration extending over all "thermal" neutron energies. 

We make the usual assumption about the pile being uniform, and the 

extrapolation distance being energy independent. The production of slow 

neutrons is the sum of production by slowing of prompt neutrons and of de-

layed neutrons: ·. 

I ~8(<:', t){l- 1~~)J;i,(E8 , 1.:-.:•1 )do_' 

all 
space 

space 

(5·99) 

where we distinguish between P£( Es 1 f !-!' I) 1 the slowing down kernel for the 

prompt neutrons, and P~(Es,l!-!.'f), the slowing down kernel for the ith 

delayed neutron. ~e kernels pP and pi are not necessarily the same because 

the energy of the fielayed neutrons is lower than the energy of the prompt neutrons. 
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The use of the infinite kernels and the extension of the integration over all 

space is justified (theorem - page 32 ) by the assumption that the pile is 

uniform with energy independent extrapolation distance. 
8~ 8ci ci k ~i 

In the steady state, - =- = o - =- Na -fa, and therefore, 
8t 8t · ' 't"i P a l+~ 

from (5.99) 

'~· . J + ~ l+~ P~(Es,\!.-!.'1) d!_'-. 
. ~ 

(5.100) 

The expression for q(Es,!_) in ~5-100) is the usual one for the steady state 

slowing down density, since the quantity in the brackets is the weighted sum 

of the slowing down kernels for the prompt and the delayed neutrons and this 

sum is equal to the overall slowing down kernel previously denoted by 

P00 (Es,f !_-!.'1 ), i.e., 

We suppose that the geometric buckling of the pile is B~. Then the 

assumption 

e t/T 

where T is called the "period" of the pile, reduces the pile equations 

(5.101) 



·--

• 

.. 
I ' 

..... _ 

_ .. 

. \' 

V-74 

(5.96), (5.97), and (5.99) to 

D D,'J: - (Naa + .....L ) fs
0 

+ q0 = 0 
0 ~so v T 

(5.102) 

(5.103) 

It should be ~oticed in the first equation that the term arising from the 

time dependence behaves formally like an additional absorption. 

To solve (5.10g) we suppose that fa and Ci satisfy the wave equation 
0 . 0 

with buckling_B~, and that these functions satisfy the pile ·boundary condi-

tions. Then by the fundamental_theorem of pile theory applied to (5.104) 

(5.105:) 

c 
If _:!a. in (5.105) is replaced by its value from Eq. (5.103) and the result 

t'"i ' 
is substituted into (5.102), there finally results the following characteristic 

equation: 

where .£ = 1 is the lifetime of a thermal ~eutron in an inf'ini te pile • 
Naa v 
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The quantity 

(1 + t3) 

is t?e Fourier transform of the slowing down kernel for all neutrons, 

(both prompt and delayed) produced by fission; we have been denoting it by 

~(Es,B~) with no superscript. Also,.the quantity ~ is the lifetime 
1 + L B~ 

of a neutron in a finite pile of geometric buckling B~; we denote it by ~-

Hence, Eq. (5.106) can be written 
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(5.107) 

The qUantity on the left hand side is the excess multiplication constan~ -

i.e., kex(B~). If T::: ro, then from Eq. (5.107), kex = 0, and the pile is 

critical.. 

The equation 

(5.108) 

is a relation between the period T, the geometric buckling and the micro-

scopic multiplication properties of a non-critical pile. It is a general-

ization of the characteristic equation (5. 16 ) which relates the multipli

cation properties to the buckling in a critical pile; (5.108) reduces to this 

characteristic equation when T =· ro • 
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If there are no delayed neutrons, (5.108) may be written 

p_* 
T=---· 

kex(B~) , 

i.e., the period of the pile is the lifetime divided by kex(B~). This result 

is intuitive; for kex(B~) is the rate at which neutrons are multiplied per 

11* generation, and~ is (because we neglect.the time required for a neutron 

to become slow) the generation time; * Hence kex~ is the multiplication rate 

per second, and the reciprocal is therefore the time required for the neutron 

density to multiply by a factor e. According to (5.109), if kex >o, the 

pile is super-critical, T is positive, and the neutron intensity rises ex-

ponentially. 
I 

The presence of the delayed neutrons complicates the preceding con-

siderations somewhat, since T is then the solution of (5.108) which is a 

high degree algebraic equation. However, if the pile period is very long 

compared to the longest delayed neutron period, then T can be factored out 

from the sum in (5.108). The resulting formula for the period is 

(5.110) 

* Since ~ fkex is the period if there were no delayed neutrons, the presence 

of the delayed neutrons increases the pile period by a factor 

(5.111) 
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The quantity ----------- is the probability that an ith delayed neutron 
1 + L2B2 

g 
k t3· 

is absorbed while slow inside the pile, while 1 

p(l+t3) 

delayed neutrons produced per slow neutron absorbed. 
k t3i 

Hence, 
p(l+t3) 

V-77 

is the ratio of the number' of ith delayed neutrons which are absorbed as slow 

neutrons to the number of all slow neutrons absorbed. Since only a delayed 

neutron which is absorb~d as a slow neutron inside the pile is effective in 

lengthening the pile period, it is natural that the lifetimes 'Z;'i in ( 5.111) 

are weighted with the number of delayed neutrons which are absorbed as slow 

neutrons. Thus the pile period is increased,-because of the delayed neutrons, 

py the ratio of the weighted mean lives of those delayed neutrons which take 

part in the multiplication, to the 

. :k P~E8 ,B2 ) 
is of order lo-l sec; P 

2
g2 1 + L Bg 

generation time. The quantity 1!t3 Z- t3i 'Z"i 
1 

?\::, 1, and 1_ * ,.._ lo-3 sec in a graphite pile. 

The presence of the delayed neutrons in this case therefore lengthens the pile 

period by a factor of about 100. 

Since (5.108) is an algebraic equation of high degree, there are seve~al 

other roots depending on the'number of delayed neutron periods. These roots 

are all negative, regardless of the value of kex; they therefore give rise to 

transients in the neutron density. A detailed discussion of these transients 

will be deferred until later. 

The Reactivity of ~ Pile; The Inhour Formula 

Let us divide (5.108) through by keff: 

kex(B~) 

keff(B~) 
= 

r 
T keff 

(5.112) 



J. , . 
i .. "' 
I 

• 

' ·-· 

. -.. 
.. 

\ 

V-78 

The quantity 
kex(B~) 

keff(B~) 
is called the reactivity of the pile, and we denote 

(5.113) 

The excess multiplication constant is the difference between the effective 

multiplication constant and unity; i.e., the difference between the actual 
value which this constant must have 

effective multiplication constant and ;tb.e/,: if the pile is just critical.--

For thi~ reasqn kex is sometimes denoted by o~ff(B~) • 

= 8keff(B~) 
kefr(B~) 

In this notation 

In terms of the reactivity, the period equation (5.112) is 

(5 .114) 

The reactivity is a pure number. It has become conventional to express it in a 

unit called the inhour (inverse hour). An inhour is defined as that value of 

p(B~)- for which the ~ile period is one hour. Thus 

-. 2 
£ + L ~i ?;i P&, (EsJJBg) 

keffT i T+ "Z:i pro (Es,B~) 
Reactivity in inhours = 

For long periods the pile_period in hours. is equal to the reciprocal of 

the reactivity expressed in inhours. 

(5.115) 
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It is customary in most cas·es to ignore the difference between 

~· 2 - 2 
P00 (Es,Bg) and Pc:JE8 ,Bg) • Then the reactivity is 

(5.116) 

* If T is large compar·sd to L the second term in ( 5 .116) is much larger 

than the first. Moreover, in this term only constants f3., ?:. , appear. These 
. ~ ~ 

constants·are the same for all piles in which the fissionable material and the 

photoneutro~ production is the same. Thus for long periods the. relation be-

tween the reactivity and the period iE independent of the size of the pile or 

of the disposition of the fissior~ble material. This is not true of the re-

lation "(5.108) bet·ween kex and T, a..Tld it is for this reazon -- viz., the con-

venience of having a universal formula independent of a particular pile -~ 

that the reactivity ~(B:) instead of kex(B~) is used to describe the degree' 

of criticality of a pile. 

Relati-on between Various Definitions of keff, kex and Reactivity --- ------ ---- ---
There has been considerable confusion in project literature concerning 

the appropriate definition of the effective multiplication constant, the 

excess multiplication constant and the reactivity~ The definitions used here 

are self-consistent, although they are not exactly the same as the ones usually 

used. It is worthwhile at this point to examine the various definitions. 

We define keff as the number of neutrons created in one generation per 

neutron removed either by leakage or by absorption. Since the lifetime against 

absorption or leakage is 

f];--J~s-~t· 
.~ 
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the kinetic equation for slow neutrons with no delayed production is 

(5.117) 

(5.118) 

(5.119) 

In our notatio!l, 

and the pile period is ~/kex· 
In terms of the infinite pile lifetime,~~ the pile period is (from (5.118) 

and in much of the project literature the quantity in the denominator is 

defined as kex· The effective multiplication constant, according to this 

definition, is 

k -( 2) 2_2 p P Es,Bg - L~g • 

Finally, Soodak (see lecture notes, p. 49) uses the quantity ~p - 2 
P(Es,Bg) 

as 

the fundamental lifetime, and he detines kex as 



t.~ 

·' - ! .• 

. ~f 

.. ~ .. 

•' 

--\ 

• 
"--

·-
"' , 

.. . 
'4 

> ,• 

V-81 

For a very large pile, k ~ 1, all these definitions are identical to 

first order in k - 1, namely 

(5.120) 

Our definition of the reactivity 

(5.121) 

is 1/k times Soodak' s reactivity (denoted by p 8 ). r· 

Because of the difference between our kex and Soodak's kex' the relation 

between the definitions of reactivity is 

/nmk 

kex .<fs . =· · kexs 
=-=--·~····k 

kerr · · 

L. 

-i')~tszr.,tt ..._ ________________________________________ ---
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PilE EQUATIONS 

In the previous chapter-the asymptotic theory of. a slow neutron chain 

reactor in which the slowing down kernel is an arbitrary function of 1~-~'l 

VI-1 

was developed. The whole theory was seen to rest upon the formula for keff(B~), 

viz., 

( 6.1) 

This formula was shown to be valid in a bare pile provided the pile is large 

compared to a mean free path, and the extrapolation distance is energy inde

pendent. The relation keff(B~) = 1 is the characteristic equation whic~ deter

mines the buckling of a critical pile • 

In this chapter we shall discuss the various special forms of P00 (E,I!:-!.'1) 

which are used in actual pile calculations, and we shall derive the particular 

expressions for keff(B:) appropr.iate for each slowing do-wn kernel. 

In prll:nciple there is no ambiguity about the proper kernel to be used 

in a particular pile: the correct P
00

(E,l!,-!.'1) is the solution of the Boltz-
. . ' . , •. ~ : r 

mann equation with energy loss. However, the accurate solution of this equa-

' I f tion is exceedingly complicated. In pract~ce it .is. nece's~ar! to use either an 

experimentally determined kern~l, or to use some rather simple analytic approxi-

mation to the experimental kernel. 

The Moment Form of the Characteristic Equation 

Before discussing particular'analytic forms of ~(E,I!.-~'1) we shall 

point out how the value of keff of a bare pile, and therefore the critical 
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size, is determined by the moments of the slowing down distribution. 

its definition, 

sin Bgr 
... dr. 

B r g 
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From 

( 6. 2) 

sin B r 
This becomes, on expanding g in Taylor's series and integrating term 

Bgr 
by term· 

hence (6.3) can be written 

The critical equa~ion is 

00 

= 4lt ~ (-)n 
n=o (2n+l)! 

( 6.4) 
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If the buckling is small compared and this implies that the 

pile dimension is large compared to ff -- then only the first terms in the 

expansion need be retained. The critical equation becomes simply 

which was obtained already in (5.22). 

The importance of (6.5) is that it expresses the critical buckling. of 

a bar~ pile in terms of the moments of tne slowing down distribution, and 

these moments can in prtnciple be determined experimentally. The number of 

moments required to determine the .critical size depends on the pile dimen-

sions; in the limit of a very large pile, only the second moment is suffi-

cient, while for a smaller, higher moments are needed • 

From an experimentally measured distribution of indium resonance neutrons 

around a point source of fission neutrons, it is possible to compute the slow-

ing down moments. The measurement of the slowing down moments is not easy, 

for several reasons: 

1) To determine a high order moment it is necessary to measure neutrons 

at a large distance from the course. This invariably leads to intensity 

difficulties. 

2) The required slowing down moments are from fission energy to thermal 

energy while the neutrons measured in the usual way with Cd-covered In foils 

have energy about 1.4 ev. Increments must therefore be appli~d to the ob-

s~rved In resonance moments to yield the thermal energy moments, and these 

increments are rather uncertain. 

;3). Strictly, the slowing down distribution must be measured in a medium 

which has the same resonance absorption as the pile. If a slowing down distri~ 

bution is measured in a sub-critical pile the observed In resonance distribution 
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will be falsified because of neutrons produced by thermal fissions throughout 

the medium. This difficulty can be avoided by heavily poisoning the sub-

critical pile with Cd; this suppresses the thermal fission without affecting 

the resonance absorption very much. 

Analytic Approximations to the Slowing Down Kernel 

A number of ana.lytic forms for the sl.owing down kernel have been used 

in critical calculations. The particular analytic form for P
00

(Es 1r) is always 

a compromise between the actual experimental kernel and a manageable mathe-

matical approximation to the experimental ~ta. 

We list below the various slowing down kernels and the corresponding 

formulas for kerr· 

1) Simple Gaussia..T). (Fermi) Kernel 

If the fission spectrum were monoc:b..romati(~ 11 and the moderator atomic 

weight large, then the simple Gaussian kernel is appropriate: 

- r 2 /4 Z"'(E) 
e (6.6) 

where ~(E) is the age from fission energy(~= o) to energy E. The · 

quantity p(E) is the fraction of neutrons which survive to energy E without 

undergoing resonance capture; in this notation·p(E
8

) = p. The Gaussian 

kernel was introduced i."l. this country bY. Fermi; it has been used in most 

elementary pile calculations in wb~ch the moderator is graphite11 Be, BeO, 

The Fourier transform of Pc:x:JE,r.). is 

-B2 '2:"(E) 
sin Br r2dr = p(E) e 

Br 
( 6. 7) 
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slowing down density at energy E is 
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2 . 
k - 2 k -Bg't'(E) 

q(E) = - Naa~ P (E1 B ) = - p(E) Naals e p s 00 g p 
(6.8) 

and the expression for keff(B~l is 

The critical relation is 

; ( 6.10.) 

this equation was first derived by Fermi and is sometimes called the Fermi 

equation. 

The solution Qf (6.10) -- i.e., the ~alue of B~ which satisfies 

'( 6.10) for pre-assigned k1 ·T( E8 ) 1 and L 2 -- can best be found graphically. 

A plot of (6.10) for various values of the parameters has been prepared by 

E. C. Campbell. We reproduce it in Fig. { 5-I); By means of this graph it 

is a simple matter to calculate the critical buckling of a pile in which the 

simple Gaussian slowing down picture is applicable. 

2) Gaussian Kernel ~ Fission Spectrum Spread 

W.igner has pointed out that a more realistic slowing down kernel 

in a moderateJ.y'heavy moderator is a superposition of Gaussian kernels inte-

grated over the fission spectrum •. The fission spectrum can be represented 
1 f I 
I I 

by a function 

f(E' )dE' 
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where f(E' )dE' is the fraction of neutrons produced between energy E' and · 

E' + dE' per fission. The age of neutrons of energy E which have originated 

at energy E' is 

'Z;(E,E') • 

According to the simplest Gaussian slowing down picture, in which the first 

and last collisions are neglected 

E' 

'l;(E,E') 
= [ 

1 dE 
E' 

so that, in this simplest approximation, the age is additive, i~e., 

~(E,E') = (E,oo) - (E' ,oo). 

The contribution to the slowing down distribution at energy .E 

from fission neutrons between E' and E' + dE' is 

-r2 /4 'Z;(E,E') 
p(E) e_ . f(E' )dE' 

~1t 'Z:( E, E' j3/2 . .. 

and therefore the overall slowing down kernel is 

00 

P(E,r) = p(E)' ..;;;..e ____ -:-f -r2/4~(E,E') 

. 0 ~1[ 't'(E,E' UJ/2 
f(E')dE'. 

Since the Fourier transform of this is 

00 

p a:( E,B2) = p(E) J e ~B2'l: ( E, E') :f( E' )dE'' 

0 

( 6.11) 

(6.12) 
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the equation for keff(B~) is 

. ( 6.13) 

while the Fermi equation, modified for the fission spectrum spread, is 

k J e •B~t'{Ea,E' )f{E' )dE' = l. 

0 

~pis reduces to the monochromatic Fermi equation (6.10) when f(E') is a 

8-function. 

(6.14) 

If a monochromatic fission spectrum picture is used, there is the 

problem of what value of ~(Es) must be used in order that the critical 

buckling predicted by (6.10) be the same as the critical buckling predicted 

by (6.14). By comparing {6.10) and (6.14) it is seen that if 

B2 -r(E ) Joo -B2"t(E ,E') 
e- g 8 = e · g s. f(E')dE' 

0 

then the monochromatic equation (6.10) and the more nearly correct (6.14) 

will give ~he same critical buckling •. Since, according to (6.15) 

= - .!.. ln[oo 
2 

. Bg 
0 

the·appropriate average 2 
~(Es) depends on Bg; i.e., it is different for 

every different sized pile. 

(6.15) 

If the pile is large, the moment expansion (6.5) of the character

istic equation converges well.· The moment form of (6.14) is found by expanding 
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the exponential and integrating term by te 

co 

f -B2 t"(E E') . 
e g S' f(E' )dE' = 1 foo · B4 !CD 

- B~ "t(Es,E') f(E' )dE' + ~ 2;2(Es,E' )f(E' )dE' ... 

0 0 0 

The first integral in this expansion is the arithmetic mean of ?- (E8 ,E') 

averaged over the fission spectrum. Only this tern1 enters if the pile is 

very large. The migration area, which measures the length scale in a large 

pile, is therefore 

00. 

Ji! = L2 + [ t"(E,,E') f(E' )dE'; (6.16) 

·i.e., it is the arithmetic mean of the age (in addition to L2) which deter-

mines the migration area. 

If the pile is not large, then the higher moments in (6.5) must be 

·taken into account in computing the critical size. These moments have been 

me~sured in graphite by Hill and Roberts. The results are summaTized in the 

following table: 

Observed and Calculated Slowing Down Moments 
to In Resonance in Graphite 

~ =. r 'Z'{E8 ,E)f(E)dE 

~2 - = J1?CEs 1 E)f.(E)dE 

~ = f 1i3(Es 1 E)f(E)d.E 

Calculated 

341 cm.2 

12.3 x 104 cm4 

Observed by Hill and-Roberts 

329 em~ 

14.8 :x: 104 cm4 
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The measured moments beyond r2 are much hi~her than the calculated values. 

The reason for the discrepancy probably lies in two facts; first, that the 

calculations are based on a simple age theory while the actual slowing down 

function ~s a longer tail than simple age theory would predict; and second, 

that the fission spectrUm may have a fairly strong high energy tail which is 

not included in the calculations. 

3) 'rile All-Thermal Pile 

The simplest of all pile pictures is one in which the fission neutrons 

are assumed to be produced wi tl:l thermal energy. The slowing down kernel in 

this case degenerates to a 8-fUnction, 

since, if the neutrons are produced as thermals, they ,.become" slow at their 

point of origin. The normalization is unity since there is no resonance 

capture, p = 1. The Fourier transform is simply 

00 

poo (E.,B2) = 4~ f 5(_!:) ai~/r r2 = 1,, 

0 

and the characteristic· equation is 

k = 1; 

i.e., 

This "one-group" pile picture has been applied to very large fast neutron 

chain reactors, in which all the neutrons can be considered to be roughly 

monoenergetic. 
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4) The "Fast" Pile 

The general formaliam can be adopted to the fast pile -- i.e., a 

pil~ in which there is no moderation at all -- provided the symbols are properly 

interpreted. We re-define the generation time as. the average time between 

successive collisions. The multiplication factor, k, is just the number of 

neutrons produced per collision; since a collision can result in fission, 

absorption, or scattering, 

k = -¥ Naf • 
Ncr 

(6.18) 

Furthermore, since the generation is taken to be the time between successive 

collisions, the "slowing ·down kernel" must be replaced by the probability 

that a neutron produced at !:' will suffer a collision at r. This is ju~t 

the transport kernel 

-NcrJr-r'f 
Na e --

' 
4ri b:-!:'1 2 

if isotropic scattering is assumed. This transport kernel is normalized to 

unity -- i.e., p = 1. Finally, since there is no moderation, there are no 

thermal neutrons: this can be fitted into our formalism by setting NO'a = oo, 

which implies L2 = 0. 

The Fourier transform of·the transport kernel is 

00 

= 4n Na f 
0 

e-yr sin Br drdy = ~ tan-1 ~. 
B .. Na 

-Nar sin Br dr 
e Br = 

(6.19) . 
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Substituting this into the general 

(6.18) and L2 = 0, we obtain 

11 
VI-11 

k (B2) = k Na tan-1 ~ = ~ Nar tan-1 ~ 
eff g Bg Na B Na 

( 6.20) ' 
g 

and the characteristic equation for the critical buckling is 

..J Naf -1 B 
--tan ::.S- 1. 

Bg N:a 
( 6.21) 

There is a striking analogy between this critical equation and the 

characteristic equation which dete~ines the thermal diffusion length from 

the thermal absorption and scattering cross-sections. If we set 

Bg = i~ 1 

then the critical equation becomes 

k Na -1 -L 
-- tanh - = 1. 

)(. . }.1a 

This is identical with'the characteristic equation (1.20).for the thermal 

diffusion length, ~' if k is still interpreted as the number of neutrons 

resulting from one collision. In an absorbing medium this is 

and therefore (6.22) can be written as 

NO's -1 \J 
)( tanh ~ = 1. 

(6.22) 

It is, of course, not surprising that the characteristic equation 

for the asymptotic solution in an absorbing medium is formally the same as 

'"-'), 
·,• 
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the characteristic equation for the asY-mPtotic solution in a pro~ucing 

medium, provided the neutron energy does not change. In both the producing 

and absorbing case the asymptotic solutions satisfY wave equations: 

producing medium 

2;t A~ - ;1. :s: = o absorbing medium 

as well as satisfying the transport equation without energy loss~ 

f -Ncrlr-r 01 
= k Noi(r 0 ) e dr' 

- 4n: k-!:' f2 -
producing medium 

NCJs f =- Na$(r') 
· Na - -

-Na/r-r 71 e . --. 

4n: h:.-!:' I 2 

absorbing medium. 

The two sets of equations are identical in form, and therefore the char

acteristic equations are.1 except for the sign of B2 and >!2, identical. 

The critical buckling calculated from the characteristic equation 

(6.21) 1 is the buckling of the asymptotic solution. Since fast piles are 

usually not large compared to a mean free path, the extrapolation distance 

is a fair fraction of the wave length of the asymptotic solution. An error 

in the value of the extrapolation can therefore lead to serious error in the 

critical size of a fast pile. The simple formula for the extrapolation dis

tance, ..f!, 
J!.= 0. 71 Atr 

which holds at a plane surface of a-non-capturing medium, is not generally 

valid. The exact expression for the extrapolation distanc_e is fairly compli-

cated and to derive it would lead us too far afield; it is discussed in Frankel 

and Nelson's report on "Displacement Int~gral Equations" -- LA-53· 

!'· 

( 
> 

i 
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11 VI-13 -· 5) The Two-Group Picture 

One of the most generally useful- slowing do-wn kernels is the "two-

group" picture, discussed in Chapter III. In this model, neutrons are either 

"fast" or nslow" and moderation is described as a diffusion-process. A fast 

neutron is assumed to diffuse without energy loss until it has travelled a 

mean square . distance equal to its actual slowing down length, at which time 

it disappears by becoming a slow neutron. The slowing down kernel is 

2 r2 where L1 = b (Es). The Fourier transform of this "group" kernel is 

CD 

~(E8,B2 ) = r1 f e-;fLl (6.23) 

0 

the corresponding keff(B~) is 

(6.24) 

and the critical equation is 

( 6.25) · . 

The two-group characteristic equation.is a second degree algebraic equation 

. B2 
~n g: 

the roots of which are 

( 6.26) 
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Of the two roots one is positive, the other negative (provided k ;> 1). 

If k - 1 is small (large pile)· then the two roots are approximately: 

VI-14 

(6.27) 

B~2 ~- [12 + 12 + k ; ll ~ (6.28) 
L L1 M j 

The positiv7 root ~~1 is the usual expression for the buckling of the 

asymptotic/solution in a large pile. The negative root gives rise to non

asymptotic solutions which behave like exponentials rather than like oscil-

lating functions. These non-asymptotic solutions are not needed to satisfy 

the boundary condi tiona in a bare pile in wh:J.ch the extrapolation distance 

is energy independent. However, if the pile is not bare, or if the depend-

ence of the extrapolation distance on energy is taken into account, then 

these non-asymptotic solutions must be included in order to satisfy the 

boundary conditions. 

The occurrence of non-asymptotic solutions is, of course, entirely 

g:eneral and does not depend on the particular slowing down model. In the 

Gaussian case, for example, the characteristic equation is transcendental,: 

and there are therefore an infinite number of non-asymptotic solutions in 

addition to the usual asymptotic solution. 

Convolution Kernels 

.Slowing down kernels which are. convolutions of other kernels occupy an 

important place in pile theory. A two-fold convolution kernel is one which 

can be written as 

P (lr"-r'f )dr_11
• 2 - -

(6.29) 
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A three-fold convolution kernel is 

The generalization to n-fold convolution kernels is immediate. 

The Fourier transform of a convolution of functions is the product 

of the Fourier transforms of the separate functions. This is easily seen, 

since if P(/~-!'/) is a two-fold convolution, then 

P(B2) =f.~ . !: P(l_!:lld!: 

= Jfe:!J1 . !: Pl(I_!:-_;:'IJ P2()!:'1Jd!:d!:' 

·(r-r') iB·r 
-- P (\r-r'f )e-- P (lr'f )drdr' 1 -- 2 - --

For an n-fold convolution, the Fourier transform is 

( 6. 30) 

The general expression for keff(B2) becomes, for a convolution kernel, 

( 6.31) 

From the three fundamental kernels -- the Gaussian, the .transport, and 

the diffusion -- three .two-fold convolution kernels can be constructed •. 

. These are: 
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a) The Christy-Wheeler Kernel (Con ol;;tion of Gaussian an.g, Transport) 

Christy and Wheeler ( CF-400) suggested that the slowing down in hydro-

genous media could be analyzed into a long first flight, during which the 

neutron suffers no collision, followed by a Gaussian diffusion away from 

the point of first collision. Such a picture is rather appropriate in 

hydrogen-containing moderators because of the way .in which the proton scat-

tering cross-section varies. At high energy the cross-section is small; it 

VI-16 

rises rapidly below 100· kev. The first collision therefore occurs only aft·er 

a relatively long flight. Once a collisiqn has been suffered, there is a good 

chance that the energy of the neutron will be reduced enough to make its 

f'urther· diffusion a sequence of short zig-zag paths. These give rise to 

the Gaussian. While this is by no means an accurate description of the 

slowing down in H201 it is sufficiently good to make possible rather accurate 

predictions of the critical size of H20 chain reacting· syst~ms. 

The Christy-Wheeler kernel is 

The mean free path 1/No and the age ?: are to be considered as arbitrary para-

meters to be chosen so as to best fit the observed slowing distribution. 

The Fourier transform of the Gaussian function is given in (6.7), the 

transform of the transport kernel is given in ( 6.19). Hence the Fourier 

transform of the Christy-Wheeler kernel is the product of (6.7) and (6.19): 

( 6. 33) 

.'> 
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The expression for keff(B~) is 

and the characteristic equation is 

2 
- t'Bg -1 

k e NaBg -l B 
------,.......;;__ tan ...,.g = 1. 

1 + L~~ Ncr 

This characteristic equation was used to estimate the critical buckling of 

the Los Alamos water-boiler -- the first chain reactor in which enriched 

fissionable material was used. 

b) The Heavy Water Kernel (Convolution of Diffusion and Gaussian) 

The slowing down function in heavy water is well represented by a con-

volution of a diffusion and a Gaussian ·kernel: 

2 

f -lr-r" l /4~ 
- 2 e --
P (Es,B ) = P / 
00 (41( 't')3 2 

- \r"-r'l /L1 e 
------ d~'· 
41flr"-r'l L2 

1 

According to Friedman and Wattenberg (CP-3453), the best agreement with 

experiment results if 1:" = 58 cm2 and L1 . = 48 cm2 . According to ( 6. 7) and 

(6.23) the Fourier transform of this kernel.is 

the effective ~ultiplication is 

.l>· 
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( 6. 35) 

(6.37) 

( 6. 38) 
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and the critical equation is 

-7:B2 
k e g ----=:.....::..----- = 1. (6.39) 
?_2 2-2 

(1 + L~l )(1 + L~ ) g g 

2 
It may be noted that the expression for keff(Bg) in any slow neutron reactor, 

viz., 

contains the factor 

down kernel. ~ince 

kerne11 the product 

1 + L2B~ in the denominator, regardless of the slowing 

(1 + L2B2)-1 is the Fourier transfor-m of the diffusion g • 

is the Fourier transform of a two-fold convolution kernel whose component 
-lr-r'f/L 

kernels are P,..... ( ·r-r" ) and e -- This convolution kernel represents 
"'"' -- 2 

41f I~' -~IL 

the probability that a fission neutron at ~" actually is absorbed as a slow 

neutron at ~' rather than becomes a slow neutron at r. The splitting off of 

the thermal diffusion part of this composite kerriel is really a matter of 

notation which is done simply to conform to the usual practice in pile theory 

literature. 

c) Convolution of Diffusion and Transport Kernel 

This combi~ation1 which leads to·the characteristic equation 

k NBa tan-1 ~ = 1. 
g Na 

( 6.40) 

has not been ·used in pile calculations. 
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d) The Mul tigroup Picture 

The kernel which is formed by the convolution of several diffusion 

kernels leads to the so-called "multigroup" picture; the two-group picture 

previously discussed is a special case. The Fourier transform of an n-group 

slowing down kernel in which the diffusion length in each group is L. is 
~ 

(1 + LyB2)(1 + L~2 ) ..... (1 + LfiB2) 

and therefore the expTession for keff(B~)is 

and the characteristic equation is 

(1 + 

(6.41) 

(6.42) 

The characteristic equation in an n-group theory is algebraic of degree n + 1 

in B~ (n + 1 because the thermal group is counted separately from the n fast 

groups). If k > l, there are always n complex or negative roots in addition 

to the one positive, real B~. The positive B~ is associated with the asymptotic 

solution; the other roots are associated with the non-asymptotic ones. 

If the number of groups becomes large, but the sum of the squares of the 

"diffusion'' lengths is held constant ( '2: LI = 't"), the group picture passes 

into the Gaussian picture. This was already pointed out in Chapter II. That 

the characteristic equation (6.42) passes into (6.10) is readily seen. In 

the limit, ( 6 .42) is 
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-( l_+_k_L2_B_2_) r lim 

g ~ ... 00 

, 
Now 

~· lim 

n-+oo 

as can be verified by taking logarithms of· both sides. Hence (6.42) becomes 

which is the Fermi equation. 
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I {)('1 --THEORY OF REFlECTORS AND THE METHOD OF GROUPS 

VII-1 

The critical mass of a chain reacting system qan be reduced by surround-

ing the system by a scattering material, such as graphite. The function of 

such a "reflector" or "tamper" is to reflect back i!rlio the cll..ain reactor neu-

trona which would otherwise have leaked out of the eystem. Thus a reflector 

reduces the neutron leakage; if placed around a just cri't:ical, uon-::reflected 

pile, a reflector would make the pile super-critical, or if placed around a 

slightly sub-critical reactor, a reflector of proper size migrfc make an other-

wise sub-critical reactor just critical. 

The study of reflected r~actors is considerably more complicated than 

the study of non-reflected reactors with energy independent extrapolation dis-

tance. The reason is that in the latter case the neutron energy spectrum is 

~~~- ~~e throughout the pile, while in .,he r~flected p-~~e -'ch(S. ~~eu~ro~ apect:r::um 

changes in the neighborhood of the reflector. This complication arises from 

the fact that the multiplying and slowing down properties in the reflector 

are not the same as in the active portion of the reactor. li~ the region of 

the interface between reactor and reflector the neutron energy spectrum will 

therefore undergo a change from the shape characteristic of the reactor to that 

characteristic of the reflector. The asymptotic solution of the pile equation 

.still holds far from the reflector-pile interface and there the energy spectrum 

is independent of position. Hm,rever, close to the· interface non-asymptotic 

transient solutions are excited which, on superposition, sen·e to describe the 

change in neutron energ3 spectrum as the interface is approached. 

In this chapter it will be our purpose to outline the procedures w~ich 

have been used with success in calculatil.-:tg the critical size and neutron dis'-

tributions of reflected chain reactors. It will be seen th~t the pr9plem can 

-~, 
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VII-2 

be solved rigorously if, as in the case of a graphite 

moderated and reflected pile, the slowing down properties of the reflector 

and the pile are the same. In the general case where the reflector and re-

actor have different slowing down properties only rather special approximate 

techniques, such as the multi-group methods, are available. 

Simple One-Group Reflector Theory 

In many cases of practical importance, the chain reactor is so large com-

P':lred to a slowing down length that the transient solutioll'lS referred to above 

do not distort the neutron distribution in the bulk of the reactor. In such 

cases a one-group pile model is fairly ·adequate. The appropriate one~group 
~· . - . 

pile equation in a l.arge pile can be obtained by starting with the pile equa-

tion (5.13) 

L
2

t::. ~s<r>- ~s<r> + ! r~s(!V) Poo(Es, lr-r'l )d!_V = ;o 
. p 'U 

all 
space 

and expanding ~s (~. 0 
) around the point·.!: under the integral: 

~8(!:')= ~s(!)+(ro~r) .'v~s(r)+ ~~ [crv-!:) .~2 ~s(!:)+ •••••• 

(5.13)· 

(7 .1) 

If the pile is largs, tba neutron buckling is small, ·and therefore the Taylor's 

expansion can be broken off after the first two terms. Upon substituting (7. 1) 

into the integral in (5.13), and evaluating the resulting integrals in polar co~ 

ordinates, we obtain 
(7 .2) 

. .2 2 kr2 (Es) where M- is the migration area = L + ;;;;;;..6,...::..~- The equatio~ (7.2) is formally 

the same as the one-group thermal pile equation with M playing the role of the-

diffusion length L. 

Consider now a large reac~or which is' surrounded by a reflector in which 
' 

the diffusion length is Lzo• We shall denote quantities referring to the reactor 

by subscript p, and quantities referring to the reflector by subscript r. Then, 

dropping the . subscript s, we niay ~t.e t~ following pair of equations for the 
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A~ + ~ ~ = o p -p p 

with the boundary conditions 

~P = ~r 

in pile 

in reflector · 

on pile reflector 
interface 

where B~ = ~, and~ is the normal derivative. In addition to (7.4) there 

is of course the requirement 

~r = 0 on extrapolated boundary of 
reflector • 

The critical equation is obtained by finding that solution of equations (7.3) 

which satisfies. the boundary conditions (~.4) and (~.5). Before solving the 

(7.3a) 

(7 -3b) 

(7,.".4a) 

(7.4b) 

reflected pile equation we note that the slope of the neutron distribution at the 

pile-reflector interface will be less steep.than it would be at the physical boundary 

of an unreflected pile (Fig. 7-I). In other words the presence of the reflector 

increases the effective extrapolation distance in the reactor, and therefore reduces 

the critical 

Fig. 7-I 

dimensions of a chain reactor. This of course is just a somewhat more mathematical 

way of saying that a reflector reduces-the neutron leakage. 
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We now calculate the critical dimension of an infinitely wide slab pile 

with a reflector of {extrapolated) thickness T on each side • 

r p r 

As has already been found, the critical dimension of the slab, if unreflected, is 

(1.6) 

2Rc0 being the width of the unreflected pile, and the neutron distribution is 

('1 • 7) 

In the reflected case, the solution of (7.3a) is 

(?.8) 

while the solution of (g.3b) in the right hand reflector, which satisfies 

(1. 5), is 

l = A sinh >fr (T + Rc - I x I), (7.9) 

where ){ = l and Rc is the half width of the reflected pile. The quantities 
r Lr 

A and Rc must be determined so that the continuity conditions {7.4) are satisfied·. 

Substituting (7.8) and (7.9) into {7.4) we obtain 

. . .. .. ....... ~""'\"\''• 

~po cos EpEe = A sinh ){rT 

BpDp~po sin BpRc = DrA XrcoshJ.lrT 
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.? 

that is, 

( 7 .10) 
-• 

The transcendental equation (7.10) is the critical equation for the reflected 
- . 
i- pile. If T = o, the pile is unreflected and the critical equation becomes 

I 

; 

.. 

--. 

which, .of course, leads to (7.6), i.e., Rc
0 

= ~· 
p 

If the pi~e and reflector are of finite height and breadth, then the transverse 

buckling must be subtracted from B~ • Thus, for a system of square cross-section 

with extrapolated height H, the distribution is 

(!?.Sa) 

fr = A sinh~.}[~ + 2~, (T + R0-/xl) cos ~ CoS. •; . 

The critical equation has the 

(
B2 - 2rc2 \1/2 and X by 

P IF) r 

same form as ~.10 except that BP is replaced by 

(
)t2 + 2rc2)1/2 

r ~ . 
H 

The reduction in critical size effected by the reflector, the so-called 

reflector sa~ing, 8, is easily computed from (7.10). We introduce into (7.10) 

the reflector saving, 

8 = R - Rc , co 

so that (7.10) becomes, by virtue of the unreflected critical condition, 

BPDP tan (; - "Bp~) = Dr Jlr coth ~ T 

7 ·,• 

( 7.11) 
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or 
• B D VJ 

tan B o = :E..P_ tanh d'\.. T. 
P D __ ~- r 

r r 
(0.12) 

The reflector saving is small compared to Rc' since it was assumed to begin 

with that the reactor is large; hence BP8 (..( 1, and .. it is permissible to replace 

tan Bpo by Bpo. This corresponds to ignoring the curvature in the neutron distri

bution close to the reflector interface, a procedure which is valid if the pile is 

large and o is small. ·rn this approximation the reflector saving turns out, to be 

(17.13) 

If T<<Lr' this becomes 

while, in case Dp = Dr and the reflector is infinitely thick, 

( 7 .14) 

i.e., the reflector savings in a large pile reflected by an infinite reflector 

having the same diffusion coefficient as the pile is equal to the diffusion length 

of .the reflector. 

Explicit expressions for the one-group reflector saving in a spherical or 

cylindrical pile can be derived by solving the pile equation in the approp~~ate 

coordinate system. Thus in a spherical pile surrounded by a spherical reflector 

of thickness T, the neutron distribution in the pile is 

(7.15) 
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and in the reflector it is 

;1; = A sinh Jtr(Rc + T - r) 
Xr }tr, 

r 

So far the sphere and the plane problems are identical except that r~ in the 

sphere replaces f in the plane. However, the boundary conditions at Rc 

sinh~ T 
=A r 

. ~R~ 

·vt.r-7 

(~.16) 

(7.17) 

(7 .18) 

differ from the plane boundary conditions in that an additional term is present 

in ('i/.18) which vanishes only if the two diffusion constants are the same. 

By solving (~.17) and (q.l8) we find the reflector saving 8 = R00 - Rc 

in the case Dp = Dr to be given again by 

while if DP f Dr, 8 is given by the formula (again valid for BP8 << 1) 

where 

' 

8 = E:E Lz. tanh T/Lr· 
o Dr 

If Dr= DP' or if Rc0~<0, the reflector saving (~.20) reduces to the plane 

reflector saving, (7.13). If Dr< DP' it can -be shown that· the spherical· 

(f7.19) 

(I] .20) 
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.. 
r~flecter saving'·'is greater than ·the ··plane reflector savingll while if Dr,>Dp1 ,, 

the reyerse is true. 

The neutron distrib~tion in a reflected pile as computed with the one-group 

theory is compared to the distribution in an unreflected pile in Fig. 7-I. Evi-

dently, as is seen from the figure, the ratio of central flux to average flux in 

a reflected pile is lower than in an unreflected one having the same buckling. 

Two-Group Reflector Theory 

In the one-group theory, the fast neutron flux is assumed to be proportional 

to the slow flux even at the reflector-pile interface. This is not correct near 
I 

the reflector-pile interface, since, in the reflector, the ratios of slowing do~ 

power to thermal absorption cross-section and to multiplication rate usually have 

values quite different from the values of these ratios in the pile. If the pile 

is very large, the region in which the fast and slow fluxes are not proportional 

to each other occupies a rather small fraction of the pile, and therefore no great 

error is introduced by using the one-group'picture. However, in a small reactor 

the region of non-proportionality may extend throughout the pile, and it is therefore 

necessary to take account more accurately of the fast neutrons. A simple method 

of taking the fast neutrons into account is to use the two-group pile model, and to 

require continuity of flux and current of both fast and slow neutrons. 

The two-group pile equations will be discussed first for the problem of an 

unreflected pile with energy independent extrapolation distance. The appropriate 

equations are derived, as in Chapter III, by considering the neutron balance for 

fast and slow neutrons separately. We denote the flux of fast neutrons by ~l and 

the flux of slow neutrons by ~2 • The number of fast neutrons produced per cubic 

centimeter per second is evidently 
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where p is the resonance escape probability and cr2 is the slow neutron absorption 

cross-section. The fact that these fast neutrons are produced at fission energy, 

and this energy bears little relation to the average energy of the fast neutron 

group is ignored in the group picture. Taking ~ Na2 ~2 as the source of fast 
p 

neutrons, we obtain for the fast neutrons 

(7.2la) 

where Ncr1 is the "absorption?, i.e. slowing down cross-section, for the fast 

neutrons (cf. equation (3-106) of Chapter III). It will be recalled from Chapter 

III that Na~ and D1 are chosen so that __.! 0 D )1/2 
. Na1 

is the experimentally observed 

slowing down length. The slow neutrons in the pile satisfy the equation 

('Z. 2lb) 

the slow neutron source term, pNa1~1' represents those fast neutrons which s:)..mv 

down and escape resonance capture. Because of the schematic manner in which the 

fast neutrons are lumped together, it is impossible in the two-group method to 

take account properly of the fact that the resonance capture oc~urs continuously 

over the whole of the fast neutron energy range. All that is achieved is to make 

the net resonance escape probability equal to p regardless of the energy distribution 

of the z·esona.n.ce capture. For the boundary condition we take 

~c being a radius vector which defines the extrapolated boundary of the pile • 

We assume that· the extrapolation distance is the same for both fast and slow 

neutrons. 

The pair of pile equations (7.21) can be solved in terms of the solutions 

of the wave equation 
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(~.24) 

where Bi is to be determined later. Thus the general solution of (7.21) can 

be written 

(7 .25a) 

(7.25b) 

where b is an·arbitrary constant. That (7.25) does satisfy {7.2la) is 

verified by direct substitution. In order·to satisfy (7.2lb), ~2 must also 

be given by 

(~.26) 

The two expressions for J2 are compatible if and only if 

2 D1Bi + No1 (7.27) 
1! No2 p 

i.e.' 
. 2 
~f Bi satisfies the characte?istic equation 

(7· .28) 

where 
(7.29) 
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are the slowing do'Wll length and diffusion length., respectively. Equation ('0.28) 
) 

.# is. recognized immediately as the two-group critical equation (6 .25) which was 

derived in Chapter vr~ . In an unreflected pile with energy independent extra

polation distance, the critical size is determined by (~.28) provided B[ is the 

/ -- geometric buckling. 

..... 

The two roots of (7-.• 28) are 

and 

If the pile is yery large, k-1 <<. 1 and the radicals can be expanded. For a 

.large, pile, therefore, 

where 

' . 

is the pile migration area. 

_2 2 2 
~- = L + L 1 2 

We digress at this point to establish an important property of the two 

solutions z1(B1~) and z2(B2~). By multiplying (7.24) by Zi(Bi~), integrating 

over the volume v enclosed by the surface s, and applying Green's theorem., we 

( 2 r . azi 
· J (V zi) dv . J zi an tiS 

B2 = v -=s ___ _ 

i I Z~dv ~ Z~dv 

find 

• 

v v 

(lt.30a) 

("Z.30b) 

(~.32) 

ld~l~ 3~-?-lif! 
'-"----------------------~~~----------·-· ·------- -·- ·- ' ~ 
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Now1 according to (1.32) 1 if either Zi or a: vanishes on the surface Sp 

B~1being the quotient of the two positive quantities, must also be positive. 

2 azi * If Bi is negative, neither Zi nor - can vanish over a:n:y closed s'lll"face s. 
8n 

Thus the two solutions of {-r$·.:~1}) can be classified according to whether BI 

is positive or negative. Since, according to (~.30), Bi > 0 &~dB~< Op 

z1(B1~) is a function which may pass through zero on certain surfaces; while 

z2(B~) can never vanish on a closed surface. The fUnction z1 is analogous to 

a cosine, while z2 is analogous to a hyperbolic cosine. 

We now apply the boundary condition that the fast and slow fluxea va~ish 

on the extrapolated boundary: 

0. 0 

This pair of equations can be satisfied only if 

and, since ~(B2!!c) can never vanish on the boundary, b = 0. Thus the only 

solution of (r.21) wP~ch satisfies the boundary conditions in an unreflected 

pile is 

In other words, according to the two-group theory, the fast and slow neutron 

densities are everywhere proportional in an unreflected pile with energy 

its first and second 

(7-. 33a) 

<7. 33b) 
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independent extrapolation distance. This is a special case of the fundamental 

theorem of pile theory and could have been predicted from the general theory 

of Chapter V. 

It is seen (7.25) that the neutron distribution in the two-group theory 

is 1 in general, made up of two parts. First, there is the z1(B1£) parti which 

is oscillatory outside the pile, and, since it appears in the 1nxreflected pile, 

is to be identified with the asymptotic solution. In addition there is the 

non-as~ptotic, non-oscillatory, solution, z2(B2~)i which occurs whenever b r 0; 

i.e., in a pile with reflector. If both solutions are admiseiblept.'th\Slni since 

the coefficients before z1 and z2 in (7:.33b) are different, the fast and slow 

neutron densities are not proportional throughout the pile. It is in this 

manner -- by the "excitation" of additional non-asyi!i.ptotic solutions -- that 

the variation in neutron spectrum slose to a boundary is taken into account 

by the mathematical apparatus of the group theories. Since every additional 

group adds another non-asymptotic solution, the more groups there are the more 

nearly the details of the variation of the neutron energy spectrum over the pile 

can be described. 

We now consider, by two-group theory, the same infinite slab problem which 

was solved in the previous section by the one-gro~p method. The slab of finite 

height and.breadth can of course be reduced to the infinite slab by assuming 
. 

a cosine variation in the transverse direction. In the pile the fast and slow 

fluxes satisfy 

(7;. 35a) 

( \7. 35b) 

'----------------------------------------~-
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while in' the ·--~efl~c:tor,:;:whet'e:.:-nod'ast neutrons are created, the fluxes satisfy 

2 
d ~lr . 

D1r a,x2 - Nrcrlr~lr = 0 ( \(. 36a) 

where subscripts p and r refer to pile and reflector, respectively. The· 

boundary conditions are 

(71.37) 

at x = ± Rc, the reflector-pile interface; and 

~lr = ~2r = 0 (15 .·38) 

at x = ± (Eb+ T), the extrapolated boundary of the reflector; the extrapolation 

distance being assumed the same for fast and slow neutrons. The solution of 

the reflector equation which vanishes .on.the outer boundary is 

~1 (x) = asinhB1 (R + T- lxl) r . r c (~. 39a) 

(lZ. 39b) 

where 

($.40) 
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J In the pile, 

~ 
( ;7.4la) 

.. ) .. .,. ... 

([7.4lb) 

2 2 
~ where B1p and B2p are the two roots (4.30a) and (7.30b), and B~p denotes the 

.. 

• 
~., 

j 

: 
' ,,. 

. ' 
.. • 

positive square root of the absolute value of B~p· 

The expressions for the fluxes involve the four arbitrary constants a, ~~ 

a, b, and the unknown critical half-width, Rc· Since the boundary conditions 

(7.37) consist of four homogeneous linear equations, the vanishing of the deter-

minant of coefficients is the critical equation for Rc. Three of the remaining 

constants can be determined in terms of the fourth; in this manner the fast and 

slow fluxes are determined within an arbitrary muitiplicative constant • 

The algebraic details of substituting (1.41) and (~.39) into <7·37) and 

setting the determinant of coefficient equal to zero are straightforward but 

tedious. The critical equation turns out to be 

_ ! [NrcraJ32ptanh(J32~0 ) 
B1 tan(B1 R ) - y (B2rcothB2rT - B1rcothB1rT) 

p p c . D (B2 - B2 } 
2p 2r lr 

2 2 
DirD2r(B2p -. Blp} 

+ k BlrB2rcothB1rT cothB2rT 
D2p p Npcr2p 

(7.42} 
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where 

1 ~ 2 D2r + k ( D1 B2 + N a1 ) - B2 coth.B2 T -
· _ N P P P P n2 r r 

P pa2p P 

. . 

If the pile is large, B
1 

8 <<1 and the reflector saving is 
.. . p 
I: , ., . 

(f;. .. 8 = 82 

•• 

~ 
\ 

VII.. -1'6 

(7 .43) 



,._.. 

;, .. -.... 
. . 

. . 

., 

. -

VIL-Ht 

where 

According to the one-group theory the reflector saving is just a2 • Thus the 

reflector saving, according to the two~group theory, is larger than t~t pre

dicted by the one-group theory by the factor contained within the braces of 

Eq. {t"~.43). Physically the larger reflec~or saving predicted by the two-group ~ ll·-

theory can be understood since the mean square distance a neutron travels before 

capt~e in the reflector is a migration length, not a diffusion length. Since 

the migration length is longer than the diffusion length, the chance that a 

neutron returns to the re~ctor is actually larger than the one-group theory 

predicts, and this leads to a larger reflector saving in the two-group theory. 

The transient part of the solution in the pile falls off roughly expon-

entially from the pile-reflector surface, the length constant being _!_ • 
B' 2p 

a large pile, this length-is, accordi?8 to (q.3lb), roughly 

..------·-1 
1 + 1 rrrr lp 2p 

In 

If the two lengths Llp and L2:P are very different, the tra..111sient length will 

be nearly equal to the shorter of the two. 

(f7.44) 

The neutron distribution in the pile and reflector computed by two~group 

theory is plotted~ in Figure 7-II • The mos.t interesting feature of the distri-

bution is that the slow neutron density bas a maximum, or at least a point of 

... 
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_) inflection, in the reflector a few centimeters away from the interface. This 

hump arises from the fact that in the reflector slow neutrons are produced by 

_ f slowing down of fast neutrons, but they are absorbed very much less strongly 
- c 

,: -

I -. 

.-.. 

in the reflector than in the reactor. For the pile whose distribution is com::-1< ;;._ 

puted in Figure 7-IIthe ratio of slowing down power to slow neutron absorption 

cross-section is 97 in the reflector and 4o4 in the reactor. Thus the slow 

neutrons pile up in the reflec~or, and this manifests itself as a rise in the 

slow neutron density near the reactor. Farther from the interface the rate of 

moderation of fast neutrons decreases because of the distance from the original 

source, and the slow neutron density decays along with the fast neutron density. 

Multi-group Theory; Choice of Constants 
' 

·The two-group method is readily generalized to any number of groups by 

increasing the number of intervals into which the neutron energy is divided. 

As long as there is no resonance capture (which may or may not result in 

fission) there is no difficulty in writing down the multi-group equations, 

since the flux, ~i' in the ith~energy interval remains constant throughout the 

energy interval. If resonance capture occurs in the ith energy interval with 

probability pi, then the multi-group equations acquire a certain ambiguity. 

This ambiguity arises because the group picture allows no change of ~i within 

a given energy interval, whereas the resonance capture in general resu~ts in a 

more or less continuous decrease of the neutron density as·the neutrons are 

moderated. 

A consistent scheme for taking account of resonance capture is to view 

Nai~i always a~ the number of neutrons passi~ through the 1~h energy. interval 

per c.c. per -second and entering the (i. + l)st interval if there were no res-

onance capture. The quantity a1 is the slowing down cross-section for all 

' 
¢ 



groups except thermal; for thermal it is the true capture cross-section. Rea-

onance capture reduces the number of neutrons per c.c. per second entering the 

. ·. interval to 

Naipi~i ' 
? .. 

Pi being the resonance escape probability in _the ith interval. Thus the number 

of ith interval neutrons resonance absorbed per second per c.c. is 

Hence, in the absence of resonance fission, and under the assumption that all 

fission neutrons enter the fastest group, the multi-grt:>UP:. el[uatd.ons: ~r·at'.uni-

form system are 

(~.45) -'\' 

or simply 

~:(.46) 

for i F 1, the highest energy interval. For the highest energy, 

(~.47) 

where p, the tot.al resonance escape probability., is the product of all 

previous pi: 

(~.48) 

If resonance fission occurs, as in an enriched pile with rather low 
.,. . . 

mod~rator to U ratio, the equations evidently become 

... -~ 

/) 

I 
$ 
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Jl.~ ,. 
where k .. is the number of neutrons created in the ith energy intery,al per 

Jl. 

neutron absorbed in the jth interval. 

VIE-20 

The appropriate expression for pi in terms of the absorption and scattering 

cross-section of the system .fol:lows from Chapter:·~IV. If the i th energy interval 

extends over the range Ei-l to Ei, then 

1 
Pi = exp - N ~ , crsi I 

' 
where the integrand of the effective resonance absorption integral is a com-

plicated expression involving the surface and volume of the fissionable mater-

ial, as well as the absorption and scattering c_ross-sections, oai and a si • 

a homogeneous system, 

Ncrai dE 

+ Oai/ Osi . E 

which, for very small crai/~si becomes 

For 

If the group interval is very small so that the resonance absorption is 

also small, then 

eff 

1-1. 
! 
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where Ncr . . is an average effective absorption cross-section, so defined that 
a~ef'f 

Ei Ei 

Ncr . ~ dE= ~ 
dE Ncrai-

a~eff E E 

E. l E. l eff 
~- ~-

Na · 
Now the slowing down cross-section, Nai, is so defined that __!! is the average 

N_ai 
number of collisions in the ith energy interval, i.e. 

l 
Nai = ; 

hence, in the limit of small group interval, and small absorption, 

Na . 

l- p ~ 
i 

a~eff 

Nai 

The group equations (7.49) therefore may also be written 

for very small absorption, aaeff may be replaced by <1a· 

EquatioJ~ rather similar to {V.50) have been derived by starting with 

the age slowing dov~ equation, including absorption, and approximating the 

(1··50) 

(T.-.51) 

(7·.52) 

differential equation by difference ~quations. The objection to such a pro

cedure is that the age equation does not hold if there is absorption (cf. p. 27 

1 Chapter rrn, and therefore group equations, derived from the age equation are 

< ~ not necessarily more valid than equations (7.50) which are also derived from a 
·.~ 

• i -

• -"1 

simplified, but admittedly incorrect slowing down picture. 

We consider the group equations in the form (7.46-7). There are n equations 

in an n-group picture. The solution for ~i can be expressed, as in the two-group 
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theory, as an n-fold linear combination of functions Z (Bv~) each of which 

satisfies a wave equation 

Upon substituting a solution of the form 

into (7.46-7), there results a set of n linear homogeneous equations in A1; 

for these eqUations to be compatible the determinant 

2 (D1By + Na1 ) 0 0 1£ Na 
P n 

Nalpl 
2 -(D2Bv + Na2) .0 0 = 0 

2 (7·53) 

0 0 Nan-lPn-1 -(DnBy + Nan) 

This determinant is easily expanded, and it is found that each By satisfies the 

n-group characteristic equation 

where 
D2 

L~ =_2. 
~ Nai 

Equation {7.54) is recognized as the critical equation ( 6~1) 

kP; (BJ) 

p(l + L2~) 

as applied to the n-group system, since the Fourier transform of the slowing 

2 2 -l 
down·kernel in each group is Pi(l + LiBv) • 

I 

('rr.55) 
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The characteristic equation (7.54) is algebraic of the nth ·order in B~ • 

There are therefore n values of ~ , and 2n values of B.,;, corresponding to 

the positive and negative square roots of B~ • The total number of linearly 

independent ZJ(~r) is 2n ----- which evidently follows from the fact that 

the n-group equations comprise n equations each of second order. 

2 The roots B~ faJ~ into two classes -:-.- one root which corresponds to the 

asymptotic solution, and the remainder which correspond to the non-asymptotic 

solutions. The asymptotic solution root, which we denote by B~, is given, 

approximately, by 

( 7 ·57) 

provided k~ 1, i.e., the reactor is large. This result has already been shown 

to hold for arzy slowing down picture (Ch.VI); it can be derived directly from 

(7 .54) by neglecting terms of order ~ or higher in equation (7 .54). 

The remaining roots are, in general, complex. The non-asymptotic solutions 

which correspond to them behave roughly as damped exponentials (if B is a pure 

imaginary), o~ as damped exponentials multiplied by an oscillating function if 

By is complex. Since explicit expressions for ~ are obtained most readily 

when the number of groups is infinite, a closer discussion of the non-asymptotic 

soll..utions will be given after the n = oo equations have been derived. 

The che.racteristic equation for the case n =co, t~_at is the Fermi pict~e, 

is easily derived from (7 .54) by passing to the limit in which the number of 

groups becomes infinite but the sum of the non-thermal slowing down areas re-

main finite and equal to the age, i.e., 

n - 1 

lim 
n-+oo i = l 

L2 = ,.., 
i " . 

.... .,.., ~ 
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Upon taking logarithms of both sides of {7.54) we have 

n-1 

. ~ 22 22 
.ink = b .en{ 1 + Li:8J1) + ln{ 1 + LX;_Bi)) 

2 
In the limit, each Li becomes vanishingly small; thus 

and therefore, in the limit 

or 

k e 

2 
- 'Z"B,J 

(1 +In~) 
= 1 

which is the Fermi characteristic equation. 

VII .. ·-g_t,. 

Since ..enk is a multiple valued function, it is clear from (1.58) that 

there are infinitely many B~. These roots can be "Written down e~licit~ 

in case L2 = 0; i.e., the thermal diffusion le11gth is zero. In that case 
n 

2 /Jnk I + 21£Vi 
B-p = 7: (i-59) 

where / ink/ denotes the real logarithm of k. From ·('if. 59) it follows that 

where 

a-y = ~ {ink1
2 

+ 41£
2-,l '+ 1 J.nk I 

2~ 

V/i.nk/2 + 41£21)2 - {.lnkl 
2~ 

{3-I3~--l3~ 
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For large ..V, the roots approach 

Bv ~ ±{f'<1 + i). 

The characteristic functions 1 ,Z,.,(:BJI,!:) will have va.rioue forms depending 

on the geometry. Thus in a plane geometry, 

which is a damped wave with a relaxation length which approaches 

as y increases. The damping becomes stronger as -,) increases -- that is, 

the neutron distribution is more and more ad~quately represented by fewer 

and fewer zv's as the distance from the interface increases. 

Methods for Solving the Multi-group Equations 

The multi-group equations constitute a set of n differential equations (in 

n-group theory) w:ith the boundary conditions ~i = 0 on outermost boundary, and 

~i and Dix (normal derivativ~ of ~1 ) continuous across interfaces between regions. 

Considerable literature devoted to procedures for solving the multi-group equa-

tiona has grmm up. All of the m.a.ny different schemes which have been used can 

be classified under three major headings: 

1) Solution in closed form 

2) Solution by iteration 

3) Solution by expansion in characteristic fUnctions . 

Various combinations of the major methods -- for example, iteration of char-

acteristic function expansions -- have also been found useful • 

Each group equatio.n is, in ge~eral1 a partial differential equation in 

x, y, and z. If the chain reacting system ~s sufficient symmetry -- for example, 
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a finite cylinder surrounded by cylindrical reflectors of the same height 

as the reactor -- then each group equation can be reduced to an ordinary differ-

ential equation in, say, r, and the bounda_~ conditions need be.satisfied on 

surfaces r = constant. The methods which will be described in this section 

apply o~JLy to such one-coordinate reactors for which the multi-group system 

is a system of ord.inary differential equations. 

Solution in Closed Fo~ 

This method1 an example of which bas been worked out in detail on pagesl5,16 

consists simply in writing down the neutron distribution in each region as a 

linear combination, with undetermined coefficients, A., of the fundamental 
~ 

solutions of the group equations, and then dete~ining the Ai by requiripg 

that the boundary conditions be satisfied. As was shown in (.?.24) the funda

mental solutions Zv(r) satisfy 

where BS are the roots {either real or complex) of an equation like (7.54), 

provided, of course, n1, cri, kr and pi are constant throughout each region. 

We assume this to be the case, and confine the discussion to a chain reacting 

system consisting of m distinct regions, in each of which all properties are 

constant. 

Each group equation., being of second order, will have two solutions, one 

of which is regular {or, for a slab, symmetric), the other irregular (or anti-

symmetric) • We list these solutions for the three geometries in the follov.-. 

ing tables: 

I> 

J y 

~ c:;;:::a~s 
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Table I 

Functions Zp(rl. ~n Various Geometries 

Regular (or symmetric) Irregular (or anti-symmetric) 

Slab cos B-y r or cosh BJ r sin B.y r or sinh Byr 

Cylinder J0 (B,.,>r) or I 0 (By r) Y0 (B.y r) or Ko(B,Jr) 

sin B;J r sinh Byr cos B:Vr cosh B.~r 
or or 

Sphere 

r r r r 

Since there are n equations in each region, the neutron density in each 

group will in general be a 2n-fold linear combination of ~mctions listed in 

~able I. The group equations are a coupled set; all of the neutron .groups can 

therefore be eJ..~ressed in terms o:f one of' the groups, and in each .region only 

2n of the constants ~ will be arbitrary. 

For simplicity, we assume the system is ~ymmetric about the central region. 

Then, in the central region, the coefficients of the ir~egular solution must 

vanish either because of symmetry (in the slab case) or because the flux must 

remain finite (in sphere and cylinder cases). This reduces the number of' Ai 

in the cent!"al region from 2n to· n. Since there are 2n unknown Ai' s in each 

of the other regions, the total number of Ai's in a system· conta'i~:pg m.s.eparate 

regions will be ~a(m-1) + n or (2m-l)n. 

At each interface between two regions there are 2n equations which must be 

satisfied by the Ai's in order to ensure C?ntinuity of flux and of current; 

at the puter.most boundary there are n relations which ensure that the flux of 

each group vanishes there. In all then, there are 2n(m-l) + n = n(2m-l) linear· 

homogeneous relations between the Ai's. These can be solved for (2m-l)n-l Ai in 

terms of, say, A1, provided the determinant of the coefficients vanishes. This 
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determin.antal equation, of which (7.42) is a simple example, involves trans-

cendental functions of the critical size, Rc, and of the critical multiplica

tion constant, k. The value of k for which the determinant vanishes is of course 

the critical multiplication constant for the given sized system. 

~he actual solution of the deter.minantal critical equation presents con-

siderable anaJ~ical difficulties as soon as the number of groups exceeds two. 

In most cases it is easier to solve the critical equation fon k. having assumed 

a value of the critical size, than to solve for the size, given k. 

The formal work of setting up the critical equation can be much sys~.ematized, 

especially if there are many regio~s, by the use of matrix notation.* We denote 

the jth group neutron flux in the kth region, ~~k)(r), as 
J 

(k) (k) 
+ A2n Y2n,j(r) j = 1 ... n 

( 7.60) 

where each function Yij(r) is proportional to a fundamental solution z.y (r), 

the constant of proportionality being ~etermined so that the functions ~~k)(r) 
~ 

satisfy the group equations. For example, in a two-group theory, according to 

( 7.25)' 

yll = z1(B1r) y21 = z2(B2r) 

2 2 
D1B1 + Na1 D1B2. + Ncr1 

z2 (B2r) yl2 = k . Zl(Blr) y22 = 
k - Na2 - Ncr2 ( 7.61) p p 

l -· In an n-group theory, there are n ~·.'a; that is, j runs from 1 to n. 
1 J 

. 1 It is convenient to introduce the "flow" functions 

. -r ... 
~ .. 
·i-; 

* A. S. Householdel"' and H. L. Garabedian, MonP-202; MonP-246. 

"'-), 
.• 
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1 Then, in matrix notation, the neutron fluxes and the flows can be abbreviated 

t 
.;. . 

l'-

where the vector ~(k) denotes (~fkl, ~k), •••• '~~)),the vector 8(k) denotes 

(Aik), ~k), ..•. ~)),and!~~) is the matrix of function Yl~)(r). ;> 

Suppose there are m regions, the coordinates of the interface between the 

, "~ kth and k + lst regions being denoted by rk. At each interface, since fluxes 

. -.. 

. - . 
• 

. -· 

and flows are continuous, 

~(k)(rk) ~(~) =.~(k+l)(rk) ~(k+l) 

i.e.' 

where [~(k+l)(rk)J-l is the matrix reciprocal to ~(k+l)(rk). By successively 

applying the boundary conditions to the lst, 2nd, etc. boundaries, we obtain . 

finally 

where 

(7.64) 

X = ~(m) (rm-1) -~(m-1) (rm-1) ~(m-1) (rm-2) -1 ••• I(2) (r2) .~(2) (rl) -1 ;_(1) (rl). 

(7.65) 

Thus the fluxes and flows in the lst region are 

~(l)(r) =·~(l)(r) ~(1) 

th and the fluxes and flows in the m region are 

( 7.66) 
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where 

(;7.68) 

is a 2n x 2n matrix. 

The boundary conditions at the outermost boundary, namely, that the fluxes 

vanish, involve only the first n components of ~(m)(r). If!:* denotes the matrix 

formed from !! by suppressing the last n rO'tvs, then the first n components of 

~(m)(r)' '\-Jb.icb. "ive denote by r(m)(r), are 

~{m){r) = ~* ~(1). 

The boundary condition at the outermost boundary is therefore 

H* A(l) = 0 · (7. 70) 

Now, because of symmetry, or because of the condition of regularity at the 

origin, all A~l)rs vhich.mul'tip~·aut:tsymmet:ric :or.:·irregular:,soltutions ·vanish; 

i.e., the vector ~(l) really contains only ~, instead of 2n, non-vanishing 

components. If A*(l) denotes the column vector obtained from ~(l) by sup-

pressing the vanishing n components, and if H** denotes the H* matrix with 

the correspo~~ing n columns suppressed, then the boundary condition (7.70) i~ 

~-H- A*(l) = 0 1 ( 7· 71) 

which is an n x n set of homogeneous linear equations. The compatibility 

cond~tion, 

det H** = 0 

is a transcendental equation in the critical size and the multiplication con-

stants, and is evidently the critical equation. 

The matrix notation is useful, first because it shows that the critical 

determi:nant I !!**I is n x n regardless of 'the number of regions; and second, 

because it gives a systematic way of computing the critical equation. The 
::> 

( 7· 72) 
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actual computation of!!** involves, according to (.7.65) and (7.68), the com

putation of the matrices ~(r) and their inverses ~(r) -l. Systematic com

putation forms for calculating these matrices have been developed by B. I. Spinrad. 

An example of a problem solved·by the matrix method follows: 

We consider a slab reactor which is symmetric about the central plane and 

has a core and two reflectors on each side. The constants are given in Table 

II:. 

Table II 

Fast Group Thermal Group 
Dl L2 1 D2 

Region 1 (0-12 em) 1.26 66 .28 

Region 2 (12-40 em) .63 94 ·54 
Region 3 (40-60 em) 1.1 100 ·3 

In the second and third regions the matrix Y(r) has the form 
= 

cosh(B1r) 

Scosh(B1r) 

B1D1sinh{B1r) 

SB1D2sinh(B1r) 

sinh(B1r) 

Ssinh(Blr) 

B1D1cosh(B1r) 

SB1D:zcosh(B1r) 

and its matrix reciprocal IY(r)·l-l is 

0 

0 

Ssinh(~r) -sinh(~r) 

0 

- Bl;l sinh(Blr) 

+ ...l:._ cosh(Blr) 
BlDl 

+ __!_ sinh(B2r) 
B2Dl 

- B~l cosh(~r) 

~ 

3·6 

430 

200 

0 

0 

- _l_ sinh(~r) 
~D2 

+ ._1_ cosh(:82r) 
B2D2 
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where B1 = ~ ; B2 = ~ ; S 
o ... L1 ~ 

D1~ 
= -D2_(_L2::.-_-L...,.2~) 
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It is understood, of course, that 

in each region the constants:·appropriate .to ;.that>,·regdon are used to compute 

In this case, from (~.65), 

~* = ~3(1Jo)ll y2(4o) F2(12) Jl yl*(l2) 

1* 
where !- (r) is given by 

cos(·~ar}· cosh(B2r) 0 0 

s1 cos(B1r) s2cosh(B2r) 0 0 

-B1D1sin(B1r) , +B2!)1sinh(B2r) 0 0 

-S1B1D2sin(B1r) +S2B2D2sinh (B2r) 0 0 

D1~ 1 D1~ 1 
·•." and s

1 
- -

2
-

2 2
, S2 - -- 2 and B1 and B2 satisfy the condition 

L
1
D1 l + L2B1 LiD

2 
1 - L~B2 ' 

· · · that k = (1 + LfBi)(l + ~By):;; (1 .C. LyB~)(l - $~H , From t~e X*, H** is 

computed by multiplying X* by y(3)(6o). By iteration, the determinant H** 

is made to vanish f~r B1 = .0403547, B2 = .5427315, corresponding to a value 

for k of 1.114. The coefficients Ai are determined from (7.65~ in terms of 

an arbitrary s,cale factor A with the following result: 

A 2.8973 A L89o6 A 

(t \ - .00013451 A 
A(2)= 

-2.8977 A 
A(3)= 

-1.8906 A 
·I A. = 

0 2~9544· A 10~9195 A 

0 -2.959I A -10.92*·· A 

.. .; 
Hence the flux distributions in the three regions are: 

:~" 1 f
1

: cos(.04035r) - &0001345 cosh(.54273r) 

. i· ·-

'1 
~ :: .24382 cos(.04035r) + .0005461 cosh( .54273r) 

2 ' 
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o~i = -2.8973 cosh ( .10314r ) 2.8977 sinh(.l0314r) 

~~ = -4.3259 cosh(.l0314r) + 4.3265 sinh{.l0314r) + 2.9544 cosh{.048224r) 

2·9591 sinh(.048224r) 

~l = 1.8908 cosh{.lr) - 1.89o6 sinh(.lr) 

~3 = -13.8642 cosh(.lr) + 13.8644 sinh(.lr) + l0.919.5cosh(.G707lr) - 10.924 
2 

sinh( .07071r) 

Solution by Iteration 

When the numbex· of groups exceeds three, or when the properties of each 

region vary continuously, the direct analytical method becomes unfeasible. 

-. ' ~ Because the group equations form a coupled set, it is always possible to solve 

. - .) 

them by asaumipg a distribution for one neutron group and, using this as a 

source for the next less energetic group, computing the distribution in each 

successive group m1til the distribution in the original group is recomputed. 

The process is repeated until the iterated distribution does not change with 

further iterations. 

Physically, the iteration method amounts to following the history of an 

initial neutron distribution as it converges onto the equilibrium di_stribution 

after successive generations of multiplication and diffusion in a critical 

system. Each it~ra"cion cycle corresponds to a single generation • 
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Iterations of the group equations may be carried out either analyti~ally 

or numerically. The analytic solution of the equations is feasible provided 

each region is uniform, while, if the values of D, a, etc. vary from point to 

point, numerical integration of the differential equations is necessary. 

Ordinarily the critical multiplication constant, in addition to the neut-

ron distributions, is unknown. It is therefore necessary to develop formulas 

for computing the critical value of k in terms of the iterated neutron distri-

butions. In order to 

the group equations. 

do this we introduce the Green's vector, Gil(~,~·), for 
th 

Each function Gil (r_:,-~' ) is defined as the flux of i 

group neutrons at~ due to a unit source of group 1, i.e., the most energetic,· 

neutrons at r'. We confine the discussion to the case of slow fission alone 

with all fission neutrons being produced at the energy of the 1st group, and 

we neglect resonance capture. Then the source of fastest neutrons is kNcrn~n' 

and the group equations are equivalent to the set of integral equations 

{7o73} 

the integral being taken over the reactor alone. For the .slow neutron group, 

i.e.' ~ satisfies a homogeneous integral equation with eigenvalue k. 
n 

(7.74} 

'· 
The formulation of the group equations as a vector-integral equation immed

iately suggests a scheme for computing k by iteration. We define the ~h iter

ate of p by the equation 
n 
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since the iterated functions converge onto the characteristic functions ~n(E) 

which satisfy (7.74), here k is the critical, koo requiredo 

In order to compute the first iterate (1 = 1), as defined by (7.75), from 

the group differential equations it is first necessary to set k = 1. Then a 

distribution ~(o)(r) is assumed in the first·equation, and the remaining equa-
'fn -

tions are succ·ess.ively integrated unt~l a new distribution ~~l) (!:) is found. 

If the assumed f~0 )(.;:) had the shape of the characteristic function, then the 

value of k would immediately be 

~ol (E) 
k = -,..--,--

;r.( l) (.;:) 
lt!n . 

ili{o) 
It is unlikely that the first guess to fn is correct, and k will therefore 

usually vary from point to point. An average value of k can be 4efined as 

r {.L·~ l) . 
k(1) = J ~ '._:: "(!:)~ 

(7o76) 

the integrations being over the pile. 

J p~Ll <.:><!!: 
Evidently k(J) as defined by (7.76) 

converges to the true value of k as ). approaches oo. 

Numerical Iteration Method 

The determination of the iterates ~(1) ·by numerical integration of the 
.n 

group d~fferential equations can be done whenever p, D, k, and Ncr are known 

:, _ ... functions of position in one coordinate cases. The details of the numerical 

--~ integration will be given for the plane case; the extension to other-one-coordinate 
,_ 
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~ geometries follows easily. The group equations are written 
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(7.77) 

i = 2~n 

So as to write each of these second order equations as two first order equa-

tiona we introduce the flow I.: 
J. 

{7o78) 

then equations (7.77) become 

dil 
- = Ncr it - kNcrn~n dx l'fl (7.79) 

di. ~ q ~ ~ Ncr. i - Ncr. 1 . 1 dx J. J.- J.-

For the numerical method equations (7.79) are replaced by difference equations. 

Thus if a small lattice spacing h is used, 

(7 .80) . 
d.x = 

1 1 
~. Ii (x + 2 h) - Ii (x - 2 h) 

h 

· and equations ( 7.78) and (7;.79) ca...Tl be written 

I 1(x + h) = I 1(x) + hNcr1~1(x + t h) - hkNcrn~n(x + ~ h) (7.81) 

i = 2~n 



·--~-· 
I 

) , 

'· 

• 

.. 

.. 
.... -., 

vn: -3fT 

Equations (~.Sl ) are inhomogeneous in the sense that i~lst group fluxes appear 
~ . . R 

as "sources" for i· group fluxes • There, will be a corresponding !i ~d ~i • · 

There is consequently a homogeneous solution ~~ found by putting ~i-l = 0 in 
. ~ p 
the i group equation, and a particular solution, Ii1 found by keeping the 

~ th p 
·~i-l in the i group equation. The complete solution is Ii plus an arbitrary 

~ . ~ ·~ 
constant a times 11~ Similarly there will be a corresponding ~i and ~i· Thus 

. 
ri(x +h) = ri(x) + hNO'l~i<x + -t h) - 'hNcrn~n(x .+ t h) (7.S2) 

rPl.. = (x + h) = rPi(x) + hNcr AP(x + l h) i '!'j_ 2 

.We consider a reactor divided into.regions in each of which all parameters are 

·constant. To start the iteration, k is set equal to unity in the core and zero 

in the . reflectors and the trial value of ~ chosen in the core is unity. From 

this by equation (7.82 ) I~, Il, ~~~ ~are determined for each lattice point. 

In crossing boundaries quadratic interpolation is used to obtain the proper 

value for ~~~ ~. At the outermost boundary a can then be chosen to make ~l 

vanish there • 
,t( t ) 

From this the first iterate of p1 , ~l can be evaluated and 

used in the same manner to determine¢('), . ~2 

fork will then be, from equation (7.76), 

J ~:(x)dx kl,;, ___ _ 

.l 
J~n(x)dx 

• ••••• ~('). The first approximation 
-n 
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f This first integration is over the multiplying region of the pile~ This process 

can be repeated indefinitely to obtain better approximations for k, the accuracy 

of which is limited only by the coarseness of the lattice spacing. 

To illustrate the method, the example treated in the previous section by 

the matrix method is solved by numerical iteration below. Table III gives the 

constants needed for the calculation. 

Table III 

core 1st reflector 2nd reflector 

h 1.2 em 2.8 em 4.0 em 

?Ncrl .0229091 .0187660 .o44 
---··---

hNcr2 -0933333 --------- -------

h .052381 4.44444 3-63636 
D1 .. 

In order to start the iteration, values for I~(O), Ilp)(o), ~~(~) and ~(~) 

are needed in addition to the assumed ~2 = 1. Since the pile is symmetric, 

'I~(O) and Ii(o) are equated to zero. ~~(~) and~(~) are arbitrarily set 

equal to unity. By means of equation (7.82) at intervals of h/2 _either 

I~ and I} or ~~ and ~ are calculated in the core (Table IV) until ~{12.6) 

and ~(12.6) are obtained. By quadratic interpolation -~(12) and ~l(l2) are 

obtained. In the first reflector (Table V) f{'H(l2 + ~ ) must be so chosen that 

~,H(l2) obtained by quadratic interpolation from ~l'H(l2 - ~) and ~'H(l2 + ~) 

(calculated from first reflector constants) is the same as the previously · 

calculated ~1(12). In like manner the second reflector values of ~p,H and 
1 

[p,H are obtained (Table VI). Then, since the flux vanishes at x = 60, 
1 
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-ti(6o) 
0: = 

~(60) 
= 1149.322043 = 2.46 448 

. 466.547601 
3 

· ( 1) . H ( 
and ~l {x) = ~i{x) + 2.46}448 ~1(x). Thus ~11) is obtained and the procedure 

) 
can be repeated to find ~(2 ) 1 ~( 3), etc. Figure {III ) shows til) 1 ~i2 ) 1 

~(3) and ~(l) and ~(2). The resulting approximations for k1 . computed from (?·.76)~ 
1 2 .2 

, 

are respectively 1.12241 1.11691 1.1132 and 1.11491 .which is in good agreement 

with the value 1.1140 obtained by the matrix method. 
. . . 

.. 

., 

.... 

' - -1 
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X 

0 

.6 

1.2 

1.8 

2.4 

3·0 

3.6 

4.2 

4.8 

5·4 

6.0 

6.6 

7.2 

7.8 

8.4 

9·0 

9.6 

10.2 

10.8 

11.4 

12.0 

-~ ~ 

0 (assumed) 

-1 ( a.s~umed) 

.0229091 

1.021818 

.o463i8o 

1.065930 

.0707375 

' 1.133299 

.1012751 

1.229751 , 

. .129448 

1.353035 

.160445 

1.505840 

.194942 

1.691499 

.233693 

1.914064 

.277542 

2.178390 

2.328376 ·327447 

2.490244 
I 

VII.!'"40. 

Table IV 

(Core Calculations) 

~2(as!'umed) g rP ~I 
1 1 

1 0 (assumed) 

1 1 (assumed) · 3.463448 

1 -.0704242 

1 ·932929 3·450125 

1 -.142385 

1 ·797324 3-423188 

1 -.217452 

1 ·590227 3·382051 

1 -.297264 

1 ·307118 3·336546 

1 -.383562 

1 -.0581787 3·274953 

1 -.478228 

1 -.513634 ., 
3·195925 

1 -.583328-

1 -1.069185 3·097736 

1 -.701155 

1 -1.736951 2.978247 

1 -.834280 

1 -2.531503 2.834848 . 

1 -2.982825 -.985608 2·753009 

-3.470177 i 
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12.0 2.328376 

13.4 3.088232 

14.8 

16.2 4.801124 

17.6 

19.0 6.914451 

20.4 

21.8 9.604475 

23.2 

24.6 13·095556 

26.0 

27.4 1.7.678863 

28.8 

30.2 23.736666 

31.6 

33·0 31-774209 

34.4 

35·8 42.461861 

37.2 

38.6 56.691016 

4o.o 65.578730 

75.648535 

vn::-41 
Table 

(First Reflector Calculations) 

IH ~p rP ~· 1 1 1 1 

·327447 -2.982825 -.985608 2.753009 

-5.227563 2.380137 

.385401 -1.083708 

-10.044038 1. 783283 

.475499 -1.272194 

-15.698228 1.335165 

.605256 -1.566787 

-22.661719 ·998409 

.785494 -1.992057 

-31.515g97 .744929 

1.031245 -2.583473 

-42.997388 ·553578 

1.363007 -3·390362 

-68.065648 .408403 

1.808449 -4.480022 

-77·976837 .297287 

2.4o4724 -5·943335 

-lo4. 391633: .210970 

3.201463 -7.902348 

-139·513145 .142247 

4.265428 -161.437403 -10.520452 .112413 

-186.270663 
., . 

·---~ 
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(Second Reflector Calculations) 

X ~~ rH 
1 ~ rP ~' 1 1 ... 

40 65.578730 4.265428 -161.437403 -10.520452 .112413 

42 74.830656 -184.250484 .()90979 

44 7·557977 -18.627473 

46 102-314183 -251.986682 .059027 

48 12.059801 -29.714887 

50 146.167961 -360.040798 .036519 

52 18.491191 -45·55667:8 

54 213.408588 -525.701190 ;;019851 
... 56 27.881169 -68.667530 

58 314.794556 -775.473777 .006363 

6o 384.375194 41.732129 -946.888450 -102.808376 0 

466.547601 -1149.322043 

The Variation Method 

If t~e pile and the reflector have identical slowing down and transport 

properties, then the pile equation can be rigorously cast as an integral 

~ equation with symmetric kernel. All the usual methods, in particular, the 

variation method, are then available for computing the critical mass and the 

neutron distribution. The appropriate integral equation can be written down 

for any arbitrary slowing down function, and the equation is rigorous if the 

.--"~ - reflector is infinite in extent. For a finite reflector, an almost rigorous 

.. integral equation has been established provided the pile and reflector have 

sufficient geometric symmetry. 
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To derive the integral equation foDa uriiform pile surrounded by an 

infinitely large reflector having the same slowing down ·properties as the pile, 

we begin with the usual pile integra-differential equation. In this case the 

infinite slowing down kernel is obviously correct since the slowing down medium 

extends to infinity without change. 

Db~(!) - NpapTaC!) + k I Npap~.Cil 
p 

D A it ( r) - N a .:fi ( r) + k f N C1 ·.~ ( r' ) 'fs - r r'£s - p p'ls -

p 

Thus we have 

P (E ,I r-r'.\ )dr' - 0 
CD S -- -

in pile 

P (E ,lr-r'l )dr' = 0 
00 s -- -

in reflector 

the integral being taken over the pile, since fissions occur only there. 

Since the reflector extends to infinity, the asymptotic solution of (7..83 ), 

(7.83) 

which vanishes periodically, is not acceptable by itself as the neutron·.distri-

bution, although it will be a good approximation to the solution far from the 

pile-reflector interface. 

The two equations (~o83 ) can be written as a single equation as follows: 

Dboj>6 (!) - NraAaC!) + Ndad(!)~6 (!) + k f Npap~e(!') Pc&~;J!-!'1 )~· = 0 

p 

where 

Ndcrd(£) = Nrcrr - Npcrp 

NdC1d (!:) = 0 

in pile 

in reflector. 

The last t1-10 terms in ( 7.84 ) can be viewed formally as space varying source 

terms in an absorbing system whose reciprocal diffusion length is 
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·' The integral term represents the source arising from neutrons which slow down. 
4'' 
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l'· ... 
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The term with Ndod, represents a sink which takes account of the fact that the 

pile is a heavier absorber of thermals than is the reflector. 

The point Green's 
. . 

function-for the diffusion equation is (Table I , Chapter .I ) 

->f. I r-~'1 r--
G( I :!:-:!:' I) = .;;....e ___ ~ ; 

4rrnl :!:-:!: ~ 

hence the solution of (.7 • S4 ) can be Written 
(7 .. S5) 

~. (!"_) = (N,:ar - Npap) I ~. (r_. )G( I !"_-!"_ 'lldr. + kNpap ) r ~(!:. )P., ( Es,lr" -r '\)G( I:!:-:!:"\.) d!:' dE"· 

P cop, 

The order of integration in the second integral can be interchanged, and the 

resulting infinite integral is, in principle, known. We denote this function by 

H(r r'): _,_ 

H(s., !"_' ) = f P00 ( E6 , I!:" -:•l) G( I !"_-!:"I ) a,:" . (7.S6) 

00 

Since H(:!:,:!:') is the convolution of two displacement type kernels, it is sym-

metric in rand r'. 

Upon introduction of H(:!:,:!:' )_ into (7 O'S5 ) we can write .. 

i.e., ~s(:!:) satisfies an integral equation with symmetric kernel. It should 

be noted that (7~S7) defines Ps(:!:) both inside and outside the pile, even 

though the integrals extend only over the pile. 

To compute the critical multiplication constant k, we multiply (~~S7 ) 

· by ~s(:!:) and integrate over the pile. Thus we obtain 

{7oS7) 
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(7.88) 

It is easy to show that k, considered as a functional of ~s(f) according 

to ( -7. 88 ) , is stationary witb.:t·r.e.s.pect to small deyia~·ions of ~8 (r) from the 

function which satisfies the integral equation ('t •. 87.). To demonstrate this 

we form the differential quotient 

5k = lim 
. E..-+0 

(7$89) 

where ~(!) is an arbitrary quadratically integrable function over P. A straight

forward substitution of ~s + €"\_ into (.7 .. 89 ) in "ivhich use is made of the symmetry 

of the kernels G( I r-r' I ) and H(r,! I) . yields 

5k= rr .(7.90) 

-i ~J ~s(r) H(r,r')·~s<r')d!d!' 
p 

If ~s (!') satisfies the pile equation ( 7 ... 87 ) , then, from (:7.,90 ) , 5k = 0 for 

any arbitrary variation funct~on ~(r); i.e., the value of k as computed from 

(7 .88 ) is stationary when the actual neutron distribution is used in ( 7.88 ) . 
-~ .. . . 

Equation ('7.88 ) therefore constitutes a variation principle from which fairly 

good approximations to k can be computed by substituting convenient, but possibly 

incorrect distributions ~s(!)· Better approximations to both the characteristic 

value and to the distribution can be obtained by assuming for ~s(f) a linear 

combination of simple quadratically ~ntegrable functions and determining the 
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~- tq __ variat·ions of the coefficients. Such a procedure: is merely the Ritz varia-
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tion method. 

It is, of course, always possible to iterate an assumed distribution to 

get a better approximation i.e., to substitute the first approximation into 

the integrals on the. ·right side of ( (7. S7 ) 1 obtain a second approximation, and 

then repeat. 
th . 

At the n stage in the approximation the value of k appropriate 

for the (n + 1st) approximation is to be computed from the variati9n principle 

with the nth iterate used for ~s(~). 

The simplest. function to use as a variation function is ~8 (£) = 1. To this 

approximation the critical multiplication constant k is related to the pile 

dimensions by the equation 

I 

_ NP"~r~ G(l~-~·~)~~· 
H H(~,~· )~~: 

p 

where VP is the volume of the pile. 

(7.91) 

To illustrate the use of this simple critical equation we compute the 

critical size of a reflected slab for a one-group ~odel both by use of (7.91) 

and by the exact equations. In the one-group model all neutrons are supposed 

to have the same energy -- that is, no slowing down occurs and therefore 

Since the geometry is a slab, the plane kernel is appro~riate. From the usual 

relation between point and plane kernel we have 

(7o9J) 
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00 

HP'" (x,x') = f P00 (Es, lxJ.x"l )Gpl_Clx"-x'l )dx" = GP~ (lxJ.x'l). 
:K.. . P,t 

(7.94) 

and 

-CD 

We denote the thickness of the slab by 2Rc· Then 
Rc Rc 

H jis(!:)G( 1!:-!:'fl ~8 (!:' )~' 
p 

= r r Gp~(ix-x'l )dxdx' 

-R -R c c 

= .. 2:.:. [11 "Q - e- ~R c sinh \J R ] 
~ N cr ~·c ~ c 

r r r 

= H ~s(!:)H(!:,!:' l~s(!:' )d!:d!:' · 

p 

I 

(7.95) 

Substituting these expressions into the critical condition (7. 91 ) we obtain 

the following equation for Rc: 

(7.96) 

If the· slab thickness is small compared to the reflector diffusion length, 

J.iz-Rc <.< 1; then ( 7. 96 ) reduces to the following simPle result: 

(7.97) 

2 k-1 2 
where B = ~ = (k-1)~ · 

L p 
p 

Since J.t R << 1 implies ){2 <<. B2 + ){2 i.e., ).(.
2 

/B
2 <<.1, this result 

r c r r' r 
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.can be further amplified to 

(7.98) ., ... 
' J The assumption that the neutron distribution is flat evidently is most nearly 

"'·.)' 

1 

... 

correct when the critical thickness is small compared to 1/B because, in this 

case, the active portion of' the reactor covers only a small part of' the·unre-

fleeted critical dimension. It is therefore to be expected that (a.98 ) is an 

accurate formula for a one-group reflected core which is small compared to the 

unref'lected pile. 

This is easily demonstrated by computing Rc exactly. In the core, (.agai_n 

~opping subscript s), 

and in the reflector 

~ (x) 'f cos Bx p 

Equating flux and current at the boundary Rc we obtain 

B tan BRc = ~· 

(7.99) 

(7.100) 

. (7 .101). 

If' the flux in the core is nearly constant, BRc <<. 1, as can be seen from the . 

fact that the core flux is a cosine. Replacing tan BRc by BRc' we find 

which is the same as the variational result . 

-; The iterated neutron distribution which results from the use of' a constant 

{ trial function is .. 

·- ' 

·~ 

( N ct -=N·a:..: + r r· p p · (7.103) 
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= ~ + (k-1) inside core 

= outside core 

The exact distribution and first iterate as given by (~.103) are compared 

in Figure 7-IVr~ 

A better value for the critical size and neutron distribution can be obtained 

by setting 

substituting-into the variation principle (7.98 ), and then choosing~ so that 

k(~) is stationary. The details of the computation are rather tedious and will 

not be reproduced here. 

Extrapolation Distance by Two-Group Method* 

In calculating the critical size of an unreflected pile it is customary to 

assume that the neutron density extrapolates to zero at a distance 0.71 Atr! In 

general A is a function of energy so that the effective boundary is different 
tr ' 

for each neutron energy. It is evidently useful to compute a suitable average 

extrapolation distance which, when used·with the usual one-group equation, will 

give the correct critical mass for the actual unreflected pile. Such a computa-

tion is of greatest interest for a water moderated pile since the mean fre~ path 

in water is very strongly energy dependent, and therefore the average extrapola-

tion distance will differ significantly from either the fast or the slow lengths • 

The general solution of this problem is essential~ out of the question; 

however, by two-group theory it is possible to compute an approximate average 

extrapolation distance. 

*cf. B. I. Spinrad, MoriP-284. 
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We consider an infinite bare slab pile·of actual height 2h, in which there is 

no resonance capture; we seek the equivalent extrapolated height 2H -- i.e., the 

extrapolated height of a pile which, by one-group theory, has the same critical 

mass as would be calculated by two-group theory for a pile of actual height 2h. 

It is assumed that h ~ H >> )-.tr and that k is close to unityl 

In the equimalent one-group pile, the fast neutron flux is 

~(x) 
1tX 

= cos 2H 

while the slow neutron flux is, according to (1,34b) 

-where A1 is approximately cr1 /cr2 since H >>_!_ . 
Ncr . 

(7.104a) 

(7.104b) 

Actually the asyn:tptotic distribution (7.104) does not hold to the pile edge 

because tne extrapolati?n distance is different for fast and slow neutrons. The 

complete solution of (1.·35) is 

cos ~ + b cosh B~x 2H c 
(7.105) 

and b is an arbitrary constant. The 

boundary conditions at x = h are 

~1 = - 0.71 \r 1 f.! 1 h 

~2 = - o.71 .X. 
~~ h 

tr 2 

(7.106) 
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where \ . and \ are respectively the fast and slow transport mean free 
tr 1 tr 2 

paths. Upon substituting (~.105) into (~ 6 106) there result two different linear 

equations for b. In order for these equations to be compatible, the following 

determinant must vanish: 

cos~ - 0.71 ~tr 1 (;H sin~~) 
= 0 

A1 to· ~ - o. 71 Atr l' sin ;;ii)] ~ rosh Jl2h + • 71 ~r ~2 sinh B2h J . (7 .107) 

B2h 
We assume B2h is sufficiently large so that sinh B2h ~cosh B2hz ~ ; 

and that g (H~~) is small. Then replacing sines and cosines by the first 

term in their expansions, we find that the determinant reduces to 

which can be solved for H-h: 

H-h ~ L~(l + 0.71 B2 ~r 1 )(0.71 ~r 2 ) + Li(l + 0.71 B2 ~r 2 )(0.71 ~r 1 ) 
,.... . 

L~(l + 0.71 B2 Atr 1 ) + Li(l + 0.71 B2 Atr' 2 ) 

2 2 If L
1

)) L
2

,. as is the case in a water moderated reactor, then 

. (7 .108) 

[

. ( 0.71 \r 1\ 
. L2 1 + L :) 

H-h~ O. 71 A. + _g ~ ( ~r 2 A.tr 1 ) , (7 .109) 
.. tr 1 L 2 ( 0. 71 r 2) 

1 1 + . 
L2 

2 

provided (~). is also much greater than L~. Since the pile is large compared to 

the transport mean free path, H-h can be identified with the extrapolation distance. 

According to ('Q108)~ the extrapolation di~tance always lies between 0.71 ~r 1 and 

o. 71 Atr 2 .• ' 
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The results of this section can be summarized in the following remarks. If 

the fast and slow extrapolation distances are different, then the neutron distri-

bution includes a non-asymptotic as well as an asymptotic part. The asymptotic 

distribution extrapolates to zero at a distance beyond the pile boundary which is 

intermediate between the fast and slow extrapolation distances, the exact distance 

being given by (7.108). Since the asymptotic distribution is the solution of the 

one-group pile equation, the critical size of a bare pile cari therefore be deter-

mined by adding to its dimension the extrapolation distance (7.108), and treating 

the problem by one-group theory. 

General Kernel in a System with Finite Reflector 

Two general methods, aside from the group method, are available for deter-

_mining the critical conditions in a reactor with finite reflector which has the 

same slowing down kernel as the reactor. The slowing down kernel can be com-

1 pletely general; the only requirement is that the extrapolation distance be 

independent of energy. 

The first method1, which is applicable to slabs or spheres but not to 

cylinders, is called the method of images and converges best when the reflector 

is large compared with a reflector migration length. The second method2, which 

is applicable in principle to piles of arbitrary shape, is called the method of 

harmonics and converges best when the reflector is small compared to a reflector 

"" migration length'. The relation between the two methods is rather analogous to the 

relation between the source-wise and the characteristic function representations 

of the solution of the heat conduction equation in a finite system • 

• I See H. L. Garabedian and A. M. Weinberg, MonP-434; H. L. Garabedian, MonP-435· 1 . -· 

2 
See G. Goertzel and H. L. Garabedian, ORNL-30. 
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The Method of Images 

We consider an infinite slab pile with reflectors of equal thickness on each 

side. Since the pile reflector is finite, the slowing down kernel for the system 

of pile and reflector is symmetric but it is not of displacement character. This 

circumstance arises because the probability that a neutron born at x arrives at x~ 

depends not only on the distance between x and x' but also on the distance of each 

of these points from the extrapolated boundary. However, at least in the case of 

a slab pile surrounded by a finite reflector it is possible to write the pile equa-

tion in such a way that the displacement character of the kernel.is restored, and 

in fact, that the kernel in the finite system is expressed as an explicit super-

position of infinite system kernels. The finite problem is thus reduced to an 

equivalent infinite one, and all the techniques -- in particular the variation 

method -- which were used for the infinite problem become available for this one. 

The device by which the finite kernel is expressed as a sum of infinite system 

kernels is analogous to the one used in the method of images in potential theory. 

The neutron density in a finite slab pile with a finite reflector must satisfy the 

pile equation and vanish on the extrapolated boundary of the reflector. Such a 

solution can be viewed as arising from an infinite sequence of identical piles 

and reflectors set side by side. That periodic solution of the pile equ&tion in 

such an infinite array which oscillates with wave length equal to the thickness 

of pile reflector, and in which the neutron density alternates in sign in each 

successive pile and reflector interval, is evidently an analytic continuation of 

the actual solution in the finite system. Thus the problem in the finite system 

can be replaced by the problem of seeking periodic solutions in a periodic structure 

which extends from - ro to + oo . It is this extension of the finite system to in-

elude all space which makes it possible .to express the kernel as a superposition 

of infinite system displacement kernels. 



VII.-~ 

The alternating positive and negative neutron densities serve as sources 

and sinks which, from symmetry, must yield zero neutron density on the reflector 

boundary (Fig. IV ). When the reflector thickness vanishes, the proper periodic 

I I 

' i. 
i I 
I I 
l I . 
I ' ... --·+···, ,.,..J..-- ,.' 
t I ;. .,~ I I 1 .... _...... I 

-3o)·3J,.. -3o.. -1-.J,.. -a);. J, -~-1,. -ct. 

Figure 7.;.V 

solution is cos Bx which is also the asymptotic solution. Then, as shown in 

Chapter III , the slowing down density is everywhere proportional to the thermal 

neutron density. In the case of the reflected pile, the correct periodic solution 

is not i~ general a simple cosine function and henqe the proportionality between 

slowing down density and slow neutron density i~ destroyed -- that is, the asymptotic 

solution does not persist throughout the system. However, because of the high sym-

metry of the plane problem it is still possible to construct the image system which 

leads to a solution satisfying the boundary conditions. 

The decomposition of the solution into a superposition of images converges 

well only if the successive image piles are far apart. This is the case if the 

reflector is thick compared to the reflector migration length, for in this event 

the neutrons from neighboring image piles are "insulated" from each other. When 

the reflector is thin, many images are required to represent the correct solution, 

and in this case it is to be expected that the method will become unwieldy. 

Since, from symmetry considerations, the infinite sequence of piles and 

reflectors described in Fig. V is equivalent to a single pile with reflector, 

provided ~ (x) has the periodicity shown in Fig. V , it is a straightforward 
s 
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matter to write down the thermal slowing down density q(Es 1 x). Suppose fs(x) 

is the actual slow neutron density in the reactor and reflector, and its analytic 

continuation to infinity. - The reactor is assumed to extend from -a to +a, the 

reflector being of thickness b. The function is(x) will have the general shape 

shown in Fig. ·v it is periodic and goes through zero at the reflector edge. 

The integral 
00 

q(E8 ,x) = ~ K(x•) Npap q
8
(x') ~(E8 ,1x-x•!)dx' , 

-<D 

where K(x') = k inside the reactor or any or its images, and K = 0 in there-

fleeter or any of its images, vanishes on the edge of the reflector by symmetry 

and is therefore the slowing down density for thermal neutrons. 

The pile equation, accordingly, can be written 
00 

DA~6(x) - Nrar~x(~) + Naaa(x) ~6 (x}t-f K(x• )Npap~8(x•) 100 (i6 , lx-x• \ )dx' = 0 
. -oo 

(7.110) 

where Nrar. and Ndad are defined as in equation ( 7.84. We seek a periodic function 

£s(x) which is alternately positive and negative in neighboring "image',' piles, i.e., 

~s(x) must satisfy 
i . 

~s(x + i5) = (-1) ~8 (x) (7.111) 

where 5 = 2(a + b) is the :total thickness of the reactor plus the two ;reflectors. 

Then clearly 

co 

l 
-oo 

a oo 

K(x') Np<>p~ 8(x') P00 (E6 ,Jx-x'i )dx' = l<Npap r ~6 (x') {;:_J -1) 1~ (E 8 , lx+ia-x•l )dx' . ; 

-a (7.112) 

1 . 



i.e., the appropriate finite 

CD 

/#>. 

t . : 1~1/-. 

is 

· P(E8 ,x,x') = L ( -/ Pco (E8 , lx + i8 - x' I). 
~=-co 

Hence the pile equation becomes 

a 

Dl\.~8 (x) - Nrcrr~6 (x) + Nacra(x) ~8(x) + kNpcrp r ~8 (x') P(E8 ,x,x• )dx' = 0; 

-a 

VII.-:£? 

(7.11.3) 

(7.114) 

this equation resembles (7.84 ) and can be treated similarly. We first convert 

(7.114) to an equivalent integral equation by introducing the Green's function 

G(lx~x'l) Xr -~lx•x•J 
= 2N a e ' r r . 

so that 

00 co 

~8 (x) = ~ Ndcrd(x') ~s (x') G( lx-x' l)dx' + kN a r 
p p ~ 

-co -oo -a 

in pile 

= 0 in reflector, 

and since ~(x)has the periodicity implied by (~.lll), 

a 

P(E x" x') G( lx"-x'l )dx'dx" . 
s' ' 

(7.115) 

co 

~ Nacra(x') ~8(x') G(ix-x'l)dx' 

-co 

= (Nrcrr - Npcrp) f !s(X')G(x,x')dx' (7 ~116)' 

where 

•.:' 

-a 

m 

G(x,x') = L (-l)i G(lx + i8-:- x•l). 
i= -oo 

Hence the integral equation is 
a 

~ ~(x' I 
-a 

a 

G(x,x' )dx' + k J ~8 (x') 
-a 

H(x,x' )dx' (7.117) 



where co 

H(x,x') = f P( Ea ,x" ,x') G( 1 x" -x l)dx" = 

-oo 

00 

= L (-l)i 
i=-00 

00 

~ P00 (E0 , lx' + 

-60 

i8 - x" I) G( lx" - x'l )dx" . 

·The critical value of k is again determined by 

1 r ~2(x)dx Nrcrr - Npap Jf t.(x;) G(ii;X:) ~.(Xjdidx• 
Npap_l s - . Npcrp -i 

k = ---------------------------------------------------

j~ P.(x•) H(x',x) ~0 (x)dx'dx 
-a 

VIL-57 

(7.11S) 

and k: as dete.rmined from (7.11S) 1 is stationary when ~s(x) satisfies the integral 

equation (7•117). 

The Harmonics Method* 

The image method does not converge very well when the reflector is so 

small (i.e~.? small compared to a migration area) that the "image pil~s" a:f:fedt 

the neutron distribution sensibly.. In this event there is available a scheme, 

called the method of harmonicsJ which consists essentially o:f expanding the 

neutron distribution in an orthogonal set o:f :functions. The ?r~hogonal functions 

are characteristic functions for a uniform pile with the same dimensions as the 

system pile and reflector. The method bears a close resemblance to the harmonics 

method of solving the multi-group equations. It is less general than the group 

method in that the slowing down properties must be independent of p~sition; it is 

more general in that the slowing down kernel can be arbitrary. 

* G. Goertzel and H. L. Garabedian, ORNL-30; also, H,. C. Schweinleri MonP-152 • .. 



To des~ribe the method1 we consider the pile equation 

q{E,£) = I kNaa~e(K') P(E,_!:,.!:' )d£' 

pile 

vn:.-;e 

(7.119) 

(7 .120) . 

where P(Ei~P~') is the finite slowing down kernel. The ~bsorption cross-section 

Ncra is considered to be a function of space: thus a uniform pile surrounded by . 

a reflector is a special case of (7.119). 

The function kNcra~s is first represented as a series of orthonormal functions 

Zi(~). The Zi(E) are defined to be normalized solutions of the equation 

2 
t::. Zi + BiZi = 0 

which vanish on the extrapolated outer boundary of the reflector and are regular 

inside the pile. 

The function ~6 (~) can be expanded in a series of 21(~); 

(7 a121) 

where 

ci = l ~.<Kl zi (£)d£ ' (7.122) 

the integration extending to the outer edge of the system. Now if·we· put 

= 2: 
i 

then, upon comparing (~Q122) and (7~123) we easily obtain 

Noa~s(~) = ~ ~ Ci Yl1i j(~) 

(7.12Ja) 

(7.123b) 

(7.12~) 

(7.124b) 



where 

~ij 

.~ 

= J Naaz1(!:) ZJ(!:ldo: 

f kNaaZi (!:), Z J(!:) do: 

161 
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(7 .124c) 

Equation ( ~.J.24b) defines the analytic continuation of kNaafs(£) over all space. 

Hence the slowing down density can be written 

q( E, r) = f kNaa~s(!:' ) P( E,!:,!: • ) do: • = } kNaa~s (!:' ) lfu (E, 1!:-!:' lld!:' (7 .125) 

pile all 
space 

where P00(E,I£-~'I) is the slowing down kernel in the infinite system. By the 

fUndamental theorem of pile theory, 

f 
all 

space 

Z.(r') P (E,Ir-r 1 /). dr' = P. (E,B~)·Zi(r.) 
~ 00 00 ~ -

where P
00 

denotes the three dimensional Fourier transform of P00 , 

<:D 

- 2 r . s inBjr 2 
p00 (:E;,Bj) .= l~n .J P00_ (E,r) ·' B: ·r r dr. 

1 ·o J . .. 
Substituting (7-.124b) into (11.125) and using ('IZ.l26), we obtain 

(7.126) 

(7~127) 

(7 .128) 

Substituting (f1~12S), (7~.124a) and (~·.,121) into the pile equation. (7 .ll9) we obtain 
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Since the Zi(~) are orthonormal, jquation (~J29) can hold only.if the coefficients 

of each Zi vanish. This leads to 

which is an infinite set of homogeneous linear equations in Ci' Equation (~.130) 

has a non-trivial solution if and only if. the determinant of coefficients vanishes; 

i.e., 

= o. (7.131) 

Since .. ·~. depends on k according to (7 J.24d) J· equation (7 .13i) may be viewed as 
1J . 

the critical equation; for a pre-assigned Naa and pile radius; for example, it 

determines the critical value of k. 

The Modified Pile Eg,uation 

In the first section.of this chapter it was shown that, in a large, uniform 

reactor the asymptotic slow neutron flux satisfies the one-group pile equation 

(7.132) 

We shall now show that ··an equation of similar form holds asymptotically in a 

large reactor in which the absorption cross-section is a fUnction of position 

but the slow diffusion coefficient, i.e., the transport mean free path, is inde-

pendent of position, and the multiplication constant is everywhere close to unity. 

A large reactor in which the concentration of fissionable material is variable is 

an example of such a system. 

The asymptotic pile equation can be written 



If k(~) is eve~here close to unity, it is permissible to expand the quantity 

kNaa~s(~i) around the point~ in Taylor's series and keep only the first two terms, 

since1 _ as will be seen presently, the curvature of kNaa~(~) at ~ point is less 

than k-l and is therefore small when k is close to one. Expanding in Taylor's 
M2 

series we have, as in ( 7.1 ), 

Upon substituting into the pile equation we obtain. 

(7 ol.35) 

Sin~e D 11 . t2 (r) Na a·(r) is assumed to. be independeil~, of ·p·osi:ti'dnt:cli:t luani.J.tie:·dil.11mol--· -

(7 .1:36-) 

which, upon putting 
·_:.,. 

·~ 

(7.137) 
.. ,. 

2 2 k r 2 
where M = L + -

6
- (Es), becomes 

(7 ol3S) 

The quantity V(~) is seen to satisfy the one-group pile equation in a large 

reactor with a variable distribution of fissionable material. According to (a.lJS) 

the buckling of ~(~) is (k-l)jM2; this justifies the expansion in Taylor's series 

when k - 1 << 1. 
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It must be emphasized that the simple one-group equation is satisfied by 

y(_;:) only asymptotically-- i.e., far from a. boundary, since otherwise P00 (Es 1 lr-r'\) 

must be replaced by the finite slowing down kernel. Also, the equation is sa.tis-

fied only in regions where the curvature of the neutron density is small, since 

otherwise it is not correct to cut off the Taylor's expansion at two terms. In 

a. heterogeneous lattice where the slow neutron density shows marked fluctuations, 

the details of these fluctuatioi:l:s cannot be computed from (l7 .138) since (7. .• 138) 

was derived on the assumption that the quantity kNoa.~s(r) varies slowly over 

the pile. 

The modified pile equation is useful in computing the critical mass and 

asymptotic neutron distribution in a system in which the disposition of fissionable 

material changes, but rather slowly~ over the pile. Thus in a. water moderated 

thermal neutron reactor, r 2 ))L2. If the fissionable and other absorbing material 
6 

is disposed so that k(_;:) = k, a. constant, then equation (~.138) reduces to 

k-1 
~ V (,;:) + ==-- ,> (r) ·~ 0; 

2j6 -.r 

i.e., in a. slab geometry 

Y (x). ·= c:A: .. cda: Bx 

where B2 = k-1 and A is a constant. Hence 
r2/6 

(7.139) 

(7.140) 

i.e., the slow neutron density is inversely proportional to the capture cross-section. 
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FIGURE 7-IV 

Tne first Iterate of an 
Assumed Constant Neutron 
Flux Distribution Obtained 
by a Variation Method. 
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