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- THEQRY OF NEUTRON CHAIN REACTIONS

The following notea comprise Part-I, Volume II, of & book
on neutrén chain reactions which is largely en outgrowth of a
course given in the original Llinton Laboratories Training School.
A first draft of some of these notes hes already appeared. Because
of the demands of the reactor program, we have considered it beat

to put out a second preliminery edition even though there are in-

adequacies in the text. B o
_ Pert II, Volume II, is still in preparstion as is Volume IIT

entitled "Lattice Theory".
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VOLUME IX, PART I
HOMOGENEOUS NUCLEAR CHAIN REACTIONS

INTRODUCTION

The previous section of thie book deals with the gemeral problem'of
neutron diffusion. In the sequel we shall apply the results obtained al-
ready to the thsory of slow neutron chain reacting systems.

A neutron chain reacting system or "pile" is a device containing 515-
sionable material (such as U233, Pu?39, 1233) which produces neutrons as
the result of neutroan inducedAfission in the fissionable meterial. It
is not necessary that the reaction be divergent or potenﬁ}ally divergent
for it to be called a chain reaction: a.small piece of ordinary uranium
is a chein reacting system (although a very inefficient ome) since, if
neutrons are introduced into the system, more neutrons will be produded
from neutrons which are absorbed in ﬁhe 1235 and induce fission. The word
"chain" thus refers to the fact that the agency which.causes fission, name-
ly, the neutroms, are themselves produced as a fesult of fission. In this
way every fission event gives rise to a chain of subsequent fissions; every
neutron gives rise to a sequence of daughter neutrons. |

A chain reaction can be divergent, convergent, or critical. If more
neutrons are produced by neutron indﬁced fission(l) than are ahsorbed in

‘the system or leak out, the system is said to bs divergent., If fewer neu-

trons are produced then are abgorbed or leak out, the system is comvergent.

(1) Neutrons produced by an extraneous source, such as Ra-Be, are not
counted here, : ‘
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And if the number of neutrons produced is Jjust equal to the total nnmber‘
which are absorbed or which leak out, the system is critical.

Evidently any chein reacting system in which more neutrons are produced
than are absorbed can be made divergent by buildiﬁg the eystem large enough.
PFor, as the size of the system‘is increaged, the relative importance of neu-
‘ron leakage becomes less; in en infinite system mo neutrons are lost by leak-
age. The size of a chain reacting system at which the neutron production
from neutron induced figeion is just balenced by the leakege and the absofp-

tion 1is callsd the critical size. Of couree the critical size will depepd

on the shape of the system -- a critical sphers reguires less material than
say & cylinder, since, because of its smaller surface to volume ratio the
lsakage of meutroms out of a sphere is smeller then out of a cylinder of
the same %olume. For a given shaped system the critical size depends both
on.the number‘qf_neutrona produced per neutron absorbed igsidq the system --

that is, on the multiplication coretsnt (denoted by k,, or simply k) --‘and

also on a length, the migration length (denmoted by M), which characterizes
the scale of the neutron diféusion processes.

The multiplication congtant and the‘migrgﬁignﬁ;ength depend on the nu-
clear properties, such as'capture crogs sections, mean free paths, number of
neutrons produced per fission, etc., of the waterisls contained in the chain
reacting system. They also depend on the configuration of the materials con-
tained in the system -- whether the fissionable material is lumped or spread
out, the mass ratio of fissionable to non-fissionabdble material, etc.  The
calculation of the multiplication congtant and migration length comprises
"microscopic" pile thebry -- "microscopic"” because tke multiplication constant

and migration length are inténsive properties of a pile which are character-

v Bt



istic of the small scale struéture of thé pile and are nearly independent
of the gross size of the system.

From the microscopic properties of a chain reacting pile it is possible
to derive varioﬁs extensive quantities -- for example, the critical size of
the system or the neutroﬁ distribution. All of these quantities depend upon
the size of the chein reacting system; they cen be computed without reference
to the dstailed structuré of the pile once the multipiication constaht and
nigretion lengih are knowh. For this réason their calculation is said to
comprise "macroscopic" pile theory. In the preaent section we shall give
an expositioﬁ of macroscopic pile theory. Microacopic pile theory will be

treated in the final section.
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CHAPIER V
NEUTRON CEAIN REACTIONS

Nuclear Reactions in Fissionsble Materials

The possibility of establishing & neutron chain reaction depends upon
the fact that certain heavy iéotopes, notably those‘with an odd number of
neutrons, such as U235 end Pu239, undergo figsion when they absorb neutrons.
The fission act is_accompaniédwby {he emission of several fast neutrons; the
energy of these fast neutrons is greeter than the neutron energy required to
induce fission.

Tt is important that the enmergy of the fission neutrons exceed the fis-
sion threshold; otherwise thé produced neutrons could not induce further fis-
sion., It may be mentioned that the idea of a neutron chainireaction based
on the Be9(n,2n)368 reaction was proposed by L. Szilerd in about 1933, at
which time the reaction wes erroneously believed to be exothermic. Since
then all n-2n reactions have been shown to be endothermic.

For fissioneble species containing en odd number of neutrons, the fis-
sion threshold is below thermal energy (~0.025 ev), and so these nuclei
fission with thermal neutrons. Probably all the kunown even neutron fission-

able nuclei, except some isotopes of elements 9L or higher, have fiésion .

thresholds wmany kilovolts above thermal energy. This difference between the
even and odd neutron isotopes of the same element is attributed by Bohr and
Wheeler to the higher binding energ& per neutron in an even neutron nucleus
compared with an odd neptron nucleus. An odd neutron heavy nucleus gains

an excitation energy of about 6 Mev when it captures a neutron while an even

neutron nucleus gains only 5 Mev excitation energy. This difference in exci-

A,/
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tation energ& accounts for the fact that o&d neutron heavy nuclei are ther-
mally fissionable, while even neutron nuclei have finite fission thresholds.

The fission threshold of & heavy nucleus depends, accbrding to the
drép model, on the ratio of the Coulomb energy to the surface tension energy;
that is, upon the ratio ZQ/A vhere Z'is‘the atomic number and A is the atomic
weight.' Thus, of two isofopes,‘both naving even newtroa numbers or both
having odd neutron numbers, the 1ighter.isotopes will have fﬁe lower fission
‘threshold and will'probébl& be more\readily fissionable.

In the folicwing table we list the thermal neutron fission cross sec-

tions,‘df, of ali the knowvm tasrmelly fissionsble nuciei and the fission

excitation threhdidé, Ef, of those isotopes which undergo fission only with

fast neutrons. . See Tébie:on page V=-3.
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Table V-I

Thermal Fission Cross-Sections and Fission
Thresholds of Heavy Isotopes

Reference

Element Z| A O'f( 2:1021")cm2 Ef(Mev),** Vol. Paper
" Ra 88 | 223 <100 14B 19.5%
Ra(ThX 88 | 224 "
Ra 88 | 226| 1.1 x 10 ‘ 148 19.6
Re(MsTh, ) | 88 | 228 <2 14B 19.5
Ac: 89 | 227 <20 : . pi:} 19.5
Ac(MsThy) | 89 | 228 '
Th 90 | 227.| 600 + 200 14B 19.5
Th(RdTh) | 90 } 228 .1 ' 17B 9.10
Th 90 {229| 4o + 10 17B 9.1
Th(I,) 90 | 230 < .001 17B 9.12
Th(UY) 90 | 231
Th 90 | 232| €2 z 107 6.40 17B 9.12
Th(UX,) |90 23k
Pe, 911230 15,000 - 20,000 17B '9.15
Pa 91231 .010 + .005 5.89 178 9.12
. Pa 911} 232 700 + 200 17B 9.15
Pa 91 | 233 - <0.1 : 17B ~9.10
Pa(UZ) 91 { 23k
Pa(UZp) 91 | 234 A
U g2 | 232 70 + 10 17B 9.11
U 92 | 233 505 . . LA-140A
U(U; 1) 92| 234 £2.1 LA-140A
U(Acﬁ) 921 235 550 LA-140A
U 92 | 237 _ :
u(ur) 92 | 236 _ - 6.02
Y 92| 239 '
Np 931|237 .018 + .005 5.55 _ 14B 22,26
Np 93 [ 238 | 1000 - 1500 14B 22.28
Np 931239 -
Np 93| 240 4 ‘ ,
Pu 9h | 238 £18 14B 22.24
Pu o9k | 239 765 LA-140A .
; Pu ok { 240 £180 14B 22.10
Am 95| 241 | 2.9 + 0.5 : 14B 22.11
Cm 96 | 242 ~ 1500 : 14B 22.25

This and similar numbers are PFR reference numbers. The data was obtained
privately from W. N. Manning and represents work of A. Ghiorso, F. T. Hageman,
M. Studier, A. VanWinkle, S. Peterson, E. Westman, P. W. Osborn and others.
The data in this table were taken directly from the draft of K. Way's report
"The Fisaion Process”.

** Ep = Neutron Threshold Energy + Neutron Binding Energy
(measured) (calculated)




At the time (1939) Bohr and Wheeler wrote their papers on the theory of
fission it was believed that fission was a very much faster process than y-ray
emission (lifetime against fission ~r10-16 sec comp;red fo lifetime against
y-emission ~ 10713 sec) . -Thué the fission width even at thermal energy was
believed to be go great that narrow fission resonanceé were out of the question.
In 1943, McDaniel et al observed low lying resonances in the fiasioﬁ of U235,
subseguently such reéonances were found in all the fissionable isotopes. The
total widths of these fiss@on resonances, -~ 0.1 ev, wers not particularly dif-
Perent from the usual y-ray widths found in elements a£ the heavy end of the
periodic chart;, which would imply that radiative captufe could compete success-
fully with fission at thermal energies. Thié proved to be the case: measurements
of the thermal_fission crogs-gections and the total capture cross-section in
fissionable isotopes shovedvthat'the tvo were appreciably differen;. The cap-
tuie crosg-section, which includes both fission and radistive capture, was as
much as 40% higher than the fission cross-section, in some cases.

In the following table we give the ratio of thermal radiati§e capture to |
fission cross-sections for the three important fissionable abecies, 0233, 0235,

and.Pg239.

g "

Table V-II .

Ratio of Thermal Radiative Capture.
(or) to Fission (of) Cross-sections

233
1235

Pu39

a = gp/op Reference
0.12 - MP-126 .
0.18 LA-158, LA-140A

0.48 1A-140A, 1A-91




Production of Neutrons in Fissionable Materials

The fission process is accompanied by the emission of several fast neutrons.
We denote the number of nreutrons produced per fissiomn by ¥ . This number is
greater than V] , the nuwmber of neutrons produced per neutron absorbed in the
fiésionable meterial; because not all the neutrons absorbed in a fissionable

isotope lead to fission. Evidently 7 is related to Y] by the relation

yl=___cf__--,) = P

0r+6f‘. + O

(5.1)

=

where Q = G, /0,.

The process of neutron emission during fission ig rather obscure, and so
p:_redictions of the energy dependence of 7 and v] are apt to be misleading.
The gquaatity Y is usuelly believed to be rather comstaat at low neutron
energies (<€ 10,000 ev). OCn the other nand there iz experimental evidence
that v is very strongly energy dependent even at energies of a few volts. At
very high.energies processes cen be :Lmagined in which the incident neutron is
- gcattered inelastically but leaves the nucieus so highly excited that it can
still undergo fiséion. Such a "fission-n" reaction would lead to & rather
-higher 7 thsn ordinary fission. Actual.ly there is some evidence that 7 for
very fast neutrons is a little greater than Y for slow neutrons. |

At high energies cther processes, such as njnzn, will compete with fission.
Since M from true fission is larger thsn 2,.a strong n-2n précess would tend
to reduce 7] as observed experimentally. |

If the fissionable isotope 1s mixed with a non-figsionable isotope of the
game element ; a8 for example aatural U, in which the isotopic ratio of 0235 to

0238 is about 0.7%, the quantity | R is defined a&s the number of neutrons produced

5
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per neutron absorbed in the mixtuxre. IT the.isotopic ratio U235:U'238 is R,

then :
Raf(U235)ﬂ9A

) Rop(U235) + Ru (U235) + o, (0R38)

R . (5.2)

For ordinsry uranium this gueatity is about 1.33. The values of Y} and 'Q

for thermal fission in verious fissionable egpecies are gilven in the accompanying

teble.

n + Reference
U233 2.37 2,67 LA-140, CP-2297
ve3ds 2.09 2.7 LA-1k0
Pue39 1.97 ' 2.91 LA-140

The Figsion Spectrum ‘ .

It is generally believed that the neutrons emitted during fission are
"boiled off" from the moving fission fragments. The energy of the fission
neutrons according to this picture should be distributed according_fg/an . }
evaporation formula sulitably modified to teke account of the motion of the
fission fragments.
Several measurements of the energy spectrum of the fission neutrons
(briefly, the "fission spectrum”) have been made. The most éatisfactory
measurements -- those of H. T. Richards (LA-8%; LA-200), ané of P. Demers,
(MP-215) -- were performed by irrsdiating a photographic plate with fission

neutrons from 0235 and observing the recoil proton tracks. The results of
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thgse experiments are given in Figure 5.-I.. The figsion spectrum rises to a

V-1

maximum at about 2 Mev and thep trails off; the average neutron energy is about
2.3 Mev. The maximum neutron energy observed in eny of these experiments is
abéut 10 Mev; probably there are meutrons of higher energy then this. According
to D. Hughes, the tail of the figsion spectrum is ar exponentially decreasing

"E 106
function e / ,

» Where E ig measured in Mev.

There is some evidence that the fission specirs from slow and fast neutron
fissiong are aot identical (LA-200). Thie’is not surpriging since essentially
pDew processes which result in neutron emission (imelastic scattering + fissionm,

n-2n) probebly occur at high energy.

Delayed Neutrons

Most of the neutrors produced during fission sre emitted practically in-
stantaneously. According to measurements of R. R. Wilson the delay between
separation éf the fission fragments end emission éf the neutrons is less than
10'9 sec. BResidées these prompt neutrons & few aeultrons sre emitted only after
very muck longer time delays. Theas delgzed neutirons comprise about.l% or less
of the instantancous neutrons. The ezact punber of delsyed neutrons depends
strongly on the fissionable épecies ard probably, to & much lesser extent, upon
the energy of the neutrims inducing fissiom.

The origin of the deleyed neuirons wes elucideted by Bohr and Wheeler
(Phys. Rev. 56, k26, 1939). They pointed out thet during the successive p-decays
of the fisslon fragments it is probable that scme nuclei are formed in very highly
excited states. If the excitation energy exceeds the binding energy of a neutron,
then the nucleus will decay by neutror emission instead of B particle emission.
The neutron emission follows immediately upon the formation of the highly excited

nucleusg; but this nncleua; being a daughter of a chaln of previous p-decays, is




/2 v
formed rather long after fission. Consequently the neutrons emitted by it
- follow fission after a time determined by the half-lives of the previous p-
émitters.
Identific@tion of the fission fragments which emit two of the delayed
neutrons was accomblished by Snell et al (CP-1§67). He found that the delayed

87 and the delayed neutrons of the

neutrons of half life 56 sec were emitted by Br
half life 22 sec were emitted by IY37. Recently Sugarmen has identified the
6.5 sec emitter to be a Br isotope with mass number between 87 and 90 (CP-2621).
The delayed neutrons are eﬁitted with definite mean lives, '?}, as to be
expected considering the fect that they follow B-decey of certain fission products.
Various observers have established the existences of at least five delayed
neutron periods. These are given along with the abundences, By, relative
to the total number of prompt neutrons per fission, in the following table:
- Table V-IV |

Delayed Neutron Meen Lives and Relative Abundances

23 = mean life; B; = relative abundance
233 - o2
T, (sec). B1 T (sec) By Z; (sec) By
80.2 1.83x107" 79.8 2.60x10™% 79.5 1.16x107
3.7 5.82x107% 32.1 17.26x10™% 32.4  9.35x107%
6.51  B8.57zlo~* 6.46 22,81x107% 7.0 11.18x10°%
2.19  6.2ex107H 1.9 2l .45x107% 1.55 10.51x107*

n

0.61 1.82x10" 0.61 8.50x10~%

B—/35543-




| Tﬁe énergy of the delayed neutrones is, according to Wolland Burgy, con-
gsiderably lowef on the average than the energy of the prompt neutrons.
.The mean delayed neutron energy is about 0.7 Mev; this may be compared
with the averége prompt neutron energy which is about 2.3 Mev.
The prompt neutrons probably come Pfrom virgin fission fragments before
they lose any of their energy by B-decay. It is therefore not too surprising
that their energy should be higher than that of neutrons emitted from nuclei
farther down in & fission chain. |
The existence of thé delayéd neutrons is of paremount importance for the
practical operation of a chain reaction. If the multiplicetion constant is so
low thet the delayed neutrons are necessary for m&intaining the reaction divergent,.
:'he delayed neutrons will act as "pacemakers" for the reaction. The time scale
of any temporal change in the reaction will be largely detérmined by the delayed
neutron periods. Since these periocds are of the order of secondé, while the
lifetimevof a neutron ln a slow neutron chain reaction is about 10'3‘seconds,
fluctuations in neutrom density which, in the abse#ce of the delaygd neutrons,
would cccur in times of the order of mill;aeconde actually are slowed down to
times of the order of several seconds. This makes the control of a chain
reacting pile relatively simple. |

Other Neutron Producing Nuclear Reactions in a Pile

Nuciear reactions other than heavy isotope fission produce neutrons in
certain types of piles. The most important of these, particularly in piles
employing heavy water or beryllium as moderator, are y-n end n-2n reactions.

The threshcld for the reaction D2(7,n)HL ig 2.2 Mev; for the reaction

Be9(7-n)Be8 it is 1.65 Mev. Since there are several y-rays with energy greater

BA37-1Y
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than this among the fission product radiations, photoneutrons are presenx‘in' .

any chain reacting system containing D or Be. Such neutrons have been observed
in the Argonne heavy weter pile.

Since the photoneutrons are produced from y-rays emitted by the fission
products, they are delayed with respect to the prompt neutroﬁs. Their intensi-
ties and periods depend to éome extent upon the time during which the fission-
able material has been exposed to neutrons. This is because the long-lived
fission producte saturate only after long irradiations; the composition of the
fission products present immediately after an irradiation, and consequently
the number of 7-n neutrons produced by fission prodﬁc£ y-reys, therefore,
depends upon the total time of irradiation.

Aveilable measurements on the periods and relative abundences of photo-
neutrons produced in heavy water by fission products do not agree very well.

In the following table we give the relative abundsnces of heavy vﬁter photo-
neutrons following very long neutron irradiation of U235, The data of Bernstein
and Preston is probably more reliable than that of Fughes, Speatz and Cahn. Both
sets of data indicete that the photoneutrons frém heavy water do not amount to
more than 1/3 of the delayed neutrons.

| Table V-V

Mean-Lives, 7, and Abundances, B;, (Relative to Totel Prompt Fission Neutrons)
of D photoneutrons following long irradlation of U235 :

Bernstein and Preston Hughes, Spaatz and Cahn

Pi . (a3 Bi Z3
0.0122 z 10-F 7 hr 0.005F x 10-¥ 35 br
0.0387 x 107% 6.3 hr 0.15 x 10-¥ 2.9  nr
0.284 x 10k 2.4 hr 0.20 x 10°k 46 min
0.250 x 10-% 39.3 min 0.35 x 10-% 9.k min
0.400 x 107% 1.1 min 1.20 x 10-}4 130 sec
1.32 x 1074 2.7 min 7.61 x 1074 33.3 sec
2.1% x 10-k Y7 sec 10.91 x 10~k 9.65  sec
T.32 x 10-% 35 sec ' ‘

(34355




: /f;— V;il
~ The n-2n reactions in Be and D have the same thresbo;dsmasuthe 7-n

reaqtions, 1.65 Mev and 2.2 Mev. Some of the prompt neutrons have greater

energy than this; and in fact, evidence for a fairly strong n-2n reaction in

Be moderated piles has been found. We shall consider this matter in greater

detail in the section on microscopic pile theory.

Elementary Characteristics of a Chain Reaction

Slow Neutron Chain Reactions

The fission cross sections of the fissionable nuclel are remarkably large
at thermal energy (Table;V-I):. the ratio of cross-secfiona of 0235 and U238
is about 250 at thermal energy as against an average ratio of about 2 over the
resonance region. Thus, in ordiﬁary U, vhere the isotopic contents of 0235
is 0.7%, only about l‘out of every T5 neutrons absorbed above the Cd cutoff
(0.4 volts) causes fission, while roughly one out of every two neutrons ab-
sérbed thermally causes fiésion. For this reason, it is advantageous to re-
duce the energy of the fission neutrons in a chain reacting system to thermal
energy and thus insure that most.of the neutrons are absorbed when they are
very slow. | |

The slowing down of neutrons in & pile is accomplished by mixing the uranium
with a moderator‘of low atomic weight, such as HQO,.DQO, Be, BeO, C, etc. All
moderators (except He, which is impractical because it is a gas) absorb some
neutrons. Consequently the amount of moderator which can be used in a slow
neutron chaln reacting system is limited by the requirement that not too many
neutrons bé lost in the moderator. The best moderator from a theoretical view-
point is the one for which the ratio of slowing down power (as ; ) to captﬁre
cross-section (ca) is & maximum, for, the higher this ratio, the fewer neutrons

will be absorbed pérasitically by the moderator for a giveh amount of moderation.
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ven in the following table:

This ratio for several moderators is g

Moderator "Hp0 D0 He Be C 0

g ;’/oa 63 1600 © 126 169 1000

Of course the choice of moderator in any given practical case depends not
ohly on this ratio but also on such quantities as density, availability, structural
properties, etc.

While a fission neutron is being slowed in a medium containing uranium and
a moderator it may be absorbed in one of the resonances of U238. If too many
néﬁtrons are lost in U238 resonances a chain reaction is impossible; hence
methods must be devised to reduce the resonance absorpfion in U238.

The most obvious method is to use separated U‘235 or Pu239 in the chain
reaction. Unfortunately this method is expensive. The discc')very of alternative,
much cheaper methods to e;gtablish a chain réaction was one of the main achieve-
ments of the f’lutonium Project. R

The use of a moderator in itself reduces the resonance absorption in U238
According to equation ( 4.28) the p?roba.bility that a neutron escape resonance

capture in a homogeneous mixture of uranium and moderator is

. |
aE
P = exp -Iv-—u—<f°au“f
momfm eff . i

where N, is the:.number of atoms of U238/c.c. s Nyoo gm is the slowing down power
of the moderator per c.c., and f;a.u dg:) is the effective resonance absorp-
tion integral per atom of ve . As the slowing down power of

the moderatof per atom of U is increa.sec"i -- and this is most easily accomplished
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by ipcreaging the amount qf moderator -- the fraction of neutrons which

escape resonance capture increases. If increase of p were the only con-
sideration, it would be advantageous to increage the amount of moderator
without limit. However, as has been pointed out, all practical moderating
substances capture some thermal neutrons.‘ This sets a limit to the amount
of moderator which can be used. Because of this competition between two
oppoéing requirements, namely, large amount of modérator to reduce U238
resonance capture, and small amount of moderator to reduce thermal neutron
capture in the modefator, there is an optimum moderator to U ratio for which
the multiplicétion congtant of a chain reacting system 1is ﬁighest.A One of
the problems of microscopic pile theory is to calculate this optimum.

Heterogeneous versus Homogeneous Arrangements

" There is another way to reduce the resonance absorption in U238. This
is to dispose the uranium heterogeneocusly as a lattice o} Jumps throughout
the moderator. The advantage of such an arréngement is that, because the

resonance abso:ption ig largely céonfined to sharp, very deep levels, the

uranium atoms ingide the lump are shielded from resonance neutrona by the
atoms on the surface. The effectiveness of this self-shielding in reducing
the resonance absorption ha; been calculated in Chapter IV.

It was found that the value of

([

can be reduced by lumping from 240 x 10'2u 2

cm , the value for finely divided

uranium to perhaps 15 x 10'2h cm?, depending on the exact dimensions of the

lump (Eq.4.51).




This decrease in the resonance absorption of uranium caused by lumping
is cruciael for the establishment of a chain reaction in a system containing
unenriched uranium. In fact it was the idea of lumping, proposed independeﬁxly
by Szilard in this country and by Harteck in Germany, which made it possible
to bulld a successful chain reaction out of gfaphite and ordiﬁﬁry uranium.

The main reason that lumping improves the multiplication constant is that,

because of the discrete character of the resomance absorption, leveld,.(and. ..

their very great height) the value ofv(jﬁcau %§> ee is leés in a lump than in
& homogeneous mixture. There is a second éffecteof lu@piné, namely, that
moderation of nmeutrons through the resonance absorptioh energy region takes
place away from the uranium. This also reduces, though rather slightly, the
resonance absorption. However, this effect is mofe'than balanced by the fact
that, since thermal neutrons are absorbed .in the uranium lump, the thermal
neutron density is depressed there relative to the déhsity in the moderator.
Consequently the absorption in the moderator is increased by an amoun§ which,
in lattices of practical interest, more than offsets the improvement in res-
onance absorption caused by £he fact that the neutrons slow down far from the
Jump. _

; ' The total effect on the multiplication constant caused by lumping is the

sum of three effects, two of which are advantageous, and one disadvantageous:

Adﬁantages of Lumping

1) Reduction in ( f Oau —d%) or
_ e

2) Reduction in number of resonance neutrons near lump.
Disadventege of Lumping

1) Increase in thermal absorption by moderator because of increase in

relative number of thermsal neutrons in moderator.

\
. ,;3
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The net effect of lumping is advantageous since advantage (1) much

more than balances the difference between diaédvantage (1) and advantage (2).
Since advantage (1) accrueéAonly because the absorption is concentrated in very
deep lines, there would be a net loss instead of & net gain from lumping if
the resonance absorption in U238 wers not confined to discrete levels. It
may be mentioned that in many semi-popular discussions of the chain reaction,
the only advantage claimed for lumping is (2); this is evidently erroneous.

In the calculation of the critical size and other macroscgbic properties
of piles the lattice structure complicates the analysis very coﬁsiderably.
We shall in this section ignore the lattice structure, and shall consider the-.
actual pile to be replaced by a homogeneoué one whose microscopic properties,
on the average, are the same as those of the lattice pile. This procedure is
approximately correct as long as the dimensions of a cell are small compared
to the size of the pile. In Chapter the error which is involved in this
simplification will be calcﬁlated.'

The Multiplication Constant

Uranium chain reactions of the type we consider, i.e., slow neutron chain
-reactions may be described by tracing the}life history of a neutron fram the
time of its birth';s a fest neutron to the time of its death, by capture, as
& slow neutron. For the moment we shall not be concerned with neutrons which
might Ieak ouf; we therefore imagine a chain reacting system having a certain
definite arrangement of uranium and moderator and whose ove:all size is in-
finlte. In such an infinite system neutrons can be lost only by capture.

Four distinct steps can be distinguished in the life cycle of a pile

neutron; these are-

a. Birth as a fast neutron as the result of fission.

\\‘f\

e
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b. Absorption above the fission threshold in U230 ang production of

new neutrons as a result of fast fission. .
c. Radiative capture by 0238 during moderation (so-called resonance
capture), or resonance capture by U235 followed by fission.
d. Radiative capture as a slow neuéron in the moderator or in impurities
(so-called parasitic capture), or capture in fissionable material
-with production of fast neutrons from fission.
Evidently any given neutron caennot experience all phases of this cycle.
A few neutrons in the slow neutron chain reactions of primary interest will
be multiplied as a result of fast neutron fission in U’238 or other fast neutron
fissionable material. Some will be ceptured at resonance energy and therefore

will not be awveilable for further fission. The majority of neutrons will sur-

or will produce new neutrons by thermal fissiom.

Fast and Slow Neutron Chain Reactions
'~ The fraction of neutrons which survive any particular part of the cycle

will depend upon the composition of the pile. If there is little moderator
present and if the fissionable material ("metal") is lumped in large lumps,
more neutrons will céuse fast fission than if the lumps are small or the metal
to moderator ratio is small. Again if there is a large amount of moderator
Present; most of the neutrons will be slowed to thermal energy, and thé bulk of
the fissions will be produced by thermal neutrons.

Thus a uranium chain reaction can be characterized: by the energy of the

neutroﬁs which cause the fissions. In a bomb practically all the fissions are

caused by neutrons whose energy is above 1/2 Mev; such a chain reaction is -

 B-ra5al
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referred to as a "fast neutron reaction", or simply "fast" reaction. In

a chain reaction which operates on unenriched urgnium only a few percenf of

the fissions are caused by fast or resonance neutrons; almost all the fissions
are caused by thermal neutrons, and such a reaction is therefore called a "slow"
reaction.

The Generation Time

Basic to the discussion of neutron chain reactions is the notion of the

generation time. We define this quantity for a slow neutron reaction in the

following manner. Each slow neutron fission in a pile is induced by a neutron
vhich was born as a direct result of slow fission occurring at a time .éi
before, or it is induced by a neutron which'is a direct faét fission or resonanﬁe
fission descendant of neﬁtrons produced by slo# fission at time .ﬁi earlier.

The time ,fi may be called the effective lifetime of the neutron causing
fission. Because of statistical fluctuations in the neutron capture process,

and because some neutrons do have fast and resonance fissioﬂ descendants while
others do not, the time intervals ‘Qi between.suCcessive directly related slow
neutron fissions will not all be the same. Let N{}li)'denote the number of slow
neutron fissions per second per c.c. induced by neutrons whose effective life-

time is Jei. Then we define the average generation time (/) as

Py N-(‘ei)
S, ¥&)

the summation being over all neutron lifetimes.

z s (5.3)

The generation time is a measure of the average time between successive

generations of slow neutron fissions. In a pile whose macroscopic composition
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is not uniform the generation time willAvary from place to place. Where
there is a large amount of moderator the generation time will be larger than
where there is a small amount of moderator.

If the pile is so rich in fissionable material that no thermal fission
takes place, this definition of the generation time evidently becomes inappro-
priate. In that case it is more relevant to define a generation time as the
average time interval between succesgsive fissions -- not successive thermal
fissions. However, for slow neutron piles it is more convenient to define the
generation time as the average time between successive slow neutron fiéeions.

During one generation'time a certain number of slow neutrons are credted
and another number of slow neutrons are captured in the infinite sygtem. The

ratio of the number of neutrons which become slow (i.e., are "produced") in one

generation time to the number of slow neutrans captured in one generation is -

called the multiplication constant of the system. It is demoted by k., since

it i1s defined for an infinitely large system.

The multiplication constant in a slow neutron system is evidently the
pfoduct of four factors, correspoading fo the four phases in the neutrbn cycle.
Suppose a single slow neutron is captured in the system. How many slow neutron,
on the average, will be produced one generation time later? The slow néutran‘
may be captured either in'thg moderator or othe; inert material present in the
system, in which case it does not produce fission, or it may be captured in the
fissionable material. (In this comnection we call any isotopic mixture of ued
and pe38 "fissionable material"”). The number of fast neutrons which immediately
result from the capture of one slow neufrén is therefore the product

£

vhere f is the probability that the slow neutron is captured in the uranium,

B-}3:5-2
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and M is the number of neutrons produced per slow neutron captured in the

fissionable material. The quantity f is called the thermal utiliiation.

Some of the fast neutrons produced by slow néutron fission induce fast
neutron fission in the fissionable material. Most of these fast neutron
fissions occur in the U238 in a system in which unenriched U is used. The
total number of fast neutrons produced in one generation as the result of the
capture of & slow neutron is, thus, greater than fr] by a factor € (> 1),

the fast multiplication constant. This factor is defined as the ratio of the

number of neutrons produced by all fissions in one generation to the number of
neutrans produced by slow neutron fission in one generation.
During the slowing down process the fast neutrons which leave the uranium.

have only a probability p (resonance escape probability) of escaping resonance

capture in 0238. The total number of slow neutrons éreated in one genersation

per thermal neutron absorbed is therefore
km:. fY}ép- (5‘1")

For every slow neutron absorbed in one generation time, there must have been

% - 1 neutrons absorbed in the resonance absorption energy range. The Egggl
number of neutrons esbsorbed (both as slow and as resonance) per thermal neutron
absorbed per generation time is therefore l/p. Similarly the total number of
neutrons which are produced in one generation time per thermal neutron absorbed --
this includes both those neutrons which are destined to bg captured at resonance

‘

and those which are destined to be captured thermally -- is ky/p. The ratio

is k

o+ Hence an alternative definition of the multiplication constant is the

total number of neutrons produced, on the average, in one generation time,




. 2¢

divided by the total number of neutrons absorbed, on the average, in cne gen-
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eration time.

The Elementary Pile Eguation

We now consider a éhain reacting system which is of finite size. The
4neutron density in this system evidently will remain stationary if the average
number of neutrons produced in one generation is equal to the average number
lost in one generation. In an infinite system neutrons can be lost only by
cépture. In a finite system'neutrons can be lost by leakage out of the system
as well as by capture. Hence it is customary to define an "effective" multi-
plication constant, k.pp, defined as the number of neutrons produced on the
average in one generation time, divided by the total number of peutrons ghich
are absorbed or leak out on the average in oné generation time. The quantity
k pp 18 to be contrasted with k, defined as the total number of neutrons pro-
duced on the average in one éeneration time, divided by the total number of
neutrons absorbed in one generation. The conditior that the neutron density
in a chain reaction be stationary is evidently keff = 1. For any finite sygtem
kepr is less than k. The difference between k and k.pp is less than k. The
difference_between k and k. pp depends on the size of the system; as the chain
reacting pile becomes infinite the value of kepr approaches K.

If the energy spectrum of the neutrons in the finite system is the same
as the spectrum in the infinite syétem having the same uwranium-moderator con-
figuration, then k is the sameias ko - The neutron spectra in the finite pile
and in its infinite prototype will be nearly the same provided the dimensions
of the pile are large compared to the range‘of fission neutrons. We shall be
interested in unenriched systems'whicﬁ are always large enough for this to be

true. It 1s for this reason we find it appropriate to introduce the quantity
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Ky, and in fact, to divide pile theory into microscopic and macroscopic
parts. If the pile ig so small that the reutron energy spectrum is very
different:ffom that in the infinite prototype, the . quentity k is still a
ugseful oﬁe,'but it is no longer necesaérily equal to kg, - In such a case
the introduction of k., as defined Lere,* is rather irfelevant, and, in fact,
the distinction between microscopic and macroscépic pile theory is blurred.

Near the bounderies of even a large gystem the neutron energy spectrum
will deviate from that characteristic of an infirite pile. This is usually
not too important,4as will be showa 1aterl:since the iacroscopic properties
of a pile are hardly affected by its microscopic properties near the boundaries.
There are some cages, however -- notably the calculation of the effect of re-
flectors -~ where the change in energy.spectrum near e boundery is important.
In this cése the dietinctioﬁ betﬁeen macroscépie and microascopic theory is
not very useful.

With these prelimimeries ir mind, we proceed to derive an equation de--
scribing ihe neutron distribution in a slow neufron chain reacting pile. We
congider a homogeneous and isotropic pile which contains no extraneous neutron
sources (e.g. Ba.;-Be)° Our task will be to compute the critical‘size of such
a pile, and to'd?termine the distribution of neutrons in it. Two éseumptions
will be made in most of the work of this chapter. First, we assume the pile
is homogeneous. Since most piles utilizing unenriched uranium have a lattice
structure, this assumption apparenfly eliminatesAunenriched piles from con-
sideration. In order to include such lattice piles in the theory we use the
stratagsm méntioged previously: namely, we replace the lattice pile by a
homogeneocus pile having the same microscopic properties as the lattice. The

neutron distribution calculated for the homogeneous model will then reprodﬁce

* It is still possivle, however, as pointed out by F. L. Friedman, to introduce
a multiplication constant which is explicitly a fuuction of the neutron energy
gpectrun. :

3\
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the large scale features of the distribution in.the»lattiée piie but will not

include the local irregularities introduced by the lattice structure. ‘These
local irregularities are perturbations superposed on the large scale neutron
distribution; they will be dealt with in Part 3 of this volume.

. A second assump?ién which w;il be mede in much of'what follows is that
the multiplication c;nstant, k, of the.pile is cioaé to unity. This is almost
always the case for.piles usipg unenriched uranium. The téquirement;kda].is
equivalent to the assumption that the pile is large compared to the mean dis-
tance that a neutron'travels‘froﬁ birth to death.

In order to write down an equation which describes the steady state neutron
distribution, we use the fact that in a steady state thevﬁumber of neutrons
vhich become slow per second in & cubic centlmeter must equal the net number
which diffuge out of;.éi@é the number captured in, this cubic centimeter per
second. Let { (r) denote tﬁe thermal flux (i.e., number times velocity of
thsrma; neutrons per c.c.) at the point whose position vector is r. Since
the anguiar distribution is not used in this section, no confusion will arise
from our use of Qé instead of‘Qbé for fhe total slow flux. We assume the system
ig go large that élementary diffusion theory is spplicable; then the net diffusion

of slow neutrons out of a unit volume in one second‘is

V* DoWVg(x)

where Do is the diffusion coefficient for slow neutrons. The diffusion co-

efficient DO is related to other constants by the equation

/

DO = — (5'5)

B3
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vhere Naa is the average macroscopic absorption cross-section of the pile,
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(evaluated for the average velocity), and 1/X (=L) is the diffusion length in
the pile. -
Let g_(Ee »T) denote the number of neutrons which become ‘thermal per c.c.

per second at r. In the steady state |

V' DoVs(z) - Nop8s(x) + a(Eg,z) =0 . - (5.6)

The number of neutrons q(Es',_z_:'_)awhich become thermal per c¢.c. per s49c.,A
that is, the "th.ema.; slowing down. density”, evidently comprises all those
neutrons which were produced by fission throughout the pile and which, in
diffusing eway from their points of origin, happen to become thermal at r.
Let P(Eg,r,r') bé the probability that a fission neutron, created in unit
volume at r' inside the pile, becomes a slow neutron in unit volume at .1_»'.'
We call the function P(Eg,r,r') the "finite slowing down kernel" -- "finite"
since it describes the slowing .down probability in a finite pile. Since the
number of fission neutrons producéd per c.Ac‘ per second at r' is % Naaqs(;') 2
the totael number becoming thermal per c¢.c. per second at r vis_

.4(Eg,x) = / k Nogda(x') P(Eg,r,r')ar’, (5.7

P .
pile

the integral being extended over the pile.

Upon substituting (5.7) into (5.6), we obtain

V- DOVQS(?E.) - N"aés(.r_) + f %Naa@é(f) P(ES,E:E')GE""‘ 0, (5.8)
; pile .

an integro-differential equation whose solution determines the slow neutron

density in a slow neutron chain reaction. We call (5.8) the "pile equation”.
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If the pile is uniform, the pile equation may be written

12 O8s(x) + 5 | Ge(z") B(Bgomztlazt - Be(m) = 0 | (5.9)

pile
gince the square of the pile diffusion length, L2, -1 Just

L2 = -l— = DO/NO' .

)(2

The Fast Flux and the Boundary Conditions

Before the thermal neutron density or critical size can be determined
from the pile equation, it ia necessaxry té_ first specify the distri'bution of -
the non-thermal neutrons, ‘a.nd s,e;:ond to impose boundary conditions on’ th@ neut-
’ron fluxes of all energies. '

The slowing down density at energy E, that is, the number of neutrons
vhich cross energy E.per c.c. per gecond is denoted,, as in Chapter III, by q(E,g).
If P(E,r,r') 1s the probability that a fission neutron created in unit volume

at r' crosses the energy E in a unit volume at r, then evidently
aBx) = [ £Wopde(x') B(8,z,x') az' ; (5.10)
pile

when E = E;, q(E,r) is just the thermal slowing down density, q(Eg,r) which

appears in the pile equation. If §s_(£) and P(E,r,r') ere known, (5.10) deter-

mines the slowing down density, and therefore the fast flux, at every emergy.
If the chain reé.cting systein contained only slow neutrons, the boundary
condition would be essentially the one stated in Chapter I; namely, [ ¢

extrapolstes to zero at 0.T1 )\t beyond the physical boundary, )\t being the

B-)35-%7
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The boundary condition on the fast neutrorn flux -- that is, on q(E,r) --

thermal neutron transport mean free path.%

will in general differ from the boundary condition on {i(r), since the mean

free path is always energy dependeni. ’'The fact that the extrapolation dis-

tences for. q(E,r) and @s(g) may differ complicates the theory tremendously.

To simplify matters it is usually cuiséomamr to assume {hé two dista.x;ces are )

the same. This is not at all correct for chain reactions whose critical size

is compara.bie to a mean free vath; however, in siow neutron piles the extra-

pola‘bion. distance is always so swall compared to the pile dimension that the

error introduced by assuming the extrapolation distance to be.energy ixidependen’c

is unimportant. The size of this error is discussed in Chapter VII . |
There are tfvo 8lightly different ways in which the extrapolation dis-

tance boundary condition can be formulated. Either the condition can be taken

asg

XY

ww §s(r), a(E,x) venish on extrapolated boundary
or; it can be taken ss A

8¢ -1
5 o b))
: on physical boundary (5.11)

o3}

&g - E .71)\40(?;)]-_:L

ar

0 -

where -§- is the derivative with respect to the outward normal, 1) .

av

¥ The exact numerical coefficient of )\ in the extrapolation distance formula
depends on the curvature of the boundEr.g surface, and on the ratio of capture

~ to scattering cross-section. The constant O. {J epplies if the curvature is
small compared to XN, and if a&/as << 1.

Ao g
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The two ways of writing the boundary conditioﬁs are identical if the
fluxes inside the pile are linear near the pile boundary. This is always
the case if the pile is sufficiently large. The theory of the pile turns out
to be more straightforward if the boundsry condition is stated in terms of the
normal logarithmric derivetives, Eq. (5.11), although actual calculations are

eagier with the other form of the boundery condition.

- For convenience we collect together the pile equation and the boundary

conditions: .
V - DoW8,(z) - Nogbe(r) + afEg,x) = 0 (5.9)
q(E,x) = %Nca@s(z'} P(E,r,r')az' (5.10)
piie - b
1 99, r -y a _ [ ' -1
o~ [ @) 5 b)) (53
' on physical boundary

For the remaining discussion we shsll assume the pile to be uniform,
and the transport mean free path -- that ig, the extrapolation distance --
to be energy independent unless otherwise stated.

. The Asymptotic Pile FEguation

Far from the boundaries of the pile the moderation of neutrons proceeds
as though the pile were infiriteiy large. In the expression for the slowing
down demsity (5.10) it is therefore permissible to write Py, (E,Ix-x'| ), where

Po(E;lz-r'l) is the slowing down kermel in an infinite system, rather than
2

B35~
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:P(E,_:s,g '__). Thus, the slowing down density far from a boundary, which we

denoted by q (E,x), is

Qoo (Byx) = a[l % No Qy(z') P_(E, [,z:?_z:'!)dz_-'- (5.12)

space

The integration can 'Be extended over all space rather than over the pile
provided P (E, Jr-xr'|) falls off so rapidly with r-r' that there is no
appreciable contribution :bo the slowing down density from points close to
the boundary. In all cases of physical importance Pm(E, l;'_z_';-;'z_:'l) fa.lis off
sufficiently fast with ;_;_1:' Lor this to be true.

The pile equation ;a.t points far from the boundary is, for a uniform

pile,

12A0(x) - §a(z) +% f b (') ByE lz-r')ax = o. (5.13)
11 -
sgaCe

This equation may be referred to as the asmptotic pile equation, and its

solutions, since they are valid in general only far from boundaries, may be

" called aesymptotic solutions of the pile equation.

The asymptotic piJ:e equation ig simpler than the exact p.ile equation
on two accounts: first, because the range of int.egra.tion is over all space;
and second, 'be'cause the slowing down kernel Pw(E,l r-r'| ) depends only on
|z-r'l; that is, it is a symmetric, displacement kernel.

‘i’he finite slowing down kernel, P(E,r,r') will ordinarily satisfy the

same linear diffe;reﬁtial equation as Poo(E" r-r' [) -- Por example, the Fermi

AB~BEBA
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age equation, or the group equation - depending on thé picture used to
represent the slowing down propeas..i‘ Thus P(E,g,_z:_')“ in guch cages is ex-
preasible as a superposition of POO(E_,I g;z'l). The process of superposing
%(E,I r-r'|) to yield P(E,r,r') corresponds to distributing a system of
images whose effects mutually cancel on the extrapo’la,ted boundary and so
cause P(E,g:_,_i') to venish there. Since these images must be placed at
various distances fram the boundexry it is not surprising that the finite
kernel, P(E',g_,g') is not, in general, a displacement kernel, whi;e the in-
finite one is. Another way of putting it is that the presence of boundaries
introduces the possibility of leakege end therefore makes the probability
that & fagt neutron created at r' will appear at r depend not only on | r-r 1,
but also on the distance from r or ' to the pile boundary. ) |

The infinite slowing down kernel is normalized so that the probability
that a neutron ﬁll cross energy E is the resonance escape probability, p(E):

@

f?w ('E',Al_g-_zl'l Jar' = hx - Pm(E,r)radr = p(E) . (5.14)

The resonance escape probability to thermal energy p(Eg) , is denoted, as usual,
simply by p. N ' | |
As an example;whiéh will meke the distinction betﬁeen Pm(E,l r-r'l) an&
P(E,_I_‘,:_r_') clear, consider a semi-infinite slab in which the Fermi age slowing
down picture is applicable, and in which p{E) = 1. Then Pw(E,,_J;_—_I_’") is
1 l:_ !xi_xg c
e |

[ ’C(E)]l/ 2

5
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while the finite kernel, which vanishes on the slab bouhdary (x = 0) is

o .2'(13)]1/2 | |

The second term represents an image which is placed at -x' and whose

effect is to bring the finite kermel to zero at ‘the boundary.

Asymptotic Solution of the Pile Fquation; the Fundamental Theorem of Pile Theory

Ve now prove the following " pundamental theorem of pile theory":

The asymptotic uniform pile eguation

LA - §() + 5 / §o(x') BfEglrar'hart =0 . (5.3)

space

is satisfied by any solution of
Ads + B, = 0 : (5.15)

provided B2 is a root of the charact erlatic equation

1282 - 1 4+ % P, (Eg,B%) =0 (5.16)

where §bo(Eg:32) is the three-dimensional Fourier transform of ?oo(Ea,lil);

i.e.,

®

— 2 i.]i..]':. : 2 '

P, (Eg,B%) = e Py (Es,lrl)dr by - Sin Br p Ey,r)rdr.
0
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The slowing down density at_energy E is
k -
Qo (Bsx) = 5 Nop Bo(E,B%) §olx)s. (5.18)
that is, qu, (E,r) is proportional at every energy to Ps(r).
To prove this theorem we first prove the last statement (5.17).
Consider a solution @5(3) of
A §o(x) + Bq4(x) = 0. . (5.15)

This function may be expressed as a Fourier integral

vhere ¢ = @ i + ayi +0ak 1s a vector integration variable. Since Qs
gatisfies (5.15), the function A(c) must De zero unless a2 = BS; i.e.,

it is a 5-function on the surfacé of a sphere of ;adius B. From (5.12),

Ao (EyT) = % Nog, j' §s(z") EIKE,|£~£")§£'
all .
space

k ig-r!
=5 Nop [[ Ale) e Py (Eplz-r'|)az' aa .

1o (z-r)

Introducing the factor e — -, We obtain

v_z).

ig-r ia-(r

Qo (Ex) = £ Mo, |Al@) e~ a [e= = = B (Blzr-z'l)ajz-r'| =

= % Nog -%o(E:Ba) @s(:{)

.. q},/? | | | o

"'N“
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where ELD(E,BE) is the three dimensional Fourier transform of QD(E,lg-g'l).

The three dimensional transform caa be written

— ~ iBer
PAEB%) = [ o= = P (E,Izl)ar

wvhere B = B i + Byg + B k.
X z=

On shifting to polar coordinates ¥, i = cog8,(, this becomes
()

f;gE,Be) = hr | Ei%;@E‘Pho(E,r)rzdr.

O

Thus (5.17) is proved.

To prove the remainder of the theorem, we write

k. 3 N 2 ;
q_{Eg,x) = 5 Noy P (Eg,B7)§,(x)

and substitute into the uniform pile aquation. The result is the char-
acteristic equation (5.16):

-

-1%82 - 1 4 % B(ng,5%) = 0; . (5.16)

thus we have proved that a solution of (5.16) will satisfy the asymptotic
pile equation if B2 is & root of (5.15).

The golution of the ésymptotic pile equation is, according fo the funda-
mental theorem, equivalent to the solution of the wave equation (5.15) in which
32 ig a root of the characteristic equation (5.16). The quantity 32 is called
the "buckling" of the pile.* Since it is determiﬁed as the root of an equation
(5.16) whose parameters (La,k,in,p), depend only omw the microscopic properties

of the pile, the buckling B2 is also & microscopic property of the pile.

*The word buckling, proposed by J. Wheeler, arises fram the fact that 32=4 A;QQ/QS
and is therefore & measure of the vature of the slow neutron density. ’

~B-+3536
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Reletion Between égzggpotic and Finite Pile Equetions

The asymptotic pile equation and its asympfotic solution are valid in
general only at distances from the boundery which areAlarge compared to the
slowing down range of the neutrons. Cloger to the boundary than this there
will generelly be non-asymptotic solutions for which the rather remarkable
préportionality between the slowing down density and the slow neutron density
implied in equation (5.18) no longer holds.

" There is one very importent case, héwever; in which the asymptotic
solution is rigorously correct to within a distance of a mean free path,
rather than e slowing down range, of the boundary and the breakdown of the
asymptotic solution then arises only beceuse elementary diffusion theory ceases
to be valid so close to thae bouﬁdary.v Thig -importent case is stated in the
following theorem:

If the extrapolation distance, ag defined by (5.11) is independent of

neutron energy, and if the finite and iafinite slowing down kernels satisfz

the same linear equation, then the asymptotic solution holds'evggyvhere in a

critical. pile, except within a distance of the order of a mean free path from

the boundsry. The slowing down density In the pile is identical with the

infinite slowing down density except witbkin a distance of the order of a mean

free path from the boundary.

To prove this theorem we.first use the fact that the infinite slowing down

density is proportional to the slow neutron flux §g

Qo (Esx) = £ Nop B (5,5°) Jy(z)
provided

AQ, + BEQE = O.'

W a3
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Since qoéE,r) is proportional to @Q(r), the two functions q., and Qs satisfy

V33

the same boundary conditions on the pile surface.

The finite slowiﬁgzdown kernel P(E,g,g') aﬁd the infinite slowing dowa kernel
POO(E,'I;_-_:_".IY) both satisfy ‘tﬁe sane linear equation by hypothesis. Conaequenfly,
the finite slowing down density |

d&y=%N% -@@Qfmgaﬁ@'

pile

end the infinite slowing down density

qu;E,_z:) = f@s(r ") Py (E,lr-r |)ar',
ul]
space

being linear superpositions of functions which satisfy a linear equation,

also satisfy the same equation. The slowing down density a(E,r) in therile
satisfies certain boundary condit‘ons whirh by hypothesis, are ‘identical with .
the boundary conditions sat*sfied by 6 But we have already shown that
qoo(E’E) being proportional everywhere to Qé(g) satisfies the same boundary
éonditiong es §,(r). Hence qoéE,g) and q(E,r) ere identical, and the asymp-
fotic solution Q;(g) satisfies the pile equation wherever the pile equation

and the extrapolation distance boundery condition are valid, i.e., yithin 8

distance of the order of a mean free path of the boundary. v

Phy91calxy, .the sense of this theorem is somewhat as follows' the neutron
distribution in a finite pile can be calculated (under the restrictions stated
in the hypothesis) by extending the pile out to infinity end finding the asymp-_'

totic neutron distribution in this infinite system. This solution oscillates,

B-135=3%
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positive neutron densities alternating with negative ones ad infinitum. The

positive and negative dehsities are 8o distributed that on the pile boundary,
thelr superposed effect satisfies the houndary conditions. |

The regions in which the neutron density is negative may be called
"neg&tive" piles. The positive and negetive piles are very similar to the
system of images which are cormmonly used to solve ordinary boundary value pfob-
lems. Ordinsrily the system of images cen be constructed only if the bounding
surface has sufficient symmetry -- for example, if it is an infinite slab, or
a cube, etc. The theorem shows that even for arbitrary shaped surface, an
appropriate imege system of positive and negative piles can be constructed;
in fact, tiie intensity and distribution of the images is automatically given
by the enalytic continuation of the asymptotic neutron distribution outside
the pile.

This. manner of solving the finite plle equation by analytically contin-
uing the piie out to infinity was suggested bv Fermi. It is analogous to the
Born-von Karmen method of calcuvlating the ¢attice vibrations in a finlte crystal
‘by extending the crystal lattice cut to Lnflnlty

At first sight the requxrement thet P(E,r,r') and P04E,Ir-r |) satisfy
the same linear equation mey seem too restrictive. Actually this is not the
case: the three glowing down kernels which are used in pile theory, namely
the Fermi age kernel, the group picture kernel, and the transport kermel all
satisfy linear equations. This holds trﬁe, of course, for kernels obtained
by convolution of these three.

The requirement that the extrapolation aistance is independent of energyA

is very insccurate in a hydrogénous mixture, but it is fair in most other cases.
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If the pile is very large compared to a mean free path the assumption that
the extrapolation distance is energy independent is evidently hot very im-
portant.

In any case, as we have already remarked, the whole argument breaks
&own within a mean free path of the boundary because diffusion theory is
invelid there. Since~the overall size of a fast neutron pile is often of ..
the order of a mean free path, the theorem is not applicable in such a case.
Thus the actual neutron distribution in e small fast neutron pile falls off
much faster near the boundery than does the asymptotic densityi. For slow
neutron piles, on the other hand, the gize is always so large that the de-
viations from diffusion theory near the boundary are almost always unimportant.

Existence of & Critical Size

According to the fundamental theorem.of pile theory; a solution of the

wave equation

Ay, + 3%, = 0  (5.15)

will .setisfy the pile equation provided the buckling, 32, satigfies the

characteristic equation
2 - 2, -
1282 -1 . % Py, (EgB7) = 0. | - (5.16)

The buckling in (5.15) determines the "wave length" of éhe ngutron distri-
bution; i.e., for a given value of"B? the neutron density h;; nodés on some
surface;' Only if the éxtraﬁolated plle surface cbincides with thé surface on
which fhe'neutron density has its first node will the:solution of (5.15) satisfy
both the pile equation and the boundery conditions (neutron density positive .

inside the pile, neutron density zero on the extrapolated boundary). Thus,

io
A
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for a pre-assigned set of microscopic parametéfé;_k, L2, P, POD(E,'Z:£'|):
the‘pile must have very particuler physical dimensions in order forAfhe
buckling of the solﬁtion vhich satisfies the boundary conditions to simul-
taneously satisfy the characteristic equation (5.16). This size is called
the "critical size" of the pile,

If the pile is critical,iB2 must simultaneously fulfill two conditionq:
”firqt, B® must satisfy the characteristic equation (5.16); and second, Ba
must have such & value that the neutron density determined from (5.15) vanishes
on the extrapolated boundary. Two different "bucklings" can therefore be dis-
tinguished. On the one hand there is the numerical Qalue

A\
B2 = - Qfs » C o (5.7)

which the buckling must have if the neutron density is to vanish on the ex-
trapolated boundary of the pile. This number is called the geometric buckling
and is here denoted by~B§. For a sphere of radius Ry its numerical valué is

clearly ﬂang, since the solution of the wave equation

=
A§E+¥§s=o
: c
is positive inside a sphere of radius R, and vanishes on the surface of the
sphere. On the other hand, for any disposition of the fissionable material
for which the microscopic quantities L2, k, p, PE;E,Igfg'I) are pre-assigned,

2

there is a value of B- which satisfies the characteristic equation. Thus

82, the "material" buckling, may be denoted by 3%; it is a microscopic char-

acteristic of a particular disposition of fissionable material in a moderating

medium.

o T WL AN
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The remarks are summarized in the following theorem:

A chain reacting pile will be critical if its geometric buckling QEVand

its material buckling, Bﬁ, are equal.

In order for a finite critical size to exist at all the buckling of the
neutron density must be positive. For the buckling, being proporfional to
_-ZSQB/QS, determines the curvature of the neutron distribution. If the buckling
is positive (B? > 0) the neutron density distribution is concave downward. Con-
versely, if the buckling is negafive the distribution is concave upward. Evi-
dently, if a solution of the pile equation which fglls to zero at the boundary
is to exist, the curvature of the neutron distribution must be dowanward. For
a given pogitive value of the material buckling, and & giveﬁ pile shape, there
is one and only one critical éile size for which the neutron density will fall
to zero at the pile boundary. If the pile is smaller than this, the neutron
deﬁsity will not reach zero at the boundary; if the pile is larger, the deﬁsity
will fall to.zero before the boundary is reached.

On physical grounds there will be a finite critical size -- that is, the

buckling will be positive -- only if k' > 1.

This is readily seen mathematically in the following manner:
The critical equation may be written

22
k = p(l + 1L B‘}

Bp(Eg,B%)

where.

@, .
= 2 -gin Br 2
0




If the buckling vanishes, B®

[}
o
[y

by

Pod Eg,0)

hence, when B2 =0,

. | (5.18)
B {Eg,0)

Since B® = O implies an infinitely large pile, equation (5.1) means that the

critical size is infinite if k = 1.

Iz 8% > 0,
@
= 2 " gin Br 2
Pof Eg,B") = 4= —5 P{Egr)rdr ¢ p
0
gince s_i_%‘gg < 1. Hence, when 32 >0,
K p(1l + La.B2
= _ H
Poo(Es:Bz)

i.e., if the critical size i1s finite, k must exceed unity.

If B°< 0, .

0 0)
B (Eg,B2) = b f sioh el (m,r)rer > p
| |Bx|

sinh |Br 2
singe W—L)l. Hence, when B K O,

k £ 1;

- A
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i.e., if k is less than unity there is no finite critical size.
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The Critical Equation for a Large Pile

If the pile is very large the general critical equation always'reduces to
a particularly simpieaform. Since large critical size means small Ba, the
critical equation for a large pile can be obtained by expanding ED(ES,Bz) in

powers of Be. Thus

8 .

00} . @

5 2 in B 2 . o hn 2 L
Pcn(,Es’B' ). = 4x f -s-%r—,!- Pm(Es,‘r)r dr & bx | P(I;Es,r)r dr - Zz B Pm(Es,r)r ar + +..

o

0 (5.20)

The first integral is equal to p because of the way in which 3x§Es,r) has

been normalized. The second integral is p %?(Es), where ;§(ES) is the mean
square dlistance that aAneutfon travels froﬁ the‘point of its birfh as a fission
neutron to the}point at which it becomes a slow neutron.. Substituting (5.20)

into (5.16) we obtain for the characteristic equation

2 k-1 '
B = . (5.21)
L2 + k ig— (Es)

The approximate form of the characteristic equation serves to verify the
statement that B is positive (i.e., critical size is finite) only if k¥ > 1.

The expansion of.§;£Es,Ba) is valid only thgfzis amall; i.e., if the

recipr&cal of the buckling is much largér than the mean square range. The
reciprocal -of B is always the same order of magniiude as the dimension of a
chain'reacting systen, providing the e#trapol&tion distance is small compared
with this dimension. Hence, if thé linear dimersion of a chaiﬁ reaction is

large compared to the slowing down range %rQ(ES), the simple relation (5.21)

B35



V-k0

‘between BZ and k - 1 holds. In particular, this result is independent of
the particular form of E (Eg,|r-z'[).

° The simplified characterigtic equation can be written

- - 1) 2
B2 - k-1 %kll_(kl)_r_z_(Es)
re f M

12 + ?;E(Eg) + (k-1)

where‘M2 = 12 4+ % re (Es) is called the migration area. Since this equation

is derived in the first place on the assumption that k - 14C1, it is correct,

to the first order in k - 1, to write

B2 =X=21; (5.22)
» JM

-~

’
this simplest form of the pile equgtidn'is apéiicable in any pile in which
unenriched uranium is used, since k - i is always small in such piles.

The square root of the migration'areé'is called the migration lengtﬁ.
Since 12 = % x mean square distance that a slow neutron travels before capture,
the migration area is % X mean square distance a'neutfon travels from birth to
death. Thg migration length determines the length scale of a chain reacting
. system in which k is'close to unity. |

Physical Significance of the Characteristic Equation; kopp and kex

The characteristic equation (5.16) which the geometric buckling satisfiles
if the pile is critical has a simple physical interpretation. This interpre-
tation follows from the fact that the Fourier transform of the slowing down

kernel, ExxE,Ba), is the average probability that a fission neutron, born in

a plle whose geometric Buckling is 32, crosses energy E inside the pile. To




o_—
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gee this we recall from the fundamental theorem that the slowing down density

~at energy E in a pile whose geometric buckling is Bg is

a(E,r) =§ P (B ,Bg) Nogds(z)-

Since qé@g,ﬁj is the number of neutrons vhich cross E per c.c. per sec at r,

the total number Q(E) of neutrons which cross E per second inside the pile is

Q(E) = a(E,r)dr -% E,Bz)No f@e(,r; dr

plle . pile

while the number of fission neutrons created per second in the pile is

Thoy | filwer.
“pile

The ratio of these. two expressions is ED(E,BZ), and this is therefore the
average probability that a neutron crosses energy E inside the pile.
Suppose we start with N fission neutrons and follow their history through

one generation. Of these neutrons
N (E,,B%)
8’7g’

became slow inside the pile. Some of these slow neutrons leak out of the
pile; the rest are absorbed. The ratio of slow neutron leakage out of the

pile to slow neutron absorption is

ﬁofvgs * ds ,
' (5.23)

3 o

pile




46 v-42

where J/k7§s + ds denotes the integral over the pile surface of the normal
\ .
derivative of the slow neutron flux. By Gauss' theorem, and the fact that Jg

satisfies the wave equation (5.15), this ratio can be written

slow neutron leakage = 128
slow neutron absorption g . (5.24)

' e S 1
slow neutrons absorbed _ > 2
g

Hence

slow neutrons created 1 + L

The totael number of neutrons absorbed as slow, if we started with N fission
neutrons, is the product of N §G§ES,B2) and (5.24); that is
N B (Eg,BZ)

o ~ B

252
1+ LB
g

and therefore the total number of second generation fission neutrons is

k F, cr‘ Eg,B ) ,
>N /e (5.25)
‘1 + 1285 -
In a steady state, i.e., if the pile is criticél, the number of fission neutrons
at the beginning of the second’'generation must be the seme as N, the number at
‘the beginning of the firstigenératidn: 'Hetce  theicritical i“éona"-ition»f{i-'sff’W"- C

Ty ey e DR R I Pt e v d R N Teannes
X ikt NRRA Y E e AIRAEN

= 2
g Fo(EssBg)

2p2
1+ LB
g

k
P

which, upon cancellation of N, is seen to be the characteristic equation (5.16).

Since

2
1+ Lng




is the total number of slow neutronsabso;bed in one generation per neutron
elther absorbed or,leaking, the quantity
B (Eg,B2)

5.26)
1 +.LQB§ (

ket = %
is the number of neutrons created in one generation Per neutron removed either
by leakage or absorption. According to p.20 thiévquantity is the "effective
multiplication constant” which was there denoted by k,pp Evidently k. pp depends
on Bg, i.e., on the pile size, and is therefore a macroscopic pile property.
The critical condition (5.16) is simply -
kgpp = 1. | (5.27)

If the geometric buckling is reduced -- that is, if the pile size is increased
beyond the critical size -- then more neutrons will be produced in one generation
than are lost by leakage or absorption. The kgpp will be larger than unity by

an amount which is called the "excess" multiplication factor, kex;

ESS 2
kK =k P(D(ES}Bg)

k
exX eff - 1 = D - 1. (5.28)

1 + 12p2
g

The excess multiplication factor determines the rate at which the neutron
density grows in a super-critical pile. It is therefore of fundamental im-
portance ig the theory of pile kinetics.

Fast and Slow Leakage

According to (5;2h) the number of slow neutrons which leak out of the pile

per slow neutron absorbed is

L252.b

P=paeils
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Since every slow neutron which is created in the pile must ultimately leak

out or be captured, (5.2&) leads to:

slow neutrons leaking out of pile _ L232 . (5.29)
slow neutrons created imside pile ; , 1252 :

We now compute the fast neutron leakage. The relative fraction of
fast neutrons which leak out or are captured in resonances will, of course,
~ depend upon whether the resonance capture occurs predominantly at very high
energy, before the neutronq have slowed.down, or at low energy after their
moderation has beqn‘completéd. It is fairly realistic, in most slow neutron
piles, to assume that all the reéonance capthre occurs at a single energy

Just above thermal energy. Then if N fast neutroﬁs start to slow down

N B,(E,,B2) become thermal inside pile

N‘—Er'(ES,BZ) reach the resonance line inside pile

E . _
N [} - J§L (Es,Bagl leak out of pile while being slowed.

P 2
P - Bxﬁﬁh,B ) _ fast neutrons leaking out of pile (5.30)
P P (E 32) ~ slow neutrons created inside pile , :
w \Ts?

Hence we can write, by combining (5.29) and (5.30),

L
b=

Y " ne 2p2
_ fast neutrons leaking out of pile _ (p - Bo(Eg,B%) (1 + L°B ) (5.31)

g Slow neutrons leaking out of pile Lszdp i;s(Es)Be)

where clff and ,ng denote fast and slow leakages respectively. Since

1+ L232

» we have in a critical pile

Lol |

E, (Eg,B?) |

1 "~ Bzl
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Xt KD - PodE,5°%)

- (5.32)
s PR
and this becomes, in a large pile (k:a;l),
o .
JZ} x r<(Esg)
S E . (5.33)
&Ly P 612

Aside from the factor %, vhich is necessarily close to unity in a large pile,
the fast end slow leakages are just in proportion to the contributions of the
fast and slow neutrons to the migration area. .

The ratio. éZ%/&Z; given in (5.32) is correct only if the resénance ab-
sorption occurs after the slowing down process has been completed. A corres-
ponding formula can easily be derived for the»case of resonance absorption
before moderation begins. In a slow neutron pile resonance absorption may
occur at all energies, although it is usually heaviest a few volts before
thermsl energy.

Neutron Distributions and Critical Sizes in Bare Piles with Various Geometries

In this sectién we calculate the neutron distributions and critical?s;zes
for piles of rather simple shape.

The method used is to solve the wave equation‘(5.l5) in which B ig the
real root of the characteristic equation (5.16). In all cases we consider here
piles which are uniform so that the buckling is independent of position. We
also suppose that the extrapolation distance is energy independent; the density
of slow and fast neutrons are therefore proportional throughout the pile. The
mathematical problem, then, is the same as finding the fundaméntal mode for a

vibrating medium of a particular shape and size.

B3550




Infinite Slab

The pile equation for a slab which is infinite in the y and z directions

is
5 .
9%, -0 | (5.34)
dx .
with the solution
9 = §, cos Bx, (5.35)

vhere 0 is the neutron flux and § is thé arbitrary value of § at x =.0,
'Vhigh we take to be the center plane of the pile. We do not distihguish
between slow and fast neutrons since the twb are proportional. The boundary
condition.§'= o at x = + a, vhere a is the extrapolated half thickness of the

plle, can be satisfied only if

a = é% ’ ’ : o (5.36)

andAthis is'the‘re}ation.between the critical hq;f'thickness and the buckling
of an infinite‘slab pile. The critical neutron distribution (5.35) is a maxi-
mum in the center of the pile and falls to zero at the extrapolated edge. This
is éharacteristic of the neutron distribution in any bare pile which is simply .
connected and which has a constant buckling everywhere. The average neutron ‘

flux, §, is given by

Y b4 2
=5 |cossax==§,; o (5.37)

X
2

i.e., the central flux is = = 1.57 times the average flux. The center to average

B335



neutrqn ﬁlux is an important quantity in thé design of an actual pile since
-1t determines how much more intense than the average is the heat production
at the pile center.

Another averagé which is importent in pile theory is the average of the

square of the neutron flux. For a slab pile this is

+a

— 2
2 b 2 nx ﬁ
? = % | " & dx = - (5.38)

-8

i.e., 5?13 1/2 the square of the neutron flux dt the centér of the pile°

The structure of the critical size forpula (5.36) dese%ves some sﬁudy
since it has the same baesic form for all geometries. The critical dimension -
a is in general proportional to l/B. If the pile is very iargé, then the
approximate formula (5.22) fo;'_B2 can be used. The critical~diménéion then

becomes

a = —H__ » (5.9)

24k - 1
i.e., a is proportionsal to.M, Thus for a large pile the migration length
determines tﬁé;scalé of a chain reacting system. The dimension a is algo
inversely prop;rtional to 4/E—:—i ; only if k exceeds unity is there a finite
critical sizef If k is just equal to one. The'pile ig infinitely large, and
if k is less than one, a is imaginary; that is;, there can be no critical pile
for which k is less than one. The constant of proportiomality betwéen a and

M/Ak - 1 is n/2 in the case of a slab; in other geometries this constant has

different values.
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Sphere
The pile equation is

2.4 .
a=(dr) 2 .a% 2 '
- =L +B =0
= ':oa b | (5.40)
with the solution (regular at the origin, r = o)
D=9, 885, T (5.41)
The critical radius R, is
' T
|
which, for & large pile becomes
: ™
Ry = ——— o (5.43)
© ME-T ~ »
and the critical volume, V., is
Ve=%mpdcliaxt 1299, | (5.44)
-3 383 B3,

The critical volume is inversely proportional to the 3/2 power of the buckling.

This is a general result which follows from dimensional considerations.

(5

6.08

. - i)
The value of J is g-gz , and the value of @ is

Infinite Right Circular Cylinder

The pile equation is

2
ag ad 2 :
-_d?-F;dr"‘B_g—o . (5.)4-5)

with the solution (regular at the origin)

§ = 9,9,(Br) ' . (5.46)
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where J, is the Bessel function of the first kind of zeéro-th order. The

critical radius is

_ 2.k05 ' : ' e
e = 53 ‘ . - o (5.46)
‘ which becomes, for & large éylinder,

o B | R - 2ol 4 (5.47)

' : vk - 1
]» The value of ﬁ is
. R ;
| = 2% c S 2J, (2.405) §
‘ | ) Rg o] RO 2.}‘_05 . ° 2.32

and the value of f2 is

1 o _2 : | §2
§° = o2 (2.h05) $2 = 2.

3.71

The integrels used to evaluate these averages are given in Ja.hnke-i'hde, .

Tables of Functions, p. 146.

FinitemB}ght Circular Cylinder of Height H,, Radius Rc

| The pile equation is

a®% ,1af, % o5 _ | .
e trar gt PLs0 S (5.48)

with the solution which vanishes at (Rg,+ 5 H,)

P = @OJO(2J+O5 R-z—) cos ;_z_ 4 o (5.49)
c L ,

=C

provided

(5.50)




This equation determines the critical radius in terms of the pile height

and buckling.' The minimum radiﬁs of a critical cylinder is found when H, = o3
this leads to the critical equation (5.#7) for an infinite cylinder. .The mini-
mum height is found when R = oo and-is just the wvalue found for the infinite
slab in (5.42). In both these extreme cases the pile volume is infinite. -
There must therefore be'an optimum radius to heiéhﬁ ratio for which the pile
volume, for a given buckling, is a minimum. To find this minimﬁm volune, vhin’

we write, from (5.50) . ‘ -

x x 2.405° B3

2

Vc =7(RH = -
CC - gl _ 42

c
end the minimum occurs when

av,
- = Q.
aH,

Solving this equation we find

1.5z 43z 2405 x @ 83

.o (5.51)
B3 - B3

vinin

The diameter of the mihimum volume critical cylinder is 1.08 times its height,
The distribution (5.49) in the finite cylinder is the product of two dis-
tributions, the one characteristic of an infinite cylinder, the other character-
istic of an infinite slab.: Correspondiﬁgtto>thisyfactd:abiiitytaf:the-solution
is the .fact “that the critical radius of £he finitefcyclinder;Aﬁhich,is.deters. i

o

mined from T

2 R . 2
2.405 - 32 _ g§ ,
B2 H
c : ¢

is the saﬁe as that of an infinite cylinder whose buckling is less than B2 by




an amount ne/Hg. The quantity, B - nz/Hg, which is denoted by B%, is called

the "radial” buckling. Similarly, the critical height is given by

2
= _ g2
@

2
vhere B2 = B2 - 2-_’“235_ is called the longitudinal buckling. The total
; : R ,

c
geometric buckling is thus the sum of the bucklings in each direction. 4This
example illustrates the general principle that whenever the pile equation (5.15)
is separable, the critical dimension in any directioﬁ is calcglated‘as though
the pilé were infinitéecin all other directions but with a buckling which is
reduced from B2 by the partial bucklings which are "assigned" to the other
directions.

Because the finite cylinder solution is factorable into infinite cylinder

and finite -glab solutions, the density averages are also products of the averages

for the two infinite shapes. Thus
T- 2g,(2.405) %2, -

and | :
— g

82 = 98(2.405) x 5 B} = =5 -

Rectangular Parallelopiped of Sides 2ap, 2ap, 2aq

The pile equation is

% % a2 o
E+£%+@+BQ=O (5'52)

with the solution which vanishes on the pile bbundary (z = +a), ¥ =18p,

0=, cos ZX cog ZL cos ZZ | (5.53)

2a3 2ap 2a3
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provided

2

1t2 1!2 P

+ + =
ha% hag ha%

B° . (5.54)

The solution is the ' product . of  three infinite slab solutions, one for each
‘of the coof&inate directions. The critical condition (5.54) determines one of
the critical dimensions in terms of the other two, which are arbitrary so long
as they exceed a certain minimum value. This minimum value is found by putting
a, = ap = a. Equation (5.54) then reduces to the formuls already found for
the critical infinite slab.
For a cube, a, = a2.= a3, the critical dimension is
ay = 243
2B

and the critical vélume, Vs 18

3 _ 13 .33/2 _161.1
1 B3 B3

V, = 8a - (5.55)

Comparing the critical volumes for a sphere (5.4k4), an optimum cylinder

'(5.51), and a cube all with the same buckling,

Vegphere® Veoylinder’ Vegype = L ¢ L-142 3 1.240 ;

i.e., the figure with the smallest surface to volume ratio requires the
smallest éritical volume for & given buckling. This result-is not surprisiﬁg
since the smaller the surface to volﬁme ratio, the smailer is the probability
that a neutron will escape from the system by leakage.

| The averages for a parallelopiped are again the product of three-sl;b

averages since the neutron distribution (5.53) is factorable. These averages are:
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More Complicated Shapes

Various more complicated shapes have been solved analytically; essentially
any shapes for which the fundamental vibrational mode is kﬁown is a solvable
pile shape. We list some of these shapes below:

Sector of a Sphere: “

The function

9= , (4y T/R;) Bp(cos 0) (5.56)

1@;?}7§: ‘2+
is a solution of the pile equation which satisfies the boundary condition
' .é = p on the boundary of a spherical sector (Fig.5-II), provided the half

angle @ of the sector is a zero of

EL(COS a) =0, ' , _ (5.57)

Figure 5-II

‘ez"is a zero of

(5.58)
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and

(5.59)

where Rc is the radius of the sphere from which the sector has been cut.
Thus (5.56) gives, for different values of L, the neutron distribution in
a d.iécrete set of gectors whose apex half-angles ,afe given by (5.57). TFor '

a hemisphere, ,@: 1, ¢ = n/2, and the neutron flux is

9

$ = —=2— J,,,(1k, T/R,) cos © (5.60)
/1/“1 r/Rc - 3/2 t °

where

My = bk, R, = 4.49/B, (5.61)
and the critical volume of the hemisphere is
Ve = 190/33. ' (5.62)

The critical volume of a hemisphere is 1.46 times as large as that of a ‘aphere
| having the same buckling. This is another 11lustration of the fact that for
a given buckling the figure with the smaller surface to:voluAme ratio requires
the smaller critical volume. To find the critical volumes of sectofs whose
half-angles are not zems of the Legendre Polynomials, iﬁterpola.tion between
the values of Vc found for sectors whose'a.ngles do satisfy (5.57) can be used.
Sector of a Cylinder: |

To solve a pile which is shéped like a cylindrical sector we proceed in

e similar manner. The function

nz

$= ¢, cos T, I (uz r/R.) cosd o




2

is a solution of the pile equation which satisfies the boundary comdition
ﬁ = 0 on the boundary of & cylindrical sector pile whose height is Hg, pro-

vided the half apex angle, & = x/2 ;

VALY)

=0
and
o
K 52 2 .
R—é + -H-é' = B-, (5.6’-1-)
! e e :

|
. X

!

Again ( 5.63) gives Ithe né'utron distributior; il;l a d‘is;:rete set of cylindrical
sector piles whoseKlia,l.f-a'.ilgl.é"s‘-Ia.rre"OL"= x/2l (,é;é 0). The criticel size
for.seétors whose ha..f-a,ngles are -not 1r/2,2 can be estimated by interpolation
Jjust as in the previous exa.mi)le.

Elliptic Cylinder:

The pile équa.tion in circular coordinates is

2 2
‘%g+%%+$-£+32§=0 o (5.65)
where r and 0 are the circular coordinstes of a point measured from the center
of the ellips‘eo 'If4the cylinder is of finite height the tofa,l buckling B®
must be replaced by the radial buckling; otherwise the eguation for the radial
distribution is Just (5.65). The solutions of this eqﬁatibn appropriate to an

ellipse are the Mathieu functions; however; since these are not tabulated very

extensively it is more convenient to write the solution as-

B(r,0) = ZAzm Jp, (Br) cos 2me . (5.66)

(This amounts to expanding the Mathieu functions in a'series of Bessel functions;
cf. Whittaker and Watson, Modern Analysis (1927) p. 427). The even multiples

of m are used because, on an ellipse, r(6) = r(180-6). The problem is to

(135260
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determine the A, and the value of B so that O(r,6) vanishes at every
point on the boundary of the ellipse.

A simple way t& satisfy the boundary conditions approximately is to
first cut off the series at, say, m = 3. This places at our disposal B and
three A2m’s; they can be so adjusted that § venishes at three points on the
ellipse in the first quadrant (12 points in all quadrants). The vélue of o4
at which to make @(r,ei) vanish are rather arbitrary. A choice which gives
excellent convergence, apd which is suggested by the necessity for @(r,e)ds
to vanish along the boundary of the.ellipse, is to take the @i to be the
roots of |

Pem(cos e) = 0. - - ” (5.57)

This choice ensures, according to Gauss' integral approximation formula
(Whittaker and Robinson, The Calculus of Observations p. 159),
that the integral of Q along the boundary will be small at each stage in’
the approximation. - |

For m = 3, the roots of (5.57) are Gl = 76° 121, o, = Lgo 37°, 93 = 21° jo'.
Corresponding to these three angles afe the three radii Tys Tps and. r3. The

approximate boundary condition is therefore satisfied if

Aodo(Bry) + Apdp(Bry) cos 20; + ALy (Bry) cos 46; = 0 (1 = 1,2,3),

and this -set of hdmogeneous linear equations in Aoy is solvable if the deter-

minant of coefficients vanishes: ' -
J(Brq) [JQ(Brl) cos 293 EII;(Brl)'coe hel]
3y(Brp) [To(Brp) cos 265] [u(®rp) cos uezﬂ - 0. (5.68)

3q(Br3) Patera) cos 203 fi(brs) cos ko

% | Def 2t}




This is & transcendental équation~in B which can be solved numerically for
any particular ellipse. We list below some values which have been obtained
essentially by this method by N. Morehouse:

Critical Dimensions of an Ellipse

Eccentricity Semi-Me jor Axis - B
0 (circle) 1 2.405
0.80 - | : 1 2.51
0.85 . 1 , 2.63
0.90 1 ) 2.84
0.94 1 3.12

The Variation Method

In many cases the pile shape is so complicated that an exact solution

of the pile equation is out of the question. It is then often appropriaté,

in order to find the critical size and the neutron density, to apply a var-
iation method, e.g. the Ritz method.

We review~the~method very briefly. The solution of the pile equation

is thgt‘function 0(x,y,2z) which, among all functions which satisfy the pile
boundary conditions (@ everywhere non-negative, § vanishes on extrapolated

pile boundary), makes the integral over the pile volume

I

an extremum.. The pile equation is the Euler equation corresponding to

this variation problem:

AP + B2 =0 ' (5.69)

{(VQ)2 - Beﬁ av | - (5.70)

B=135-6

4



The idea of the Ritz method.is to assume some arbitrary form of §
depending on parameters @, , substitute into (5.70), and then determine
@) so that I is & relative minimum. Thus, if we consider a set of func- '

tions fi)(x,y,z) which satisfy the boundary conditions, we may set

- |
$ = Z oy £ (%,5,2); (5.71)
V=1 ' .

we then seek the values Qf @y which make the functional I an extremum
among all functions representable ag a linear combination of Y. functions
of the form (5.71). if the f;) are chosen to be members of a coﬁplete
orthogonel set whicﬁ gatisfy the boundary conditions, then the infinite
set of linear.equations in @4) obtained by requiring that I be an extremum ‘
will indeed determine the a1) and B exactly. Usually it is simpler to choose
the fj) as a sequence of polynomials because in that case the evaluation of
the integral is simplified.

As‘an example we solve the sphere problem by the variation method.

We consider the sequence of functions (which vanish at r = Rc)

2 .
fl (I‘ = RC)

1t

4

]
It

(r -R)

and set

2 b
¢ =oa;(r -R,)" +ay(r -R,) .
Pubstituting this assumed form of § into (5.70), integrating, and then

gsetting the derivatives'of I with respect to @, and 0p equal to zero, we

obtain

P-135-63-
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| (.2667 - .0190 B%R2)a; + (.1524 - .0079 B®RZ)oRE = 0

(.1524 - -<}>O79 B2R2)a; + (1270 - .0040 B2R2)a k2 = O

These homogeneous equations have a solution only if the determinant of
their coefficients vanish; this will be the case if BQBE = 11.6. The exact
value of B2R is x° = 9.87.

Numerical Methods

When analytic methods are unfeasible, it is always possible to integrate

the pile equation numerically. If the pile is two-dimensional the solution is

' relatively simple. When the pile is three-dimensicnal the numerical work
becomes great. It is usually more convenient in setting up the problem to
agssume the pile size in advance and then to determine the characteristic

value B2 for the equation

VAN R B2§ = 0. : i

The available numerical methods are too numerous to mention; an excellent
summary is given by H. W. Emmons, Quarterly of Applied Mathematics, 2, 175,
(194k) .

Critical Size of Anisotropic Pile

The critical size and the neutroﬂ distribuﬁién in a pile which is ani-
éétropic is found by an easy generalization of the previous results, provided
the pile is large -- i.e., Bﬁ:&i k-i/Me. Consider & pile which is so con-
structed that its diffusionlproperties are different in the three coordinate

directions. A pile which is traversed by a lerge number of parallel cylindrical
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air cooling channels would be an example, since the neutrons. diffuse more
eagily in the direction of the channels than perpendicular to them. The age
of a neutron is now different in the three directions, and instead of one

1
-quired to characterize the fast neutron diffusion. Similarly three diffusion

age, T, three ages, 7, 2&, Zg, (vhere subscripts refer to x,y,z) are re-

lengths, L%, L%, L§7 which are respectively 1/6 the mean square distances that
a slow neutron travels in each of the three coordinate directions, are needed
to characterize the slow neutron diffusioﬁ. The pile equaﬁion in the simplest

approximation must therefore be replaced by

. a2 2 2 ‘.
M% é_@,+ M§~§—g + M§ §—Q + (k-l).ﬁ =0 : , (5.72)
3x2 " 9ye 2 9z2 -
’ M2 2 . s . . ~.th . . .
where ;= 21 + Li is the migration area in the i direction. The solution

for a rectangular parallelopiped of sides 2al, 2&2, 2a3'is

xX nZ
d = §, cos 2a; cos %%E cos 555 (5.73)
provided
2 2 . 2
}éﬁ.{_mgf—?q.y‘[%%:k—ly (5’71")
al ‘5-2 8’3 '

This equation reduces to (5.22) when the pile is isotropic (M; = My = M3).
The ratio of the parallel to the perpendicular migretion lengths when
the asymmétry is caused by an array of parallel empty channels is given

essentially in Eq. (1.122). Thus the diffusion length ratio is

1%, _ 11+ 67;2-/,\) '

5 — (5.75)
L 1+ 21+ 3vL/N)
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o

where f is the fraction of the totaiAvolume occupied by the channels;, /Z is
thé hydraulic radius of the channel, .y. is a form factor depending on the

shape of the channel, and ,X is the mean free path for thermal neutrons.

The ratio of € in the parallel and berpendicular directicns is given by a
similaf formula, but >\ must be éveraged over the fast neutron energy spéctrum;

Effect of Density on Critical Size

Each critical dimension of a pile is inversely propcftional to the square
root qf the materisl buckling, 3&1. Since B&l hag the same dimensions ag the
mean free path, it must depeund on the densgity, 4, of the pile matérial in the
same way as the mean free path, ﬁamely Bélf»;d'le This is strictly trﬁé if the
pile is homogeneous. If the pile is heterogeneoﬁs with lumps of fissiomable
material scattered throughout the moderator, .the pfoéo;tionality to l/d is in
general not quite exact. In'this case a change in density will change the
details of the thermal neutron distribution; and thie will change the relative
number of neutrons absorbed in fhe moderator and in the fissionable material.
As a result, L, and hence Bél will not be strictly:proportional to 1/d.

Since each critical linear dimension is always proportional to B&l,
which in turn is pioportion&l to d—l, the criticsl volume of a homogenedus pile
must be proportional to d-3,

Vo~ a3,
provided the multiplication féctor k is independent of density. The critical‘
mass, m,, is Vcd. Hénce ' ' '

m,~ 472 . (5.76)

i.e., the critical mass of a homogeneous chain reacting system is inversely

proportional to the square of the density of the system.

B-f35=66-
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heterogeneous system because

No such simpls result can be quoted for
in this case B&l ig nét strictly proportional to d-l and k is. not strictly
independent of d. Hoﬁever, in most examples of practical inferest, the re-
lation m, ~ d'2 is sufficiently accurate to be a useful approximation even for
heterogeneous systems.

The Approach to Critical

- The effective multiplication constant, k.rey in a ﬁile which is sub-
critical is less than unity. A séurce of neutrons plasced in épch a pile will
be multiplieé_in sfrength a finite number of times. It is easy to calculate
the total multiplication of the source provided the source distribution is the-
same as the steady state critical distribution,'and the energy of the source
neutrons is the same as the energy of the fission neutrons.

We consider a sub-critical pile whose geometric buckling is Bé. Suppose
a soufce of fission neutrons is distributed over the pile according to a func-

tion Q(r) which satisfies the wave equation

sq(z) + B3 Qfx) =0, N CRUR
and extrapolates to zero on the extrapolated boundary. We call sucﬁ 8 dis-
tribution tﬁe "fundemental" or "zero-th harmonic" distribution. In & slab
pile of thickness 2a, for example, this means tﬁat the source sﬁféngth is dis-
tributed like | o | | |
' X

x) = Q, cos 5 - (5.78)

A source neutron which 6riginates close to the pile boundary evidently

will produce, on the averége, fewer than kepp neutrons in one generation,

While a source neutron which originates at the center of the pile will produce
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on the average more than k s, neutrons in one generation. However, if the

source distribution is the seme as the fundamental distribution then the

number of neutrons produced in one generation by & source neutron will on
~ the average be just k.pr.

‘It is a simple matter to compute the total number of daughter neutrons
producéd in all successive geﬁerations by a fundamental distribution of pri=-
mary source neutrons. We start with one avérage neutron produced at the be-
ginning of th@ first generation. In the first gemeration this neutron has
the_probability ED(ES;BS) of becoming slow ingide the pile. ‘Each neutron
which slows down produces kgpr slow neutrons in the first generations, kgff

th

slow neutrons in the second generation ....... kgff slow neutrons in the n

generation. The total number of slow neutrons produced, in all generations is

clearly
: P (E ,B2) -
-, ) ooh 8 S .
P(D(ES)Bz)(l + keff + keff + eeen kgff + eeoe ) =—l——-————' . ) (5.79)
- koge :

Since for every slow neutron produced, :——;iL—E—— fast neutrons must have

, : Bo(Eg,B<) . ‘ '
started a slowing down act, the total number of neutrons produced
per primary source neutron is __;2;___w Thus the primary source distribution,

1 - kepr

. which in the case of the slab pile was h o |

_ nx
Qzr) = Q, cos 57 ,

- is increased by multiplication in successive generations until it becomes

(5.80)

B=1354%-
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where the excess multiplication constant, kK gs 18 kopp - 1.
The excess multiplication constant is, according to (5.28),
k Bof Eg,B2) '
kex = eff - 1= > 2 - 1. - (5.28)
p[l + L BgJ '
P EqBS)
As the pile is made larger ——————=— increases aad theresfore keff approaches
1+ 1°B2
unity. Thus the effective . source strength in a sub-critical pile,

accoriing to (5.80) increases toward o as the size of the sub-critical pile
is made to approach the critical size.

This fact is of great practical signifiéaﬁce gince it is the basis of the
experimental method for determining how mear criticel a sub-critical pile is.
The fatio of the primary source intensity to the multiplied source intensity
ig - kEX’ A counter placed near a chain rescting system coptaining a fission
source distributed'(in a slab) like cos gg , will reéord a numbef which is pro-
portional to the multiplied source intensity. The ratio of this reading to

1

the counter reading when the chain rescting system is removed but the source
remain;, is - k - In assembling a chain reacting system it is customary to
record this ratic as a fﬁnction of the volume of the system. The volume at

which this ratio extrapolates to zero is the criticai volume of the systemn,

since at this point k., is zero; Thus it is unnecessary to build a chain

reacting system all the way to critical in order to estimete very reliably the

critical volume. 5
Poo(Es:Bg)

From k. is is possible to determine k if is known (Eq. 5.28).

P (1 + 1?32)
This quantity can often be estimated from & knowledge of the moderation and

thermal diffusion properties of the medium. Messurement of the multiplication




s e

rate in a finité system can thus be used to estimate k, the multiplication
constant in an infinite system. This is the method which was used extensively
at Los Alamos and on the German atomic snergy prcject.

To assume that a neutron source will have the same spatial dependence
as the fundemental distribution or the éame energy dependence as the fission
neutrons is of cdursé unrealistic. Multiplication experiments are ordinarily
done with point Ra-Be sources, or with neutrons from spontaneous fisgsion. In

neither case does the space distribufion of the source satisfy

La + B = 0;

in addition; the energy of the .Ra-Be neutrons differs from the energy of the
fission neutrons. Because of thie energy difference, the slowing down function
for a source neutrbnigD; (E,lg-£'|) will in genera;.differ from the corres-
ponding function for a fission neutron. We therefore must'generalize the fore-
going considerations to the case of a source distribution which is arbitrary
in both space and energy.

We write the pile equation for & bare, uniform pile in which the extra-
polation distance is energy indspendent (or failing this in which we consider

- only asymptotic sclutions) as

Dol - No b, + a(Eg,z) = 0. ' (5.81)

In this equation, q(E%,E), the number of slow neutrons produced per c.¢. and
second at r, consists of two parts. One part arises from those neutrons which:
were produced by neutron induced fission; the other arises from neutrons which

were emitted by the source. We can therefore write

kNoa . '
a(Eg,r) = 5 9 (x") POO(ES,'Iz-z'I Yar' + | Q(z') ,P°°s (Eg,lx-z'( )ar'  (5.82)

f= 3 -
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where Q(z"') is the number of source neutrons emitted per c.c. and second

at r'. For a point source Q(r') is a d-function.
In order to solve Eg. (5.82) we shall expand @s(g) and Q(r) in a series

of the characteristic functions Z,(r) which satisfy the wave equation
A Zp(x) + BeZn(x) = 0 C (5.83)

and the boundary condition Z,(r) = O on the extrapolated pile boundary.
The numbers Bg are the characteristic numbers for this problem; they form
a monotonically increasing sequence

2 2 2

Bo < Bl <B2, etc.
The lowest characteristic number Bg is identical with Bé, the geometric

buckling of the pile.

We expand Q(_z_') and Qs(z) in 2, (x):
Az) = D Qzy(r)
0s(x) = Z ann(i)

where Q, and Qn are coefficients in the expansion, and substitute into the

(5.84)

pile equation (5.82). Since each Z,(r) satisfies a wave equation, then by
the same argument that led to the fundamental theorem of pile theory it

follows that
fzn(z') P(Eg, lr-r'l)ar' = B(E,B3)2,(z).  (5.89)

Consequently q(r) can be written

Q(Es,rv) = ']p§ No,, Z F;OO(ES,BI%) 8oz (x) + Z fms (Es’B_rQl) QuZn(z)- (5.86)
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" The pile equation reduces tc

Z 8L (x) - §nnlz) + ;‘f?oo _(ES,Bﬁ)qnzn(;) + % B, (Bg>BR)Zn(r)}y = O

-3

from which

3, = - Q“°°ﬂ (ES’B“) S (5.87)

The'slow neutron density can therefore be written

5 Q7 ﬂnr&,s (Eg,B2)Zn(x)

dg(z) = D (5.88)
where
) k By (Fg,B3) . (5.0
B = - - - .
ex'"n o(1 +AL23§) S 5.69
and

vq = = : = - (5.90)
- 7m Noy (1 + L2BE)
According to (5.88) the slow neutron density consists of a sum of
harmonics each of which has the factor kex(Bg) in the denominator. According
to the definition of keX(Bﬁ), this quantity cah be interpreted as the excess

multiplication constant in a pile whose geometric buckling is Bﬁ. Since the
Bﬁ form a monotone increaéing sequence, the successive kex(Bg) remein negative.
Thus, as the pilé approaches critical, the first term in the series (5.88) ‘
.growé indefinitely -- i.e., the neutron intensity increases, and the distri-
bution acquires more and more nearly the shepe of the fundamental. Cloée to

critical then, the slow neutron density approaches

WV, E.,B2
By () - o 2g e Boin®) (5.92)

kex(Bn.)

B35=72
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Now the lifetime multiplied by vV of a slow neutron in an infinite pile is
ﬁ%; ; in a finite pile of geometric buckling B%, it is shorter because of
the leakage.-- in fact, it is Jjust '
— 1.
vA, = Nog(1 + L°B2) (5-92)

The quantity
B (x)
;:Zn
therefore must be the number of slow neutrons produced per second per c.c. at
r in a pile whose geometric buckling 1is Bﬁ. The zero-th harmonic of the original
source strength is Qozo(£)5 the fraction of those which become slow is evidently

Ul (Ee’Bg)Zo(E) .

v

Hence the ratio of slow neutrons produced per second to the zero-th harmonic

of the primary slow neutron source strength approaches

1
2
kex(P3)

as the pile approaches critical.

. To compute the ratio of the multipiied source strength'of fast neutrons
to the original source strength, we need only calculate the total number qo(g)
of neutrons born either by fission or by emission from the primary source per

second per c.c. Evidently

k Nca
%(z) = Az) + —= §(x) - (5'.93)
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and from (5.88) this can be transformed to
| | Qp 3 B0, (B B5)
q‘O(..I:.) = Z Qn - k - ) 252 Zn(r)
3 oo EssBn)-1-1 By (5.94)
~ Z Q %[Foa (Es’Brzl) ‘EDS(ES’Brelﬂ _ 7 (r)

: : n
kex(Bzem.) Sl o+ LaBﬁ

Close to critical only the zero-th harmonic appears. Hence the muitiplication

of the zero-th harmonic approaches

WF | EEEsd - B mesd)]

— = 1 .
) (D | Y (5.95)
. o

€exX" o -
7

_If-the primary soufce neutrons have fission energy, then ﬁD(Es,Bi) =
Poos( Eg ,Bg) , and the multiplication of the zero-th harmonic of the source
strength becomes simply
-1 .
kox(B5)
This is identical with the result (5.80) obtained by counting up the gen-
eration by generation dsughters ffom 8 primary fission source whose spatial

distribution included only the zero-th harmonic.

Elementary Kinetics of a Slow Neutron Chain Reaction

Thus far in this chapter we have considered)only stationary chain reacting

systems -- that is, systems in which the neutron density is constant in time.

'In this section we shall develop the simplest properties of chain reactors in

which the neutron density is time dependent.

N ZER <
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If a localized transient disturbance of the neutron density occufs in
a critical pile, this disturbance will be propagated over the pile (in the
manner described in Chapter I) until it dissipates itself and the neutron
iﬁtensity returns to its original distribution. The propegation of & neutron
intensity wave can be described by a decomposition of the instantaneous neutron
distribution into a superposition of many spétial h&rmonics, each of which de-
cays with a different decay time. The detalls of how the aeutron density re-
establishes itself following a localized disturbance will be described in
Chapﬁer X . In this section we consider the simpler problem of how the
neutron density as a whole -- i.e.;, the fundamental -- rises or falls in a
pile which is super;critical or sub-critical.
A simplifying assumption will be made throughout the discussion. We

shall assume that the time required for a fast reutron born at r' to aﬁpear
as a slow neutron at r is negligible compared to & generation time. In a
graphite pile the a%erage slowving down time is only about 1/50 of the slow
neutron lifetime, so Phét here, as in fact in all slow neutron piles, tﬁ;
slowiﬁg down time,is really a small part of the generation time. ~According
to this assumption, the production of slow neutrons &t time t may be taken
to be proportional to the fast neutron production at time t rather than-ét'SOme
earlier, "retarded" time, determined by how long it tekes for a fast neutron
to become slow.

' The time dependent behavior of & chain reaction is complicated by the
fact that not all the neutrons are produced instantanecusly after fission.
In addition to the delayed neutrons from fission, there may be delayed photo-

neutrons produced by fission product y-rays interacting with atoms of the

3135275
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moderator. The presence of delayed neutro s,'generally speaking, expands
the time scale of a chain reaction. Instead of the fundaméntal time being
the generation time, it is a much longer time determined by the delayed
neutron periods and the importance of the delayed neutrons to the chain
reaction.

We now set up the time dependent equations for a slow neutron chain
reaction. Let Pg(r,t) be the slow neutron flux and let Ci(xr,t) be the
density of radioactive nuclei which will emit, with a mean life 2;, a

h

delayed neutron. The yield of the it group of delayed neutrons we denote

by Bys that is, per prompt neutron produced, p; delayed neutrons of period
(1 are emitted. The ratio of all delayed to prompt neutrons in one fission is

g = E Bis the ratio of all delayed to all neutrons is therefore E_E—E J
" . + +
Bi ,th

o
o

Since each fission neutron is accompanied by

type delayéd.
neutrons, and each such delayed neutron originated from a radioactive nucleus,
the production rate of nuclei C;i(r,t) is

Bi.
1+B

k

' while the rate of destruction is

Ci(zyt)
T

1

°

The time rate of change of C; is therefore

) . C'(r:t)
1 _k Bi ) i\l
3t (x,t) = Pl+p NGaQS(E,t) 21 . (5.96)
For the slow neutron flux we have
9
z 2 (r,t) = DoOf (xst) - Nogdy(r,t) + a(Eg,r,t) (5.97)

s
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V-T2

where q(Es;z,t) is the production rate of slow neutrons at r. The appro-
priate velocity v in (5.97) is clearly the average velocity; for the term
1%
v 6t
ig just the time rate of change of n, the total slow neutron demsity. Since
1 aﬁé _on
ST =
v t at .
_ 3w f"“(E’E’*"dE
v = = ) (5°98)
.t N
n(r,t) f o(E,z,t)aE
the integration extending over all "thermal" neutron energies.

We make the usual assumption about the pile being uniform, and the
extrapolation distance being energy independent. The production of slow
neutrons is the sum of production by slowing of prompt neutrons and of de-
layed neutrons:

.k B ypp
a(Eg,z,t) = 5 Nog f Belx'st) (1- 155)BR(Eg, Izl ez
all
space

(5.99)

+ (/ﬂ———:;—— P lr-r'|)ax*
; all. 3 of fa |21 )0

gpace

where we distinguish between EE;E%,'E-E'l), the slowing down kernel for the
prompt neutrons, and g§£Es:'£‘£"): the slowing down kernel for the ith
delayed neutron. The kernels PP and Pl are not necegsarily the same because

the energy of the Belasyed neutrons is lower than the energy of the prompt neutrons.

B-135-77-




The use of the infinite kernels and the extension of the integration over all
space is justified (theorem - page 32 ) by the assumption that the pile is

uniform with energy independent extrapolation dlstance

3 ac o
In the steady state, 5%5 ati = 0, %% = x Nog ——= 18 @; and therefore,
from (5.99)
B
4(Eg,x) = f@,(r N - £ B, Iz )+ Z T Bl zr'l)

(5.160)
The expression for q(Eg,r) in (5.100) is the usual one for the steady state
élowing down density, since the quantity in the brackets is the weighted sum
of the slowing down kernels for the prompt and the delayed neutrons and this
sum is eqﬂal to the overall slowing down kernel previously denoted by

P, (Bg,lz-r*]), i.e.,
. Bi
B{Eg,lz-r'l). = l+f3 PégEs,lr-r 1) + Z T P Eg,lr-r'l). (5.101)

We suppose that the geometric buckling of the pile ié Bg. Then the

assumption :
Bl = G () e/
Cy(z,t) = ¢y (x) ot/
a(rt) = ay(x) /7

where T is called the "period" of the pile, reduces the pile equations




] (5.96), (5.97), and (5.99) to

~
- DOAQO- (No, + =— = ) §So +gy =0 | (5.102)

k Pi 1.1 _ ,
L] 5 .l_+§ NU&@BO - (z—.l + T) Cj_o =0 (5.103)

Ci -
- i O i
- Qo(Egs2) = %N"af@so‘?')(l“ 12550 (Fes -z ax' JZ =z, (z')BL(Eg, 1 r-x'\ )ar’
. . , , 1
' (5.104)
It should be noticed in the first equation that the term srising from the
time dependence behaves formally like an additional sbsorption.

. ' To solve (5.102) we suppose that Tso and Cio satisfy the wave equation
with buckling. 32’ and that these functions satisfy the pile boundary condi-
tions. Then by the fundamentel theorem of pile theory applied to (5.104)

R ' ' Cio _ 5

T - kg (1- £)PR(E S =2 (x) Pi(E,,B ..

%o(Bssx) = o Nop (1 9) RN Eg,B2)8s,(x) + i (x) P(Eg,Bg). (5.105)

c

|

‘ . If %'_Q in (5.105) is replaced by its value from Eq. (5.103) and the result
1 f

|

is substltuted into (5. 102) , there finally results the following characteristic

i ) equation:

;.* k[-%(Es,Bg) _,_; *3i;ci:o(Es’B§§l . kZ Tt ’C‘ Pl(E Bg) /Q

g + (5.106)
) (o) ) (0 ) i)

' where Z = 1 — 1s the lifetime of & thermal neutron in an infinite pile.
~ ' No, v -
a

B-/26=7%




The quantity

PP 2 pi 2
BR(Eq,55) + O Py B (5,,5)

(1+8)

is the Fourier transform of the slowing down kernel for all neutrons,

(both prompt and delayed) prodﬁced by fission; we have been denoting it by
P (EB,BQ) with no superscript. Also, the quantity ——A§f2-—-is the lifetime
o g 1+ L2B§

of a neutron in a finite pile of geometric buckling Bé; we denote it by 0*.

Hence, Eq. (5.106) can be written

) 2
G)( g’ E) - 1= ,Q__ + . k _ i6&i Pl(Es,Bg)' (5.107)
p(1 + 1%8F) T p(1+p)(1+1°B3) T T+ T, T

The quantity on the left hand side is the excess multiplication constant --
i.e., kex(3§)° IfT = oo,'then from Eq. (5.107), key = O, and the pile is
critical..

The equation '
|
|
|

T, — ’
L, k Pili (Eg,B2) | (5.108)

2
k. (B =
ox{ g) T p(l+B)(l+LzB§) T T+ T ®©.

is a relation between the period T, the geometric buckling and the micro-
scopic multiplication properties of a non-critical pile. It is a general-

ization of the characteristic equation (5. 16 ) which relates the multipli-

cation properties to the buckling in a critical pile; (5.108) reduces to this -

characteristic equation when T = c.

B350
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If there are no delayed neutrons, {5.108) may be written
*
YA
T = — (5.109)
rox52)

i.e., the period of the pile is the lifetime divided by kex(Bg). This result

is intuitive; for kex(Bg) is the rate at which neutrons are multiplied per

' *
generation, and A is (because we neglect the time required for a neutron

to become slow) the generation time. Hence kexﬁﬁf is the multiplication rate
per second, and the reéiprocal is therefore the time required for the neutron
density to multiply by a factor e. According té (5.109), if kex >0, the
pile’is guper-critical, T is positive, and the neutron intensity rises ex-
ponentially. ) |

The presence of the delayed neutrons complicates the p}eceding con-
siderations somewhat, since T is then the golution of (5.108) which is a
high degree algebraic equation. However, if the pile period is very long

compared to the longest delayed neutron period, then T can be factored out

from the sum in (5.108). The resulting formula for the period is

- - 2
. 7. Pt (E.,B
T o _l_(:f + K P1 T Ro (o)Bg) . (5.110)

Kex p(1+B) 3 1+ LEBS

*
Since A /kex is the period if there were no delayed neutrons, the presence

of the delayed neutrone increases the pile period by a factor
i 2
K 8; T, B (Eg,Bg)

14 —2 ‘_
p(1+8)0* T 1+ L2B§

(5.111)




" is absorbed while slow inside the pile, while

4

— V-1
i
R Eq,5) . N
The quantity —————— is the probability that an i delayed neutron
1+ LEBS
k By th

ig the number of i
p{1+8)

k By Pi(Es,Bg.)
delayed neutrons produced per slow neutron absorbed. Hence, 5
U p(1#B) 1+ L Bg

is the ratio of the number of ith delayed neutrons which are abgorbed as slow
neutrons to the number of gll slow neutrons abgorbed. Since only a delayed -
neutron which is absorbed as a slow neutron inside the pile is effective in
lengthening the pile pefiod, it is natural that the lifetimes ?% in (5.111)
are weighted with the number of delayed neutrons which are ebsorbed as slow
neutrons. 'Thus'the pile pericd is increased, because of the delayed neutrons,
by the ratio of the weighted mean lives of those delayed neutrons which take

part in the multiplication, to the generation time. The gquantity T%E E Bi'Z&
A —_ v T

is of order 10~ sec; = >~ 1, and.,a*}~.10'3 sec in a graphite pile.

The pfesence of the delayed neutrons. in this case therefore lengthens the pile
pefiéd by a factor of about 100.

Since (5.108) is an algebraic equation of high degree, there are several
other roots depending on the ‘number of delayed neutron periods. These roots

are all negative, regardless of the value of k they therefore give rise to

ex’
transients in the neutron density. A detailed discussion of these transients
will be deferred until later.

Thé.Reactivity of a Pile; The Inhour Formula

Let us divide (5.108) through by k,pp:

2 ) = 2
kex(Bg) ) yi . P; T3 Péo(Es’Bg) (5.112)
k oo(82) T kepr ‘T T+ 7T B (E,B2) 7

ers(Bg i ile82g
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‘ kex(Bg) :
- . The quantity ———— 1is called the reactivity of the pile, and we denote
¢ " 2,'.
“_ - it by P(Bg)_'
s | o Kog(B2) |
. : ' Pile reactivity = p(Bg) = =X B . (5.113)
“ eff g
i
_. The excess multiplication constant is the difference between the effective

- multiplication constant and unity; i.e., the difference between the actual .
value which this constant must have

effective multiplication constant andlthe/¢ if the pile is just critical.

For fhis reason koy is sometimes denoted by Bkeff(Bg). In this notation
p(32) = dkore(Bg)

5) =
keff(Bg)

In terms of the reactivity, the period eguation (5.112) is

. pL (E,,BS
g T keff i T+ Tl §CD (ES’BE)

The reactivity is a pure number. It has become conventional to express it in a

unit called the inhour (inverse hour). An inhour is defined as that value of

P(Bg) for which the pile period is one hour. Thus

' S 81 T3 B (BgoBp)
+ — ,
kops? T T %1 By, (E,,Bf) . (5.115)

L . Reactivity in inhours = - - —
' ' ' ﬁ)(- . 5 < _,,ﬁi_‘zi ?013 (EsyBg)
3600 kepe <3 3600+ B ( EB,Bg)

For long periods the pile period in ‘hours. is equal to the reciprocal of

the reactivity expressed in inhours.

| BT
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It is customary in most cases to ignore the difference between

I%b(Es,Bg) and fh;Es,Bg). Then the reactivity is

p(B2) = Fg‘ >N :i Y (5.116)
eff 1 T+

If T is large comparad to /QT the second term in (5.116) is much larger
than the first. Moreover, in this term only constants Bi,'zi, appear. These
constants are the same for all piles in which the fissionable materia; and the
photdneutron production is the same. Thus for long pefidds the‘relﬁtion be-
tween the reactivity and the period is indepemndent of the size of thé pile or
. of the disposition of the figsiorable material. This is not true of the re-
lation (5.108) befwéen koy and T, and it is for this reason -- viz:;‘the con-
vénience of having a ﬁniversal formule independent of a particular pile --.
ﬁhat the reactivity)o(Bg) instead of kex(Bg) is used to describe the degree’
of criticality of & pile.

Relation between Various Definitions of keffs kex and Reactivity

There has been considerable confusion in project literature concerning
the approbriate definition of the efféctive multiplication coastant, the
excess multiplication constant andAthe reactivity. The definitions used here
are self-comnsistent, although théy‘are not exactly the same as the‘ones usually
used. It is worthwhile at this‘point to examine the various definitions.

We define ko pr as the number of neutrons created in ome generation per
neutron removed eifher by leakage or by.absorption° Since the lifetime against

absorption or leakage is

ﬁg&4€&53%27k;



the kinetic equation for slow neutrons with no delayed production is

A} kel

& L* s

= M - 1282 - 1 b

P g Z
‘ | =, 2
B(E,,B

=[k-(l+L2B2)_ ]%(sg)

P(ES,B 2y

In our notation,

kex = Kgre-1,

and the pile period 1s ’e%/kex'

(5.117)

| (5.118)

(5.119)

In terms of the infinite pile lifetime,ia, the pile period is (from (5.118)

L

k 2 2

and in much of the project literature the quantity in the denominator is
defined as kgy. The effective multiplication constant, according to this

definition, is

B2) LaBg

s’

wlw

Finally, Soodak (see lecture notes, p. 49) uses the quantity ——422—5— as
P(Eg,B5)
3

the fundamental lifetime, and he defines k., as

k - (1 L2B2:———
(1% 5., %)

@%«Tﬁ§§5%?53



For a very large pile, k =~ I, all these definitions are identical to

first order in k - 1, namely

% . mlR2
kepp = k - M Bg . (5.120)

Our definition of the reactivity

x B(Eg,BZ) N 1282)
202 TSN
J<>(132) JEex p(i * 175g) = P(B5,Bg) (5.121)
& ke  k P(Eg,BF) k
p (1 + LEBE)

is 1/k times Soodak's reactivity (denoted by psi),} ,

Because of the difference between our kex and Soodak's kex,.the relation

between the definitions of reactivity is

kKexg

k L .
P(Bg) == =_‘°1{5 .‘_=.“ X

Kere
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In the previous chapter -the asymptotic theory of a slow neutron chain
reactor in which the slowing down kerrel is an arbitrary function of |r-r'|

was developed. The whole theory'was geen to rest upon the formule for keff(Bg),

viz.,
2,k PfEg,BY) ,
kopp(Bg) == =28, (6.1)
~ Pooay 1282

This formula was shown to be valid in a bare pile provided the pile is large
compared to a mean ffee path, and the extrapolation distance is energy inde-
pendent. The relation keff(Bz) = 1 is the characteristic equation which deter-
mines the buckling of a critical pile.

In this chapter we shall discuss the various special forms of Ex)(E,|£—£'|)

‘which are used in actual pile calculétions, and we shall derive the particular

expressions for keff(Bg) appropriate for each slowing down kernel.

In principle there is no ambiguity about the proper kernel to be used
in & particular pile: the correct gx;E,lg-g'l) is ?he solution of the Boltz-
mann equation with energy loss. However, the accuratelgélﬁ%y;n of this egua-
tion is exceedingly complicafeéf In practice it js,necésgary to use either an

experimentally determined kernel, or to use some rather simple analytic approxi-

mation to the experimental kernel.

The Moment Form of the Characteristic Equation
Before discussing particular'analytic forms of By(E,|r-r'|) we shall

point out how the value of k. pe of & bare pile, and therefore the critical

[3+/25%88
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gize, is determined by the moments of the slowing down distribution. From

its definition,

@
- o sin Bg '
P{Eg;Bg) = Un PogEs,r)r —2_ 4r. (6.2)
: ' B r
: g
. 0 :
. gin Bgr
This becomes, on expanding _B—_ in Taylor's series and integrating term
' r
~ g
by term’
@

= 2 E
P (E..B L ._..(_)_
w(FasBg) = b oo (2n+1)! 5"

9 -

B p(Bg,r)rlar. (6.3)

Now the 2n:.t moment of the slowing down dlstributlon is

@® @
2n 0 o= by on 2
rY(Eg) = = =3 | T Poo(Es,r)r dr;
hanoc;ES,r)rEdr o
%
hence (6.3) can be written ,
- [¢1]
n —
5 2y _ E L=)"  _onT7m
. P(I)(ES’Bg) =D (2n+l)' B r (Es)
2
and keff(B ) is
2 ®
. k P(E B : —_——
Eore(B2) = e < ) g2n 2“(E> (6.4)
e p(1 + LQBE) T4 L2B2 n=o ( 2n+1)!
The critical équa‘l;ion is
®
2 _ﬁ_)__ Y
(83) =1 —K__ E
.keff g 1+ Lng = (2n+l)' g I' ( 5) B (6-5)

- T B=)35-549 _




If the buckling is smell compared to ;§ ~- and this implies that the
pile dimension is large compared'UDVfQ -- then only the first terms in the

expansion need be retained. The critical equation becomes simply

2 - k-1
g M?

which was obtained already im {5.22).

The importance of (6.5) is that it expresses the critical buckling of
& bare pile in terms of the moments of the slowing dowa distribution, and
these moments can in principle be determined experimentsally. Theqnumber of
moments required'to determine the .critical size depends on the pile dimen-
sions; in the limit of a very large pile, only the second moment is suffi-
ciegt, while for a smaller, higher moments are needed.

From an experiméntally measured distribution of ipdium resonance neutrons

around a point source of fission neutrons;, it is possible to compute the slow-

ing down moments. The measurement of the slowing down moments is not easy;

for several reasons:

1) To determine a high order moment it is necessary tc measure neutrons
at & large distance from the course. .This'invariably leads to intensity
difficulties.

2) The required slowing down moments are from fission energy to thermal

energy while the neutrons measured in the usual way with Cd-covered Im foils

" have energy ebout 1.4 ev. Increments must therefore be applied to the ob-

served In resonance moments to yield the thermal energy moments, and these
increments are rather uncertain.

3). Strictly, the slowing down distribution must be measured in a medium
which has the same resonance ébsorption as the pile. If & slowing doéwn distri-

”

bution is measured in a sub-critical pile the observed In resonance distribution

Done
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will be falsified because of neutrons produced by thermal f1831ons throughout

the medium. This difficulty can be avoided by heavily pcisoning the sub-

critical pile with Cd; this suppresses the thermsl fission without affecting

the resonance gbsorption very much.

Analytic Approximations to the Slowing Down Kernel

A number of analytic forms for the slowing down kernel have been used
in critical célculations. The particular analytic form for gxﬂEs,r) is always

8 compromise between the actual experimental kernel and a manageable mathe-
- - \ ,
matical approximation to the experiméhtal @ata..
We list below the various slowing down kermels and the corresponding

~

formulas for keffo

1) Simple Gaussian (Fermi) Kernel

. If the figsion spectrum were monochromatic¢, and the moderator atomic

weight large, then the simple Gaussian kernel is appropriate:
- re M2

r=/LZ(E) -
fea”

where T(E) is the age from fission energy (7 = o) to energy E. The -

P4 E;r) = p(E) (6.6)

quantity p(E) is the fraction of neutrons which survive to energy E without N
undergoing:resonance capture; in this notation-p(Es)'= p- The Gaussian
kernel waes introduced in this country by Fermi; it has been used in most
elementary pile calculations im which the-moderator is graphite;, Be, BeO,

or D20. |

The Fourier transform of B (E,r) is

-r° /4T (8) 827 (x)
P (E,r°) = lmfp(E) 2
OD( EHIZ'(E) 3/2 Br




.
t
L A

equation.

Thus the slowing down density at energy E is

-
_k 2, _k -Bg Z(E)
q(E) = 5 Nog§ P ,Bg) =5 p(E) No 9, e (6.8)
. Ox -
and the expression for keff(Bg) is
2
'Bg?r(Es)
kope(B) = 22— ' (6.9)
1+ 1282 :
g
The critical relation is
' 2
-Bg T(Esg)
2 ke 8
k oo(BS) =1 = 5 (6.10)
°ff’"g 1+ 1282

this equation was first derived by Fermi and is sometimes called the Fermi

The solution of (6.10) -- i.e., the value of Bg which satisfies
(6.10) for pre-assigned k, QT(ES),.and 12 -- can best be found graphically.
A plot of (6.10) for various values of the parameters has been prepared by
E. C. Campbell. We reproduce it in Fig. ( 5-I). By means of this graph it
is a simple matter to calculate the critical buckling of a pile in which the

simple Gaussian slowing down picture is applicable.

2) Gaussian Kernel with Fission Spectrum Spread
Wigner has pointed out that a more realistic slowing down kernel
in a moderately‘heavy moderator is a superposition of Gaussian kernels inte-

grated over the fission spectrum. The fission spect;um can be represented
. * t .

4'| -

by a function

£(E')4E*




~ where f£(E')AE' is the fraction of neutrons produced between energy E' and

E' + dE' per fission. The age of neutrons of energy E whicl‘l have originated
at energy E' is
T(E,E').
According to the simplest Gaussian slowing down picture, in which the first
and last. collisions are neglected |
. ' N
z(EE) = | —L . 4E (6.11)
Nog Moy, & -

so that , in this simplest approximation, the age is additive, i.e.,

T(E,E") = (E,CO) - (BE',m).
The contribution to the slowing down distribution at energy E
from fission neutrons between E' and E' + 4E' is
2 '
-r*/4 T(E,E*)

p(E) &

El:n Z( E,E')Js/2

and therefore the overall slowing down kernel is

£(E')4E*

(o0}

e—r2/irc(E,E» )

P(E,r) = p(E) £(E')aE'.
5 &n ‘C(E,,.E')]'3/2 -
' Since the Fourier transform of this is
> .
P (E,B%) = p(E) eA-‘Bat(,E’jE'_.)f(E')d.E', - (6.12)
0




. 2 .
the equation for keff(Bg) is

o
2 '
2y - —E__ [ o BeT(EeE) g am
kepp(Bg) = s [ e £(E')4E - (6.13)

while the Fermi equation, modified for the fission spectrum spread, is
k -'B2'Z'(EB,E')
— e & "P(E')AE' = 1. : (6.14)
1+ L'-Bg
0
This reduces to the monochromatic Fermi equation (6.10) when f(E') is a
&-function.
If a monochromatic fission spectrum picture is used, there is the

problem of what value of ‘Z(ES) must be used in order that the critical

buckling predicted by (6.10) be the same as the critical buckling predicted

. by (6.14). By comparing {6.10) and (6.14) it is seen that if

(o o]

BRT(E,) _ f BET (B, EY)

0

£(E')aE’ : (6.15)

then the monochromatic equation (6.10) and the more nearly correct (6.14)
will give thé same critical buckling.  Since, aécording to (6.15)
- o
T(Es) = = B_-lé In G-BET(ES"E')
€

(¢]

£(E*)aE"

~ the appropriate average T(Eg) depends on Bg; i.e., it ig different for

every different sized pile.
If the pile is large, the moment expansion (6.5) of the character-

istic equation converges well. The moment form of (6.14) is found by expanding

3475794
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. the exponential and integrating term by te

Pk%

@ oo} ’ . @
-B2 1y '
fe Bgz-(Est )»f(E')d.E' =1 - Bgf 'Z‘(ES}E') £(E')aE* + f Z.Q(Es,Ev)f(Ei)dE'...
0 ' | 0 0

The first integral in this expansion is the arithmetic mean of 2-(Eg,E')
averaged over the fission spectrum. Only this term enters if the pile is
very large. The migration area, which measures the length scale in a large

pile, ig therefore

MR =12 4 7(Eg,E') £(E')AE'; (6.16)
A .
‘l.e., it is the arithmetic méan of the age (in addition to L2)Awhich deter-~
mines the migration area. |

. If the pile is not large, then the higher moments in (6.5) must be

" taken into account in computing the critical size. These moments have been

measured in graphite by Hill and Roberts. The results are summarized in the
following table:

Observed and Calculated Slowing Down Moments
to In Resonance in Graphite

Calculated Observed by Hill and Roberts

= fz‘(E_s,E)f(E)dE 341 em® 329 em® o |
2‘2-=fQ?‘(Es,E)£(E)dE 12.3 x 10% o 4.8 x 10* ca*
o =f’t3(Es,E)f(E)dE 1.8 x 107 cu® 13.3 x 107 cn®




The measured moments beyond r2 are much higher than the calculated values.
The reason for the discrepancy probably lies in two facts; first, that the
calculations are based on a simple age theory while the actual slowing down
function has a longer tail than simple age theory would predict; and second,
that the fission spectrum may have a fairly strong high energy tail which is
not included in the calculatlons.

3) The All-Thermal Pile

The simplest of all pile pictures is one in which the fission neutrons
are assumed to be produced with thermal energy. The slowing down kernel in

this case degenersates to a &-function,
POD (Es)r) =P 6(}'_)

gsince, if the neutrons are produced as thermals, they "become" slow at their .
point of origin. -The normalizeation is unity since there is no resonance i

capture, p = 1. The Fourier transform is simply

0

= sin Br
PCD (.ES,BQ) = hx / 5(2) 5 r2 = l,\
0
and the characteristic equation is
k
1+ L232
s g
i.e.,
2 _k -1
B = 3
g 12

This "one-group” pile picture has been applied to very large fast neutron
chain reactors, in which all the neutrons cen be considered to be roughly

monoenergetic.

B354




L) The "Fast” Pile

.1' The general formalism can be adopted to the fast pile -- i.e., a
—J“- - ' A .‘

L pile in which there is no moderation at all -- provided the symbols are properly
ﬁ/’ interpreted. We re-define the generation time as the average time between
-JI )

successive collisions. The multiplication factor, k, is Jjust the number of
neutfons produced per collision; since a collision can result in fission,
- absorption, or scattering,
k= Pt | (6.18)
No
Furthermore, since the generation is taken to be the time between successive
collisions, the "slowing down keérmel" must be replaced by the probability

 that a neutron produced at r' will suffer a collision at r. This is Just

< the transport kernel

.- - ne o~ Nolz-r'|

b )z-z| 2

- if isotropic scattering is assumed. This transport kernel is normalized to

unity -- i.e., p = 1. Finally, since there is no moderation, there are no

thermal neutrons: this can be fitted into our formalism by setting Nog = o,

which implies 12 = 0.

The Fourier transform of the transport kernel is

L . @ :
- _ -Not , |
B B, (Eg,B%) =bnNo | & BINBr 2, _yy [ Nor iR Br 4 _
. _ Lol BT Br
. nr
0 ' 0

(6.19)
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Substituting this into the general expres™on for keff(Bg) end using

> (6.18) and 12 = 0, we obtain
| o4 _ ' i
»
T -1B No - :
.7 : keff(Bz) _kNo 3. ’_)_._f. tan~t 2g (6.20)
: g Bg No B No
. : g
: and the characteristic equation for the critical buckling is
B : ‘p Ndf B
".l ’ 'ta.n l _'g = 10 (6-21)
Bg No

There is a striking analogy between this critical equation and the
characteristic equation which determines the thermal diffusion length from

the thermal absorption and scattering cross-sections. If we set

.- B Bg=i)£,

" then the éritical equation becomes

k No -1 ¥

- tanh — = = 1. 6.22

: A - RNe : . ( )

- This is identical with the characteristic equation (1.20) for the thermal
diffugion length, }(, if k is still interpreted as the number of neutrons
resulting from one collision. In an absorbing medium this is

Nojg
No ’ '

A ' and therefore (6.22) can be written as

T ' Nog -1 X

3 It is, of course, not surprising that the characteristic equation

’_; for the asymptotic solution in an absorbing medium is formally the same as

B=j25<98




the characferistic equation for the asymptotiec solution in a producing
medium, provided the neutron emergy does not change. In both the producing

and absorbing case the asymptotic solutions satisfy wave equations:
2 . .
£>§ +Bg =0 producing medium
LY - QQQQ =0 absorbing medium

as well as satisfying the transport equation without energy loss:

-Nolr-r“l'
@Kz) = Nof{x’ ) = ——1———TT§— ar* producing medium
Yot |r-r
-Nolr r’|
,Q({) ? —_— No@ (r') &——"__ ar® absorbing medium.
hﬂlr-r'l o

The two sets of equations are‘identical in form, and thérefore the char-
acteristic equations are; except forAthe sign of BC and )62, identical.

The critical buckling calculated from the characteristic equation
(6.21), is the buckling of the asymptotic solution. Since fast‘piles are
usually not large compared to a mean free path, the extrapolsetion distance
is a fair fraction of the wﬁve lgngth;of the asymptotic solution. An error
in the value of the extrapolation cén therefore lead to sericus error in the
critical size of a fast pile.  The simple formula for the extrapolation dis-
tance, /f?, |

| L= 0.7 N,

which holds at a plane surface of a -non-capturing medium, is not generally
valid. The exact expression for the extrapolation distance is fairly compli-
cated and to derive it would lead us too far afield; it is discussed in.Frankel

and Nelson's report on "Displacement Integral Equations” -- LA-53.

~B-125299
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the corresponding keff(Bg) is

* 5) The Two-Group Picture

One of the most generally useful slowing down kernels is the "two-
group” picture, discussed in Chapter III. In this model, neutrons are either
"fast" or "slow" and moderatién is described as a diffusion process. A fast
neutron is assumed to diffuse without energy loss until it has travelled a
mean square .distance equal to its actual slowing down length, at which time

it disappears by becoming a slow neutron. The slowing down kernel is

e-I'/Ll

Pm (Es,r) = ‘ N
2
. nr Ll

=) :
vhere L% = %; (Es)’ The Fourier transform of this "group" kernel is
@

ib(Es,B?) = f% ¥/l sinBr 2, . __ P . | (6.23)

2
T Br 1+ 1282

0]

k (6.24)
14 LaBg)(l + 1282)

keff(Bé) = (

and the critical equation is

- 2" 2 — =1 | (6.25)"
(1 +L Bg)(l + IiBg)

The two-group characteristic equation. is a second degree algebraic equation

2

in Bg:

2.2,y L (12 . 12\r2 k-
L Ll(Bg) +(12+ 1282 +1 -k =0,

the roots of which are

'=‘-(L2 +18) + A (1R + 12)2 + 41218(x - 1)

2
Bg

. (6.26).
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. . Of the two roots one is positive, the other negative (provided k > 1).

If k - 1 is small (large pile) then the two roots are approximately:

""). ' B2 fv\' k"l =k"l 6.27
4 gl 12 + 12 M (6.27)

2 1 1 k-1
Boope-| =+ +=—=1| . (6.28)
g2 12 12 M2

|
}

- - The posiﬁivg root Bél is the usual expression for the buckling of the
asymptotic/solution in a large pile. The negative root gives rise to non-
asymptotic solutions which behave like exponentials rather than like oscil-
lating functions. These non-asymptotic solutions are not needed to satisfy
the boundary conditions in a bare pile in which the extrapolation distance

“;. ) is energy independent. However, if the pile is not bare, or if the depend-
- ence of'the'extrapolation distance on energy is taken into account; then

- these non-asymptotic solutions must be included in order to satisfy the
boundary conditiogs.

) The occurrence of non-asymptotic solutions is, of course, entirely -
general and does not dépend on the particular élowing déwn model. In the
Gaussian case, for example, thg characteristic equation is transcendental,:
and there are therefore an infinite number of non-asymptotic solutions in

addition to the usual asymptotic solution.

- Convolution Kernels

T Slowing down kernels vwhich are convolutions of other kernels occupy an
f important place in pile theory. A two-fold convolution kernel is one which

~ can be written as

.S : P(|z-z'l) Py(Jz-r"|) Pp(lz"-z'f Jar". (6.29)

‘@0/‘3‘?“"'/0/“
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A three-fold convolution kernel is

r(z=']) - f f p(lzx"l) By(lzm-£"]) Pyllz"xt Darrar” .

The generalization to n-fold convolution kernels is immediate.
The Fourier transform of a convolution of functions is the product
of the Fourier transforms of the separate functions. This is easily seen,

since if P(Igyg'l) is a two-fold convolution, then

B(8%) = feig S R(z))ar

k2]

iB-°r
=ﬂe“ T Py(lz-z'[) Bp(jz'l)azas

f f o2 EEY 5 ()& B py(1x ) darar

F,(B) Bp(3%).
Fgr an n-fold convolution, the Fourier transform is
- -, =, 0 =, 2 = ' :
B(3%) = P, (8°) P,(5%) P3(3 )euene. P(B%) . (6.30)

The general expression for keff(Bz) becomes, for a convolution kernel,

f 2 _ k .o 6.31
keff(Bg)"' P o o (6.31)
1+ 1L"B
g
From the three fundamental kernels -- the Gaussian, the transport, and

the diffusion -- three two-fold convolution kernels can be constructed.

.These are:
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a) The Christy-Wheeler Kernel (Con*olﬂfion of Caussian and Transport)

Christy and Wheeler (CF-hOO) suggested that the slowing down in hydro-
genous media could be analyzed into a long first flight, during which the
neutron suffers no collision, followed by a Gaussian diffusion away from
the point of first collision. Such a picture is rather appropriate in
hydrogen-containing moderators because of the way in which the proton scat-
tering cross-section varies. At high energy the croés~aection is small; it
rises rapidly below 100-kev. The first cocllision therefore occurs only after
a relatively long flight. Once a collision has been suffered, there is & good
chance that the energy of the neutron will be reduced enough to make its
further diffusion a sequence of short zig-zag paths. These give rise to
thg Gaussian. While this is by no means an accurate descriﬁtion of the
slowing down in Ho0, it 1s sufficientl& good to make possible rather accurate
predictions of the critical size of HpoO chain reacting systems.

The Christy-Wheeler kernel is

I 1:'2 .
- r«»;? Noo ' ° [z"-z|
5 -t ¥ = e 4 dr"o (6'32)
PGD(ES".I: r ' ) P (LHI 7)3/2 : L“tlzn_zw'z -

The mean free path l/No and the agé 7 are to be considered as arbitrary para-
meters to be chosen so as to best fit the observed slowing distribution.
The Fourier transform of the Gaussian function is given in (6.7), the

transform of the trausport kernel is given in (6.19). Hence the Fourier

‘transform of the Chrigty-Wheeler kernel is the product of (6.7) and (6.19):

2
2) -T8 l\TBE tan™1 2. (6.33)

E (Eg,B i

=Pe

s  BrRes




/ o

VI-17
: , 2\ .
- The expression for keff(Bg) is
/' 8
i . ) - _ _ B
7 ko £%8 yopltan™ 28 ‘
. K (5?) - 8~ To (6.34)
v ' 1l+ LB
g
i and the characteristic equation is
. )
-zgg 0
- ke I\chLBg -1 B
- . tan ~ £ = 1. (6.35)
" 1+ 1282 No
g
This characteristic equation was used to estimate the critical buckling of
the Los Alamos water-boiler -- the first chain reactor in which enriched
fissionable matérial was used.
- b) The Heavy Water Kernel (Convolution of Diffusion and Gaussian)
The slowing down function in heavy water is well represented by a con-
e : volution of a diffusion and a Gaussian kernel:
1 '- . . | " 2 ‘
) ' 5 -lr-r \ /5T -ir"-r'l/Ll
. = e e
: P (Eg,B%) =p | = 3z > dz' (6.36)
(bx ) hﬂlr"-r'l ‘Ll
According to Friedman and Wattenberg (CP-3453), the best agreement with
experiment results if T = 58 cm® and L, .= 48 cm®. According to (6.7) and
| (6.23) the Fourier transform of this kernel.is
o~ | -TB°
|
. = o pe :
. 1+ 1L5B
» e
- h the effective multiplication is
Y )
ST | . K o~ CF
) '.‘— keff(Bg) = (6.38)

(1 + LiBg)(l + Lsz)
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- and the critical equation is

)

‘l h C X JtB:

B . o 1. (6.39)
5? (1 +13B)(1 + 1°B) |
» | |
:‘ ’ It may be noted that the expression for keff(Bg) in any slow neutron reactor,

B viz., .
‘ ‘ . k iﬁ(Bg)
P 1+ 1783
contains the factor 1 + LeBg in the denominator, regardless of the slowing
down kernel. Since (1 + L‘?Bg)'l is the Fourier transform of the diffusion
kernel, the product
: 2n2y-1 5 2
- (1 +1785)™ B, (Bg)

’ is the Fourier transform of a two-fold convolution kernel whose component

. | L o-lz-z'| /L
e - kernels are Fy, ('x-r" ) and 5 This convolution kernel represents

B b lpt-zlL
the pfobabilitj that a fission neutron at r" actually is absorbed as a slow
neutron at r, rather than becomes a slow neutron at r. The splitting off of
the thermal diffusion part of this composite kernel is really a matter of
notation which is done simply to conform to the usual practice in pile theory
literature.

kr c¢) Convolution of Diffusion and Transport Kernel

. This combihation, which leads to-the characteristic equation
- “ :

< . B
o x — Ml (6.40)
S . (1 +1°B3)(1 + 1L§BE) "¢ No
) -\

- has not been used in pile calculations.

. —
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- d) The Multigroup Picture

o The kernel which is formed by the convolution of several diffusion
‘_ kernels leads to the so-called "multigroup"” picture; the two-group picture
’fﬂ previously discussed is a special case. The Fourier transform of an n-group
mf{.~ slowing down kernel in which the diffusion length in each group is Li is
. D
" | (1 + 158°)(1 + L5B9)..... (1 + 1L28°)
and therefore the expression for keff(Bg)is
2 k
kote(Bg) = (1 + 282)(1 + 1280) ... (1 + L2BD) (1 + 178) y (6)
Ny and the characteristic equation is
5
- (1 + L2B2)kTri’ (1 + 1882 T (6:42)
. 811 te
The characteristic equation in an n-group theory is algebraic of degree n + 1
in Bg (n + 1 because the thermal group is counted separately from the n fast
groups). If k > 1, there are always n complex or negativé roots in addition
to the one positive, real Bg. The positive Bg is associated with the asymptotic
- . solution; the other roots are aésociated with the non-asymptotic ones.
N If the number of groups becomes large, but the sum of the squares of the
. v "diffusion"” lengths is held constant (fiiL% = T), the group picture passes
~? - into the Gaussian picture. This was already pointed out in Chapter II. That
~.F' the characteristic equation (6.42) passes into (6.10) is readily seen. In
—.\" the limit, (6.42) is

B/35/06




k Hn & Y 2
7"((1 +LB0)[ = 1, " 1§

(1+L2]3§) n—poo i=l ,

Now

1im

T

22
(1 +LfB§) e €, TIZ

=

n-»o0 1i=1

as can be verified by taking logarithms of both sides. Hence (6.42) becomes

-ZB
X e e
_ =1,
(1 + LeBg)

which is the Fermi equation.

a
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THEORY OF REFIECTORS AND THE METHOD OF GROUFS

CHAPTER V

The critical mass of a chain reacting system can be reduced by surround-
ing the system by a scattering materiasl, such &s graphite, The function of

such a "reflector" or "tamper" is to reflect back inmto the chain reactor neu-

trons which would otherwise have lesked out of the system. Thus a reflector

;educes the neutron leakage; if placed around a Jjust critical, non-reflected
pile, a reflector would make the pile super-critical, or if placed sround a -
glightly sub-critical reactor, a reflector of proper size wmight meke an other-
wise sub-crifical reactor just critical.

The study of reflected reactors is comsiderably mors éﬁmplicated than
the study of non-reflected reactors with energy independent extrepolation dis-
tance.' The reason is fhat in the lstter case the neutron emergy spectrum is
changes in the neighborhood of the reflector? ?his complicaticn arises from
the fact that the multiplying and slowing down properties in the reflector
are not the same as in the active portion of the reactor. In the region of
the interface between reactor and reflector the nsutron energy spectrum will
therefore undergo a change from the shape characteristic of the reactor»to that

characteristic of the reflector. The asymptotic soluvion of the piie equation

.8%il1l holds far from the reflector-pile interface and there the ensrgy spectrum

is independent of position. However, close %o the  interface non-asymptotic

transient solutioms are excited which, on superposition, serve to describe the

change in neutron snergy spectrum as the interface is approached.

In this chapter it will be our‘pﬁrpose to outline the procedures which
have been used with success in calculating the critical size and neutron dis- ..

tributions of reflected chain reactors. It will be seen that the problem cen

f3-}355109.
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be solved rigoxfously if, ‘as in tmmportmt case of a graphite
moderated and reflected pile , the slowing down properties of the reflector

and the pile are the same. In the general case where the reflector and re- .
actor have different slowing down properties onrly rather special approximate
techniques, such as the multi-group methods, are available.

Simple One-Group Reflector Theory

In many cases of practical importance, the chain reactor is so large com-
pared to a slowiixg down length that the transient solutions referred to above
do not distort the neutron distribution in the bulk of the reactor. In éuch
cases a one-group pile model is fairly adequate. The appropriate one-group
pile equation in a large pils can be obtained by starting with the pile equa~

tion (5.13)

124 Qs(r) - %(ﬂ + .. /@ (x*) POO(EB, jp=r') )az? = 0 (5.13)
: all
- gpace

and expanding @s (r’') around the point r under the integral:

ds(x') = Qs(r)+(r°=r) v Qg (x) + 5 [(;_"’-3:,) o%z §B(z:)+mm | (7.1)

If the pile is largs, the neutron buckling is small, and therefore the Taylor's
expansion cen be broken off after the first two terms. Upon substituting (701)
into the integral in (5.13), and evaluating the resultimg integrals in polar co-

ordinates , we obtain

8.8 (x) + Ml%l @) - o (7.2)
’ »
kz°2(E )
where M° is the migration ares = 12 + —-g--i-—o The equation (7.2) is formally

the same as the one-group thermal pile equation with M playing the role of the-
diffusion length L.

Consider now & large reactor which is’féurrognded by a reflector in which
the diffusion léngth is L,. We shall demote quantities referring to the reactor
by subscript p, and quantities referring to the reflsctor by subscript r. Then,

dropping the subscript 8, wo may vg;:;,_te the following pair of equations for the

B350
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system pile and reflector:
2 )
AD + =0 in pile 7.3a)
@p B, ip | P (
1 . ‘
Z\Qr Lg ér =0 in reflector (7.3b)
with the boundary conditions
@ = @ ' (7.4a)
P T
on pile reflector
3 - ad interface
D, _éze = D, _Qz (7.4b)
on on

where Bi = Eﬁ% , and g% is the normal derivative. In addition to (7.4) there

is of course the requirement

Q =0 on extrapolated boundary of (7.5)
r reflector.

The critical equation is obtained by finding that solution of équations (7.3)

which satisfies the boundary conditions (%.4) and (7.5). Before solving the
reflected pile equation we note that the slope of the neutron distribution at the
pile-reflector interface will be less steep.thaﬁ it would be at the physical boundary
of an unreflected pile (Fig. 7-I). In other words the presence of the reflector
increases the effective extrapolation distance in the reactor, énd therefore reduces

the critical

dimensions of a chain reactor. This of course is just a somewhat more mathematical

way of saying that a reflector reducés‘the neutron leakage.
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. ‘ B We now calculate the critical dimension of an infinitely wide slab pile
i ~ with a reflector of (extrapolated) thickness T on each side.
§ - )
- .I.
-.. r r
J b
]
f
) As has already been found, the critical dimension of the slab, if unreflected, is
= _X ' j
Rco = _%_. (7'6)
b
2Re, being the width of the unreflected pile, and the neutron distribution is
| @P = on cos Bpx . ' | (7.7
. In the reflected case, the solution of (7.3a) is
= cos B x 7.8
B, =8 oos Bx, (7.8)
while the solution of (%.3b) in the right hand reflector, which satigfies
(7.5), is
i = A sinh (T + R, - Ixl), (7.9)
. where Mr = _Ll; and R, is the half width of the reflected pile . The quantities
« A and R, must be determined so that the continuity conditions (7.4) are satisfied.
: Substituting (7.8) and (7.9) into (7.4) we obtain
"
§P0 cos B,R;, = A sinh )CrT

‘. | Bpnpépo sin BR, = DpA X pcosh)4T
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that is,

BPDP tan BP'Rc =D, Hcoth¥ T . (7.10)
7

The trenscendental equation (7.10) is the critical equation for the reflected
pile. If T = 0, the pile is unreflected and thg critical equation becomes

tan BPRCO = 00,

which, of course, leads to (7.6), i.e., Re, = E%_ .
' b

If the pile and reflector are of finite height and breadth, then the transverse
buckling must be subtracted from Bg . Thus, for a system of square cross-section

with extrapolated height H, the distribution is

2 2n k1Y
= cos = - &8 _ x cos I cos Nz by

< 2 |
Er A sinh i + §§§ (T + Rg-Ixl) cos %% éoé.%§ . (3.9a)

The critical equation has the same form as .10 except that Bp is replaced by
1/2 1/2
2 21(2 2 2
BS - and b W 4+ 2xn .
(% %) % ( F

The reduction in critical size effected by the reflector, the so-called

reflector saving, &, is easily computed from (7.10). We introduce into (7.10)

the reflector saving,
=R, -R,, (7.11)

so that ('7.10) becomes, by virtue of the unreflected critical condition,

7T —
Bpr tan (5 - Bp§> = Dr)er coth)lr T
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or

. BD
5 = . .
tan B, 55%% tenh é{r T (7.12)

The reflector saving is small compared to R,, since it was assumed to begin
with thay the reactor is large; hence BPS €1, and it is permissible to replace
tan BPG by BPB. _This corresponds to ignoring the curvature in the neutron distri-
bution close to the reflector interface, a procedure which is valid if the pile is

large and 5 is small. In this approximation the reflector saving turns out to be
D T )
a~ 2L, tanh =~ . . (7.13)
D, L,

If T<<Lr’ this becomes

o
R
H bs®
A

while, in case Dp = D, and the reflector is infinitely thick,

&2 L; (7.1%)

i.e., the reflector savings in a large pile reflected by an infinite reflector

having the same diffusion coefficient as the pile is equal to the diffusion length

of .the reflector.

Explicit expressions for the one-group reflector saving in a spherical or

~

cylindrical pile can be derived by solving the pile equation in the appropriate
coordinate system. Thus in a spherical pile surrounded by a spherical reflector

of thickness T, the neutron distribution in the pile is

b - ST (7.15)

B
T

Y Ppo
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and in the reflector it is

sinh ¥ _(Re + T - 1)

= A — . (7.16)
8, o

So far the sphere and the plane problems are identical except that r§ in the

sphere replaces Q in the plane. However, the boundary conditions at R,

sinB R sinh X _T
po ____L..c = A __.__._..r (7‘17)
BpRc . )@Bc
cos si h inh T
QP DP 2pRc _ angc --Da cosh 3¢.T . sin ;lr (7.18)
o :
c . BPRc Re JQERc

differ from the plane boundery conditions in that an additional term is present
in (7.18) which vanishes only if the two diffusion constants are the same.

By solving (%9.17) and (7.18) we find the reflector saving & = Re, - Re
in the case DP = D, to be given again by

8= L. tanh T . (7.19)
r

while if Dy # D., & is given by the formula (egain valid for B® <K 1)

2

' D
. 1|Pr _ /R, + = -
8~ = ]_); 5, + Rco 9q D.p 8o thoso : (7.20)

where

§ = 2PL, tanh T/Ly.
(o] DI'

If D = ps OF if Rco—hco, the reflector saving (7.20) reduces pp the plane

reflector saving, (7.13). If D.< Dp, it can be shown that the spherical
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reflector saving%is greaterAthanfthe“planevréflegtor saving, while if Dr;>Dp,u
the reverse is true.

The neutron distribution in a reflected pile as computed with the one-group
theory is compared to the distfibution in an unreflected pile in Fig. 7-I. Evi-
dently, as is seen from the figure, the ratio of central flux to average flux in
a reflected pile is lower than in an unreflected one having the same buckling.

Two-Group Reflector Theory

In the one-group theory, the fast neutron flux is assumed to be proportional
to the slow flux even at the reflector-pile interface. This is not correct near
the reflector-pile interface, si;ce, in the reflector, the ratios of slowing down
power to thermal absorption cross-section and to multiplication rate usually have
values quite different from the values of these ratios in the pile. If fhe pile
is very large, the region in whicﬁ the fast and slow fluxes are not proportional
to each other occupies a rather small fraction of the pile, and therefore no great
error is introduced by using the one-gfouf'picture. However, in a small reactor
the region of non-proportionality mey extend throughout the pile, and it is therefore
necessary to take account more accurately of the fast neutrons. A simple method
of taking the fast neutrons intolaccount is to use the two-group pile model, and to
require continuity of flux and current of both fast and slow neutrons.

The two-group pile equations will be discussed first for the problem of an
unreflected pile with energy independent extrapolation distance. The appropriate

equations are derived, as in Chapter III, by considering the neutron balance for

fast and slow neutrons separately. We denote the flux of fast neutrons by Ql and

the flux of slow neutrons by §é. The number of fast neutrons produced per cubic

centimeter per second is evidently

B+352]i¢
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where p is the resonance escape probgbility and 62 is the slow neutron absorption
cross-section. The fact that these fast neutroné are produced at fission energy,
end this energy bears little relation to the average energy of the fast neutron
group is ignored in the group picture. Taking % No, o as the source of fast

neutrons, we obtain for the fast neutrons
v k .
D, A}, - o §; + S Nop §, =0 (7.21a)

where No, is the "absorption”, i.e. slowing down cross-section, for the fast
neutrons (cf. equation (3-106) of Chapter TIF). It will be recalled from Chapter
; Dy

1/2
III that Noj and Dl are chosen so that (%E-) is the experimentally observed
. . l .

slowing down length. The slow neutrons in the pile satisfy the equation

DA, - Noyd, + o, §; =0 ; | (7..21b)

the slow neutron source term, pNGIQi, represents those fast nesutrons which slow
down and escape resonance capture. Because of the schematic mammer in which the
fast neutrons are lumped together, it is impossible in the two-group method to

take account properly of the fact that the resonance capture ocecurs continucusly

over the whole of the fast neutron energy range. All that is achieved is to make
the net resonance escape probability equal to p regardless of the energy distribution

of the resonance capture. For the boundary condition we take
R =PB)=0, (7.23)

R, being a radius vector which defines the extrapolated bouhdany of the pile.
We assume that the extrapolation distance is the same for both fast and slow
neutrons.

The pair of pile equations (7.21) can be solved in terms of the solutions

of the wave equation

B35
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- A Az (B.r) + B2 (B;x) (7.2k)
~y
j' where Bi ig to be determined later. Thus the general solution of (7.21) can
e be written
o
I—-
@1 = Z,(Bxr) + bZ,(B,r) (7.252)
B D,8° + No D{B5 + No | ‘
bo-2r lamr)+v—2 1 oz sy (7.25b)
2 1V 1= 2 vTe=
x No k N02
p 2 P
vhere b is an'arbitrary constant. That (7.25) does satisfy {7.2la) is
- verified by direct substitution. In order to satisfy (7.21b), Qz must also
Py be given by
_  pNo bpNo
: b = L Z,(Bqyr) + Lz, (Br). (7..26)
. —- s B2 5 2olBoL
oy + DeBl No, + D2B2
The two expressions for @2 are compatible if and only ‘if
pyBf + Noy pNe,
= ) H R (7°27)
5 NGE NO’2 + DaBi
- i.e., if B, satisfies the characteristic equation
,"A ’ ) ¢ / v . .
o k =1 (7.28)

U - 2 2 2
) . (1 + 1985) (1 + L3B%)

(7.29)

B-/35=118
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are the slowing down length and diffusion length; respectively. Equation (?.28)

y |
K3 is. recognized immediately as the two-group critical equation (6.25) which was
e
P derived in Chapter VI,. In an unreflected pile with energy independent extra-
= -
T polation distance, the critical size is determined by (7.28) provided B% is the
K- geometric buckling.
- The two roots of (7.28) are
- ' 2
) 2 1 1 1 1 1 h(k-1 .
BL=3|" [+Z)* L+ ) - il ° (%.30a)
12 11 15 g L5 115 | |
and
1 1 . z L
R N R R (2.300)
2| \1f L L= L L L
- 1 2 1 2 172
‘ If the pile is very large, k-1 << 1 and the radicals can be expanded. For a
.large, pile, therefore,
v . Bl ~ ? . . (20318.')
PP~ -2 . (7.31p)
2 12 12 1
1 2
where
. _ L2 2 .
. M = L+ 1, ;
is the pile migration area.
‘: We digress at this point to establish an important property of ths two
- solutions Zl(Bl_I;) and Zo(Byr). By multiplying (7.24) by Zi(Bi_;:) , integrating
/o over the volume v enclosed by the surface S, and applying Green's theorem, we
iy .
- find : _ o 9z
¥ ‘ ‘ (vzi)dv.'zi-gga;s .
-
: Be =X -8 ' . (2.32)
-~ : 28 223 '
. z;dv 19V
v v

- B-/35=H9
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Now, according to (7.32), if either Z; or 7;% venishes on the surface S,

B?,being the quotient of the two positive quentities, must slso bé«positive°

az, . *
Ir B% is negative; neither Z4 nor 7;5 can vanish over any closed surface S.
n . -

Thus the two solutions of {(F.24) can be classified according to whether B%
is positive or negative. Since, according to (f.30), Bi‘) 0 and Bg £ 0y
Zl(Blg) is a function which may pass through zero om certain surfaces, while
Zp(Bor) can never venish on a closed surface. The function Z, ia analogous to
a dosine, vhile Z, is analogous to a hyperbolic cosine.

We now apply the boumdary condition that the fast and slow fluzes vanisgh

on the extrapolated boundary:

Ql(Rc) = Z3(ByR;) + bZx(BaR.) = 0

5 2
DlB; + Noj DjBo»+ Noj _
b(r,) = — = 2, (B)R) + b —p—— von Z,(B,R,) = O
- P

This pair of equations can be satisfied only if

Zl(Blgc) = 0y bZ2(Bé§c) = 0,
and, since Z2(B2§c) can never vanish on the boundery, b = 0. Thus the only

solution of (7.21) which satisfies the boundary conditions in an unreflected

pile is
D 32 + No
1°1 1
Bom) = =———= z/(3,7)-
= No,
p 2

In other words,; according to the two-group theory, the fast and slow neutron

densities are everywhere proportional in en unreflected pile with energy

('{';33a)

(T:-33b)

(7.34a)

(7.34D)

* The function Z4 is of course continuous along with its first and second
derivatives over .the region v. ¢

= B350
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indepeqdent'extrapolation distance. This is a special case of the fundamental
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theorem of pile theory and could have been predicted from the general theory
of Chapter V.

It is seen (7.25) that the neutron distribution in the two-group theory
is, in general, made up of two parts. First, there is the Z;(B;r) part, which
is oscillatory outside the pile, and, since it appears in the nnreflected pile;
is to be identified with the asymptotic solutj.ono In addition there is the
non-asymptotic, non-oscillatory, solution, ZQ(Bzg), which occurs whenever b # O;
i.e., in a pile with reflector. If both solutions are admissible,tthen, since
the coefficients before Z; and Z, in (f.33b) are differenﬁ, the fast and slow
neutron densities are not proportional throughout the pile. It is in this
menner -- by the "excitation" of additional non-asymptotic solutioms -- that
the variation in neutron spectrum é€lose to a boundary is taken imto account

by the mathematical apparatus of the group theories. Since every additional

group- adds another non-asymptotic solution, the more groups there are the more

nearly the details of the variation of the neutron energy spectrum over the pile
can be described.

We now consider, by two-group theory, the same infinite slab problem which
was solved in the pfévious section by the one-group method. The slab of finite
height and breadth can of course be reduced to the infinite slab by assuming

8 éosine veriation in the transverse direction. In the pile the fast and slow

fluxes satisfy

P, 4+ k - 7
Dip —2 Npo1pd1p + £ Nyoppdop = O (7.35a)
2 .
‘ d@
2 ' - -
Doy ___52 - Np°2p§ép + PNp“lpglp =0 ({7.35b)

Sé?'géxégﬁgséziz
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-7 while in’theZIeflgétoﬁ,rwhefernbofast neutrons are created, the fluxes satisfy

F Y } 5
| ,f‘ - d er . 6
D, 2 Nr“lr@ir =0 (q.3 a)
‘“‘.l ' . .
. o) A
1 T ) N d @21. : \ 6
- Doy a2 - NpOppfor + Npoypdar = 0 - (7..3 b)/
where subscripts p and r refer to pile and reflector, respectively. The
} boundary conditions are
oady, o ady, - 80op ad,
. Dllp ——B =Djx_rn"— TR 2P -E = D2r _d'xg .
| | (T.37)
élp = @1r ’ ¢2p = ¢2r
- at x = + Rc’ the reflector-pile interface; and
o by, = 5 = 0 | (0. 38)
| at x = + (Eb+ T), the extrapolated boundary of the reflector; the extrapolation
| distance being assumed the same for fast and slow neutrons. The solution of
- the refiléctor equation which vanishés'dn'the outer boundary is
9,.(x) = asinnB, (R + T - |xl) ‘ (%.-392)
) 6 -oNy0y p . (R . Iz ‘ . Iz 7. 390
. -2r(x) = 5 sinh By.(R; + T - Ix[) + Bsinh Bzr(Rc + T - [x]) (7.39b)
| D,.B,_ - DN_g :
‘ 2r-1r rar-:
X v
o where
¢ 2 2 ' ' : 3
. By =3 » Bop=—>2 - (%.40)




4

»)
N

VII.-15

In the pile,

= ] ' ' ' L
le(x) = acos Blpx + bcosh 32px _ (7.41a)
Dlpng + Nyopp Dipng + Nyoq,
@ (x) = acos Bi,X + b cosh B} x ({7-41v)
2p k 1p K N P
5 Mpop -2 "p%p

2 2
where By, and By, are the two roots (77.30a) end (7.30b), and By, denotes the
2
op°

 The expressions for the fluxes involve the four arbitrary constants a, B8;

positive square root of the gbsolute velue of B

a, b, end the unknown critical half-width, R;. Since the boundary conditions
(7.37) consist of four homogeneous linear equations, the venighinmg of the deter-
minant of coefficients is the critical equation for R Three of the remeining
constants can be determined in terms of the fourth; in this manner the fast and
slow fluxes are determined within an arbitrary multiplicatiwe constant.

The algebraic details of substituting (%.41) and (7.39) into (§,37) and
setting the determinant of coefficient equal to zero are straightforward but

tedious. The critical equation turns out to be

N0 B tanh(BA R, ) :
_ 1 |xdrep c
B,, tan(B) R ) = % NP (BopcothBy, T = By.cothB,,.T)
2p*2r = “1ir

2 2
PirPor(Bap - B1p) B, B, cothB. T cothB, T
+ 1y PppCOUE,t COVRD,,, (7.42)

k
Dap 3 ¥pY2p

k)

BA,tenhB R i Dy D
§ol c 2 r 2 2r
+ =5 y (DlpB2p + Npalp) 5 By,cothB; T - (DlpBlp + Npolp) — B,,cothB, T

B=35-12:3
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5
where
N,.c Dy (Ba. - B-.)
_ rYlr 1p\“2p - “lp
Y = . (132. 7 ) (BypcothBy T - BopcothBy,T) + Py Bépta'nhBépRc
2p' 2r 1r P P2p
' D : D
1 2 or 2 1r
* (DlpBQP + Npclp) fr—-BercotthrT - (DlpBlp + Npglp) D B, cothB, T
? Yp%2p 2p P

and the expressions for the

constants are

cosB Nyo
b} Lpfe L (B, ycothBy T - By cothBy T)
a Y coshBt R || Doy(B5, - BIy) d * g g
2p c 2p : 2r 1r
2 D
. DipBip * NpO1p (72r o cotns Dyy o

k » pyCothBoy T - D — BypcothB, T

cosBy R, | | Dp,(B5, - B5,) D,
@ - | = . BéptanhBépRc + 5&— B, .cothB, T
a Y ginhB, T > Np0op >p

A
B D1p(Bap - Bap)
- 1 €08B)1pfie 1lp\£2p - “lp D.
€= |z i B tanhBj R + po— By,COthBy T
a sinhB,,.T ¥y o D D c 2p -
: p PZ2p
Dy Bo + N_oqo) Nyo D
. L
— lPk}P . £ l:p T ;-. lr ~;2-.1 *(Bépp ga_.nl;BépRc 1 Dd?-BlrccthBer> °
T\© ';"NPUQP"." - ’-—_.“92{?(.32} ‘_1..\31.;‘..) \EP e e byl Yo

1ty .

= 82

If the pile is large, Blpﬁ ¢<1 and the reflector saving is |

1+& B, tanhB' R 1 .

1 +£ (:?;;2';:.7 s c') 3 i{'.o-
- ) - \@ / B"t ‘\BI ] L)- "'1
Lhocry M lf{’zv-“%: B

KN -
7”?0549

(7.43)

B35
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where

According to the one-group theory the reflectér saving is Jjust 82° Thus the
reflector saving, according to the two-group theory, is larger than that pre-
dicted by the one-group theory by the factor contained within the braces of

Eq. (7.43). Physically the larger reflector saving predicted by the two-group :in.
theory can be understood since the mean square distance a neutron travels before

capture in the reflector is a migration length, not a diffusion length. Since

" the migration length is longer than the_diffusion.length, the chance that a

neutron returns to the reactor is actually larger than the omne-group theory
predicts, and this leads to a larger reflector saving in the two-group theory.
The trensient part of the solution in the pile falls off roughly expon-

entially from the pile-reflector surface, the length constant being E%;.a In

- 2
a large pile, this length-is, according to (7.31b) , roughly P
. . -l :
1 ~ 1 .
==+ =] - 7.44)
Bdp Il L L . (7
1p 2p :

If the two léngths L,  and Lep are very different, the trangient length will

1p
be nearly equal to the shorter of the two.

The neutron distribution in the pile and reflector computed by two-group
theory is plotteduin Figure 7=II . The most interesting feature of the distri-

bution is that the slow neutron denéity has a maximum, or at least a point of

B-j3525
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inflection, in the reflector a few centimeters away from the interface. This
hump arises from the fact that in the reflector slow neutrons are produced by

slowing down of fast neutrons, but they are absorbed very much less strongly

in the reflector than in the reactor. For the pile whose distribution is com=uv.

puted in Figure 7-IIthe ratib of slowing down power to slow neutron absorption
cross-section is 97 in the reflector and 4.4 in the reactor. Thus the slow
neutrons pile up in the reflector, and this menifests itself as a rise in the
slow neutfon dengity near the reactor. Farther from the interface the rate of
moderation of fast neutrons decreaseé because of the distance from the original
source, and the slow neutron'density decays along with the fast neutron density.

Multi-group Theory; Choice of Constants

‘The two-group method is readily generalized to any number of groups by
increasing the number of intervals into which the neutron energy is divided.
B8 long as there is no resonance capture (which may or may not result in

fission) there is no difficulty in writing down the multi-group equations;

hfenérgy interval remsins constant throughout the

since the flux, §;, in the 1%
energy interval. If resonance capture occurs in the ith energy interval with
probability p;, then the multi—groﬁp eéu&tions acquire a certain ambiguity.
This embiguity arises because the group picture allows no change of @i within
& given energy interval, whereas the resonance capture in gegeral results in a
more'or less continuous decrease of the neutron density as-the neutrons ére
moderated.

A consistent scheme for taking account of resonence capture is to view
Noi@i always as the number of neutrons passing through the 1th energy.interval

per c.c. per second and entering the (i.+ 1)5% interval 1f there were no res-

onance capture. The quantity o4 is the slowing down cross-sectiom for all

| B35 4




v groups except thermal; for thérmal it is the true capture cross-section. Res-
< onence capture reduces the number of neutrons per c.c. per gecond entering the

'-u‘ interval to

Noyps§; »

; p; being the resonance escépe probability in the ith interval. Thus the number

.th | ~ R
- of 1t interval neutrons resornance absorbed per second per c.c. 18

Noyd; - Noypy@y = Noy(1 - p5);.
Hence, in the aksence of resonence fission, and under the assumption that all
fission neutrons enter the fastest grouﬁ, the multi-group.eguations’ invatuni-

form system are

DiZSQi - NUiPiQi - Noy(1 - Pi)91.+ N°1-1Pi-1§i_1 =0 : (%.45)

y 2y

- or simply

i D, AP, - No,d, +Noy _,p; 18, ;=0 - | (7.46)

for 1 # 1, the highest energy interval. For the highest energy,

k ;

DAY, - Noy§y + 5 Mo, = 0, (3.47)
whers p, the total resonance escape probability, is the product of all
previous py:

. P = P1P2p3coooooopn-lo (V)-LI-S)

i If resopance fission occurs, as in an enriched pile with rather low

y moderator to U ratio, the equations evidently become

DAY - Nog§y + Noy_ypy 19,5 + %—; No;(1-pj)kysdy = 0 (%.49%

=351
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( % where kji ig the number of neutrons created in the ith energy interwyal per

o
s neutron absorbed in the jth interval.

Zhgﬁ The appropriate expression for py in terms of the absorption and scattering
‘-: cross-section of the system follows from ChapteriIV, If the ith energy interval
: extends over the range E; _, to E;, then

- ’ ) _
- Es
1 4ak
p; = €Xp -¢. N“a,i - >
1 ﬁ NGSiS E |
Ei-l _eff/
k 4
where the iuntegrend of the effective resonancé absorption integral is a com-
plicated expression involving the surface and volume of the fissionable meter-
) ial, as well as the absorption and scattering cross-sections, %1 and Ogi For
1 a homogeneoué system,
S dE Nogs
Ng_ . — = | e——
al E 1+ 0gifoss E

eff

which, for very small o ;/@g; becomes

dE ~ daF
g No&i —E:- ~ Noai —E- °

- eff

. If the group interval is very small so that the resonance absorption is

also émall, then -

Ey

aE
Nog4 T

LEi-l eff

B 135128
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where Ncai‘ff is an average effective absorption cross-section, so defined that
e‘..
Ey E;
dE _ dE
g_. = = Nogy = .
alefr E al g
B By o |eff
, No 5
Now the slowing down cross-section, Noj, is so defined that 5 81 is the average
o]
1
number of collisions in the ith energy interval, i.e.
In E /E'_l
L. -l - (7..50)

Nci Nosif

hence, in the limit of small group interval, and small absorption,

Noai ;
eff | (T'.51)

1 - e,
PiN NO’i

The group equations (7.%9) therefore mey also be written

D;OY; - Woydy + (Noy_y ~Noyyq 85y + ZJL N"a,j_effkji@j = 0; (7.52)

for very smell absorption, may be replaced by og-

ecrr _ i
Equationg rather similar to {7.50) have been derived by starting with
the age s;owing down equation, including absorption, and approximsting the
differential equation by difference equafions. The objection to such a pro-
cedure is that the age equation does not hold if there is absorption (cf. p. 27
Chapter III), and therefore group equations, derived from the age equation are
not necessarily more valid than equations (7.50) which are also derived from a
simplified, but admittedly incorréct slowing down picture.

We consider the group equations in the form (7.46-7). There are n equations

in an n-group picture. The solution for Qi can be expressed, as in the two-group




[
|

theory, as an n-fold linear combination of functions Z (Byr) each of which

satisfies a wave equation

AZ(Byr) + ByZy(Byr) = 0.
Upon substituting a éoiution of the form
§; = a4Z(B)z)
into (7.46-7), there results a set of n linear homogeneous equations in A,;

for these equations to be compatible the determinant

2 k
- (DlB-,) + NO’l) O . e o 0 O '5 NO’n
No -(D BS + No ) cese 0 0
1P 2%y 2 o = 0
0 0 eeer No_ip, 4 -(DyBy + Nop)

This determinant is easily expanded, and it is found that each Bl’ satisfies the

n-group characteristic equation

k N
= 1 (7.54)
(1 + L%B%)(l + Lng)...(l + LiBlz)) '
where 5
2 Di ‘
17 =— . R
L% o, | (7.55)
Equation {7.54) is recognized as the critical equation ( 6=1)
o (B5) v
Sty (%.56)

p(1 + 1285)
as applied to the n-group system, since the Fourier transform of the slowihg
-1
)

down ‘kernel in each group is pi(1l + L?Bs
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The characteristic equation (7.54) is algebraic of the n®P order in Bs).

There are therefore n values of Bs , and 2n values of B, , corresponding to
the positive and negative square roots of Bs). The total number of linearly
independent Z)(Bvr) is 2n -=--- which évidently follows from the fact that
the n-group equations comprise n equations each of second order.

The roots Bf) fall into two classes -- one root which corresponds to the
asymptotic solution, and the remainder which correspond to the non-asymptotic
solutiong. The asymptotic solution root,Awhich we denote by Bg, is given,

approximately, by

BS o KoL 4 (7.57)

provided k= 1, i.e., the reactor is large. This remsult has already been shown
to hold for any slowing down picture (ChJYI); it can be derived directly from
(7054)_by neglacting terms of order Bt or higher in equation (7.54).

The remairing voots are, in general, complex. The non-gsymptotic solutions
which correspond to them behave roughly as damped exponentials (if B 1is a pure
imaginary), or as demped exponentials multiplied by an oscillating fﬁnction if
BV is compiex. Since explicit expressions for B) are obtained most readily
when the number of groups is infinite, a closer discussion of the non-asymptotic
sollutions will be given after the n = @ equations have been derived.

The characteristic equation for the case n = oo, fhat is the Fermi picture,
is egéily derived from (7.54) by passing to the limit in which the number of
groups becomes infinite but the sum of the non-thermal slowing down areas re-

main finite and equal to the age, i.e.,
n-1>1

2
lim Ly = 7.
n—>»o 1i=1




Upon taking logarithms of both sides of (7.54) we have

Ank =§2n(l + 1985) + An(1 + 1585) -

2
In the limit, each L; becomes vanishingly small; thus

An(1 + LeBs) — LalBe

and therefore, in the limit

Ank = 'Z‘Bs + An(l + LﬁBf,);
or

2
-TB
ke v

(1 + 138)

which is the Fermi characteristic equation.

Since #Znk is a multiple valued function, it is clear from (7.58) that
there are infinitely many B?) . These roots can be written down explicitly

in case Li = 0; i.e., the thermal diffusion length is zero. In that case

52 | Aokl + 2x91

where | fnk| denotes the real logarithm of k. From (7.59) it follows that

By =z (ay+ byi)
where |

2 22"
ay = '\fLenkl +lm1) + | gk |
2
b \’[.anl + hnPp? I.lr_xk(
1) - 2 ’ZJ M,
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For large 1>, the roots approach

BV'"%’:tTE%?(l +1).

The characteristic functions,:zv(gdg) will have various forms depending

on the geometry. Thus in a plane geometry;

ZV(BVX) ) éi iéﬂx ei byx

which is a damped wave with a relaxation length which approaches
' ' z
ET4
as }) increases. The damping becomes stronger as 7 incre;ses -~ that is,
the neutron distribution is more ahd more adéquately represented by fewer
and fewer Zv‘s as the distance from the interface increases.

Methods for Solving the Multi-group Equations

The muliti-group eqnatiéns constitute a set of n differential eduations (in
n-group theory) with the boundary conditions Qi = 0 on outermost boundary, and
@i and Dix (normal derivativé of Qi) continuous across interfaces between regiops.
Considerable literature devoted to procedures for solving the multi-group equa-
tions has grown up. All of the many different schemes which have been used can
be classified under three major headings:

1) Solution in closed form

2) Solution by iteration

3) Solution by expansion in characteristic functions.

Various combinations of the major methods -- for example, iteration of char-
acteristic function expansions -- have also been found useful.

Each group equation is, in general, a partial differential equation in

X, ¥, and z. If the chain reacting system has sufficient symmetry -- for example,

~B3-135<133
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g finite cylinder surrounded by cylindrical réflectors of the same height

as the reactor -- then each group equation can be reduced to an ordinary differ-
ential egqustion in, say, r, and the boundary conditions need be:satisfied on
gsurfaces » = constant. The methods which will be described in this section
apply only to such ore-coordinate reactors for which the multi-g:oup system

is a system of ordinary differential equations.

Solution in Closed Form

This method, an example of which has been worked out in detail on pagesl5,16 ‘
congists simply in writing down the neutron distribution in each region as a
linear combination; with undetermined coefficients, Ai, of the fundamental
solutions of the group equations, and then detefmining the Ay by requiring
that the boundary conditions be satisfied. As was shown in (7.24) the funda-

mental solutions Zy(r) satisfy

OZ)(x) + 85 2y (2) = 0

where BS are the roots (either real or complex) of an equation like (7.5&),
provided, of course, Dy, 04, k; and p; are constant throughout each region.
We assume tkis to be the case, and confine the discussion to a chain reacting
system consisting of m distinct regioqs, in each of which all properties are
congtant.

Each group eguetion, being of second order, will have two solutions, one
of which is regular'(or, for & slab, symmetric), the other irreguiar (or anti;
symmetric). We list these solutions for the three geometries in the follow-

ing tables:
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Table I

Functions Z,l)(_x_') in Various Geometries

Regular (or symmetric) - Irregular (or anti-symmetric)
Slab - cos B?)r or cosh B,)r sin Byr or ginh B})r
Cylindexr JO(B.)) r) or Io(BV r) Y,(Byr) or KO(B.}) T)
Sphere sin Byr sinh Byr cos Byr ' cosh B_‘)r
. —_t or ——mmm— - or ————
T T T T

Since there are n equations in eack region, -the neutron density in each
group will in general be a 2n-fold linear combination of functions listed in
?able I. The group equaetions are a coupled set; all of the neutron groups can
therefore be expressed in terms of one of the groups, and in each.region only
2n of.the constants A, will be arbitrary.

For simplicity, we assume the system is symmetric about the central region.
Then, in the central region, the coefficients of the irreguler solution must
venish either because of symmetry (in the slab case) or because the flux must
remain finite (in sphere and cylinder cases). This reduces the number of Ay
in the central region from 2n to n. Since there are 2n unknown Aj's in each
of the other regions, the total number of Ai's in a system containing m separate
regions will be 2a(m-1) + n or (2m-1)n.

At each interface between two regions there are 2n equatiorns which must be

satisfied by the A;'s 1in order to ensure continuity of flux and of current;

at the outermost boundary there are n relations which ensure that the flux of
each group verishes there. In all then, there are 2n(m-1l) + n = n(2m-1) linear’
homogeneous relations betwéen the A;'s. These can be solved for (2m-1)n-1 A; in

terms of, say, Ay, provided the determinant of the coefficients vanishes. This

¥»
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detérmiﬁantal equation, of which (7.42) is a simple example, involves trans-
cendental functions of the critical size, R,, and of the critical multiplica-
tion constant; k. The value of k fqr which the determinant vanishes is of course
the critical mmltiplication constant for the given sized system.

Phe gctual solution of the determinantal critical equation presents con-
siderable analytical difficulties as soon as the number of groups exceeds two.
In most cases it is easier to solve thé critical equstion for k. having assumed
a value of the critical size, than to solve for the size, given k.

The formel work of setting up the critical equation can be much systematized,

especially if there are mahy regions, by the use of matrix notation.® We denote

the jth group neutron flux in the k'P region, @gk)(r), as
@gk)(z) = Agk)Ygg)(r) + Aék)Yég)(r) + ;.. + Aég)Y£§23(r) j=1...n

(77.60)
where each function Yij(r) is proportional to a fundamental solution Z})(r),
k
the constant of proportionality being determined so that the functions @g )(r)

I
satisfy the group equations. For example, in a two-group theory, according to

(T.25),
T1 = Z(Byr) Y1 = Zp(Bpr)
2 2
DlBl + NO’l Dle + NO’l
f12 = Tk Nop “a(Byr) o2 " Ty o, 7 er)
P < p 2 (T.61)
In an n-grouﬁ thoory, there are n Qj‘s; that is, j runs from 1 to n.
It is convenient to introduce the "flow" functions
(k) (k) |
. (r) =D.7¢!(r) (7.62)
Q.J+n J QJ :

* A. S. Householder and H. L. Garabedian, MonP-202; MonP-246. .
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Then, in matrix notation, the neutron fluxes and the flows can be abbreviated

§5)(x) = gfEal®) (7.63)
where the vector Q(k) denotes (@(k), Qék), ....Eéég)), the vector é(k) denotes
al®), af®, ... al%), ana _g_gf is the matrixz of function YglJ?)(r) : "

Suppose there are m regions, the coordinates of the interface between the
kB and x + 1st regions being denoted by r,. At each interface, since fluxes

and flows are continuous,
g(k)(rk) é(%) ?,ka*l)(rk) é(k+l)
i.e., 1 (7.64)

RN N SRS

-1
where [X(k+l)(rki] is the matrix reciprocal to X(k+l)(rk). By successively

applying the boundary conditions to the lst, 2nd, etc. boundaries, we obtain '

finally
@) ()
where
= I Ve 1BV e 120 1P e .
| | (7.65)
Thus the fluxes and flows in the lst region are
3 () = g(l)(r) ) | (7.66)
and the fluxes and fiows in the ﬁ#h region are
I NRCEPCF SR PNy  en

L R-35+/37




where

2=z (7.68)
is a 2n x 2n matrix.

The boundary conditions at the outermost boundary, namely, that the fluxes
vanish, involve only the first n components of gfm)(r). It gf denotes the matrix

formed from E by suppressing the last n rows, then the first n components of

_ifm)(r), which we denote by Q*(m)(r): are

Qf(m)(r) = B ﬁ(l). | (7.69)

The boundary condition at the outermost boundary is therefore

m st -0 (7.70)
Now, because of symmetry, or because of the condition of regularity at the
origin, all Aglhs vhich multiply antisymmetric or irregular:golutions vanish;
i.e., the vector é(l) really contains only n, instead of 2n, non-vanishing
components. If é#(l) denotes the column vector obtained from é(l) by sup-
pressing the vanishing n components, and if H¥¥* denotes the B¥* matrix with

the corresponding n cclumms guppressed, then fhe boundary condition (7.70) is

i é*(l) = 0, ' . (7.71)
which is an n x n set of Lomogeneous linear equations. The compatibility
condition,

det gf* =0 (7.72)
is a transcendental equation in the critical size and the multiplication con-
gtants, and is evidently the critical equation.

The maﬁrix notation ig useful, first because it shows that the critical
deterninant |E?*| iz n X n regardless of the number of regions; and second,

because it gives a systematic wey of computing the critical equation. The




actual computation of H*¥* involves, according to (7.65) and (7.68), the com-
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putation of the matrices Zm(r) and their inverses Zp(r) -1 Systematic com-

putation forms for calculeting these matrices have been developéd by B. I. Spinrad.

An example of a problem solved by the matrix method follows:

We consider a slaeb reactor which is symmetric about the central plane and

has a core ard two reflectoré on each side.

The constants are given in Tgble

II.
Table II
Fast Group Thermal Group
' 2
D1 1§ Do L5
Region 1 (0-12 cm) 1.26 66 .28 3.6
Region 2 (12-40 cm) . .63 o4 .54 430
Region 3 (40-60 cm) 1.1 100 .3 200
In the second and third regions the matrix:g(r) has the form
cosh(Byr) sinh(Byr) 0 0
Scosh(Byr) Ssinh(Byr) - cosh(Byr) sinh(Bpr)
B31Dysinh(B)r) B;D;cosh(Byr) 0 -0
SByDpsinh(Br) SB1Dpcosh(B)r) BpDpsinh(Bpr) ‘ BoDpcosh(Bpr)
-1
and its metrix reciprocal |¥(r) is
\ 1 '
h(B - ‘

cosh(Byr) 0 BD sinh(Byr) 0
-sinh(Byr) 0 + .1 _ cosh(B;r) 0
-Scosh(B,r) cosh(B,r) + 2 _ sinh(B,r) - .1 sinh(Bor)
Ssinh(Bpr) -sinh(Bor) - 5 cosh(Bor) + 1 cosh(Ber)|

. BoDy G BoDp

—a135</37
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E %
D,1.2 .
where B, = L 5 By = Y 3 S = ————%;21-7?- . It is understood, of course, that
ot Lo Dp(L€ - 15)

in each region the constants appropriate .to:that.region are used to compute

By, By and S§. In this case, from (7.65),

-1 | -1
X* = Eﬂwo)] ¥2(40) F@(m] Y (12)

1%
where Y (r) is given by

' cps@ﬁir)“ ¢osh(Bpz) 0 0
8, cos(Byr) '~ 8pcosh(Byr) 0 0
-B1Dysin(Byr) .+Bzglsinh(32r) 0 0
-$1B1Dgsin(B;r) +S,ByDpsinh (Bpr) 0 0
2 2
D 1 D 1
and 5. = L2 , Sp = 12 end B, and B, satisfy the condition
1 12p 1+ 1282 12p 1 - 1°B° .
171 el 12 272
that k = (1 + 128%)(1 + 188%) = (1 - 18B8)(1 - 1282) (. From the X¥, E** ig

computed by multiplying X* by Y(3)(60). By iteration, the determinant H¥¥
is made to venish for By = .0403547, B, = .5427315, corresponding to a value
for k of 1.11%. The coefficients A; are determined from (7.65) in terms of

an erbitrary scale factor A with the following result:

A 2.8973 A 1.8906 A
A{1)= - .00013451 A A(2) -2.8977 A | NG -1.8906 A :

0 | 2.9588 A f*l()".:91'9'5 A

0 -2,9591 A : ¥L0.924“ Al

Hence the flux distributions in the three regions are:

1
§1 cos(.04035r) - 0001345 cosh(.54273r)

Tl
%2 .24382 cos(.04035r) + .0005461 cosh(.54273r)

ot



¥ =2.8973 cosh(.1031kr) - 2.8977 sinh(.1031kr)

@3 = -1,3259 cosh(.1031br) + 4.3265 sinh(.1031kr) + 2,954k cosh(.0u822hr) -

2.9591 sinh(.04822Lr)
$3 = 1.8908 cosh(.1r) - 1.8906 sinh(.1r)
@2 = _13.8642 cosh(.1r) + 13.864k4 sinh(.1r) + 10.9195cosh(.C7OT1r) - 10.92k

sinh(.0TOT71lr)

Solution by Iteration

When the number of groups exceeés three, or when the properties of each
region vary éontinuously, the direct analytical method becomes unfeasible.
Because the group equations form & coupled set, it is aiways possible to solve
them by assuming a distribution for one neutron group and, using this as a
gource for the next less energetic group, computing the distribution in each
successive group until the disfribution in the oéiginal group is recomputed.
The process is repeated until the iterated distribution does not change with
further iterations.

Physically, the iteration mefhod amounts to following the history of an

initial neutron distribution as it converges onto the equilibrium distribution

after successive generations of multiplication and diffusion in & critical

system. Each iteration cycle corresponds to a single generation,

@af?gm"}m
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Iterations of the group equations may be carried:out either analytically
e or numerically. The analytic solution of the equations is feasible provided
each region is uniform, while, if the values of D, g, etc. vary from point to
point, numerical integration of the differential equations is necessary.
- Ordinarily the critical multiplication constant, in addition to the neut-
ron distributions, is unknown. It is therefore necessary to develop formules
for computing the critical value of k in terms of the iterated neutron distri-
butions. In order to do this we introduce the Green's vector, Gil(g,z'), for
the.group eguations. BEach function Gil(gyg') is defined as the flux of ith
. groﬁp neutrons at r due to a unit source of group l,.i.e., the most energetic, -
neutrons at r°'. We confine the discussion to the case of slow fission alone
- with all fission neutrons being produced at the energy of the lst group, and

we neglect resonance capture. Then the source of fastest neutrons is kNan@n,

e and the group equations are equivalent to the set of integral equationms
L_(z), =k anén(z') Gyy{z,r')ar’ (7.73)
the integral being taken over the reactor alone. For the slow neutron group,
ba(2), = x g No . (x') G ,(z,r')dr’ . (7.74)

i.e., ¢n satisfies a homogeneous integral equation with eigenvalue k.
- The formulation of the group equations as a vector-integral equatioh immed-

iately suggests a scheme for computing k by iteration. We define the /eth iter-

'~
( ate of @n by the equation
"\

. i < | g Ve op@rar. )

B-I3544



In the limit .ﬂ__>go, A= 1)
lim én o=
A»oo &g?r)

k

since the iterated functions cohverge onto‘the characteristic functions Qn(g)
which satisfy (7.74), hers k is the critical, koo required,

In order to compute the first iterate (f ='1), as defined by (7.75), from
the group differential equations it is first necessary to set k = 1. Then a
distribution Qio)(g) is assumed in the first equation, and the remaining equa-
tions are successively integrated until a new distribution @gl)(g) is found.
If the assumed §£o)(£) had the shape of the characteristic function, then the

value of k would immediately be

I),(P)"' (r)

T e &

Qfll) (z)
)

It is unlikely that the first guess to @go is correct, and k will therefore

usually vary from point to point. An average value of k can be defined as
Qggzt,l)v.
(£) v {z)ar

) A : (7.76)
S 41(11)., (£)a

the integrations being over the pile. Evidently’kcﬁ) as defined by (7.76)

converges to the frue value of k as A approaches oco.

Numerical Iteration Method

The determination of the iterates @gﬁ)'by numerical integration of the

group differential equations can be done whenever p, D, k, and No are known

_functions of position in one coordinate cases. The details of the numerical

integration will be given for the plane case; the extension to other one-coordinate

BAZEHS



. j geametries follows easily. The group equations are written

- - d@
d 1\ =
y | s (Dl .E.}_) Noyd, + xNa,§, = O. (7.77)
‘e d ady _ _
; & (Dl _5.3 - No,d; + No, ,§, , =0 - 1i=2—»n
" 4 8o as to write each of these second order equations as two first order equa-

tions we introduce the flow Ii:

Iy =Dy 5o | (7.78)

then equations (7.77) become

i ar |
) - =Tod - Wod, (7.79)
aI

.
|

.. Tz - Vo8 - vo, 8

For the numerical method equations (7.79) are replaced by difference equations.

Thus if a small lattice spacing h is used,

1 1
. ad, . §i(x+=n) - §i(x -=n) |
-2 = 2 s (7.80) -

dax h
L4
1l 1
- aI I.(x +=h) - I;(x -< h)
t - i y i 2 i 2
g dx h
. _ .
',1 . and equations (7.78) and (7.79) can be written
. A . 1
X Iy(x + h) = Iy(x) + HNoy(x + 2 h) - BKNopdy(x + 5 b) (7.81)
Ty(x + h) = Ij(x) + Wo;y(x +F h) - BNoy_ 185 3(x + 4 ) i=2—pn
. ' . " .

v

, *3"";3& g




'ﬁi_l in the i

We consider a reactor divided into .regions in each of which all parameters are

‘constant. To start the iteration, k is set equal to unity in the core and zero

VII -3¢

@(x+—h)=b(x--—h)

Equations (7.81 ) are inhomogeneous in the sense that i-lst group fluxes appear

as "sources" for ith group fluxes: There will be & corresponding QP and Qi .

There is consequently a homogeneous solution IH found by putting @ =0 in

the i group equation, and a particular solution, Ii, found by keeping the |

th group equation. The complete solution is I plus an a.rbitra.ry

constant a times Iil . Similerly there will be a corresponding Q‘Ii? and- @i. Thus

H H 1
Ij(x + 1) = I{(x) + Wo, P (x + 2 n)

Ii(x + h) If(x) + hNol(I)i(x + -%- h) - hNon(ﬁn(x + %h) | (7.82)

P _ = 1P .}— - A 3

in the reflectors and the tria.l value of @n chosen in the core is unity. From
this by equa,tlon (7.82 ) I Il’ Qg, (D?_ are determined for éach lattice point.

In crossing boundaries quadratic interpoletion is used to obtain the proper

value for @?-LI, Qﬁ At the outermost boundary o can then be chosen to make (I)l
. t
vanish there. ZFrom this the first iterate of @l, §_ ) can be evaluated and
' 1
uséd in the same menner to determine @é'), (f)l(l ). The first approximation

for k will then be, from equation (7.76),

o'(xd
L os .“)n )ax

| f(ﬁi( x)dx
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This first integration is over the multiplying region of the pile: This process
can be repeated indefinitely to obtain better approximations for k, the accuracy
of which 1s limited only by the coarseness of the lattice spacing. |

To illustrate the method, the example treated in the previous gection by
the matrik method is solved by numerical iteration below. Table III gives the

constants needed for the calculation.

Table III
core 1lst reflector | 2nd reflector
vh 1.2 cm 2.8 cm 4.0 cm
Ny .0229091 .0187660 | . Ok
ENo,, 0933333 S —
%i” .052381 4 hhhhl i 3.63636

. H/ h h
In order to start the iteration, values for I?(O), Iip)(o), @l(g) and @g(g)

are needed in addition to the assumed QQ = 1. Since the pile is symmetric,

'IE(O) and I{(O) are equated to zero. Q?(%) and Qﬁ(%) are arbitrarily set

equal to unity. By means of equation (7.82 ) at intervals of h/2 either

Ig and Ig or Q% and @E are calculated in the core (Table ;V) until Qg(12.6)

and Qﬁ(12.6) are obtained. By quadratic inperpolation Q§(12) and é{(le) are

obtained. In the first reflector (Table'V)iﬁf’H(lQ + g ) must be so chosen that
H, . . s . p,H h H 3h

@{’ (12).obta1ned by quadratic interpolation from @l’ (12 - §) and @E’ (12 + 1y)

(calculated from first reflector constents) is the same as the previously -

calculated 01(12). In like menner the second reflector values of @i’H and

Ii’H are obtained (Table VI). Then, since the flux vanishes at x = 60,




/%7

VII=39,

-(60) " 1119.322013

- - - 2.463448

" e | wee.skTeoL T T
1

*\ ' and‘éil)(x) = Q{(x).+ 2.463448 Qg(x). Thus le) is obtained and the procedure

can be repeated to find Q(g), @(3), etc. Figure (III ) shows @il), @52),

),
’ @(3) and Qél) and @éz). The resulting approximations for k,. computed from (7.76),
1 .
are respectively 1.1224, 1.1169, 1.1132 and 1.1149, which is in good agreement

— with the value 1.1140 obtained by the matrix method.
",

b

4

Y
. r‘

N
' A




Table IV

. (Core Calculations)

. 4 x ' QI; II; 9> (assumed) @{
K ) .
| > 0 0 (assumed) 1 0 (assumed)
’ 6 |1 (aspumed) | . : . 1 1 (assumed) ) 3.463448
. 1.2 .0229091 1 .070k242
1.8 1.021818 1 .932929 '3.450125
2.4 .0463180 1 .142385
3.0 1.065930 1 .T797324 3.423188
3.6 .0707375 1 217452 -
i h.2 - 1.133299 1 .59oé27 3.382051
" 4.8 .1012751 1 297264
. ) 5.4 1.229751 1 .307118 3.336546
6.0 .1é9hh8 1 .383562
6.6 1.353035 1 -.0581787 3.274953
7.2 .160k45 1 478228
' 7.8 1.505840 1 - 51363k 3.195925
' 8.4 .19kgk2 1 .583328 A
9.0 1.691499 1 -1.069185 3.097736
- 9.6 233693 1 701155
.. 10.2 1.914064 1 -1.736951 2.978247
i 10.8 277542 1 .834280 '
",y 11.4 2.178390 1 -2.531503 2.834848
*S 12.0 2.328376 L3277 1 -2.982825 .985608 2.753009
17_ 2.490244 -3.470177

\}3,435‘#'# |




(First Reflector Calculations)

~186.270663

= | & n b i b
12.0 | 2.328376 3274k T -2.982825 -.985608 2.753009
13.4 3.088232 -5.227563 2.380137
14.8 .385401 -1.083708
16.2 L.801124 -10.044038 1.783283
17.6 475499 -1.272194
19.0 6.914451 . -15.698228 1.335165
20.4 605256 -1.566787
21.8 9.6044T75 -22.661719 .998409
23.2 . 78549k -1.992057
2h.6 13.095556 -31.515297 . Thb929
26.0 1.031245 -2.583473
7.k 17.678863 -42.997388 553578
28.8 1.363007 -3.390362 |
30.2 23.736666 -68.065648 408403
31.6 1.808L449 -k 480022
33.0 31.774%209 -77.976837 297287
3.4 2. .40k T2 -5.943335
35.8 k2. .461861 -104.391633: .210976
37.2 3.201463 -7.902348

138.6 56.691016 -139.513145 .1h2oh7
4o.0 65.578730 | 4.265428 -161.437403 -10.520452 .112413
75.648535
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The Variation Method

(Second Reflector Calculations)

x i ks B 7 %
4o 65.578730 | 4.265428 -161.437403 -10.520452 .112413
he | 7483068 184 250484 090979
Lk T1.55797T7 -18.627473
46 102.314183 -251.986682 .059027
48 12.059801 -29.71&887
50 146.167961 -360.040708 .036519 N
52 18.491191 -45.556678
54 213.408588 -525.701190 019851
56 27.881169 -68.687530
58 314794556 775473777 .006363
60 384.37519% | 41.732129 -946.888450 -102.808376 0

L66.547601 -1149.322043

' If the pile and the reflector have identical slowing down and transport

properties, then the pile equation can be rigorously cast as an integral

equation with symmetric kernel.

variation method, are then aveilable for computing the critical mass and the

All the usual methods, in particular, the

neutron distribution. The appropriate integral eguation can be written down

for any arbitrary slowing down function, and the equation is rigorous if the

reflector is infinite in extent.

For a finite reflector, an almost rigorous

integral equation hss been established provided the pile and reflector have

sufficient geometric symmetry.

“"?'-m..“

W_gz;go
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TQ derive the integral equation for a uﬁifofm-pile surrounded by an
infinitely large reflector having the same slowing down properties as the pile,
we begin with the usual pile integro-differential equation. In this case the
infinite slowing down kernel is obviously correct since the slowing down medium

extends to infinity without change. Thus we have

: &
DAY (x) - prfpflss(z_) + k NpépQS(_I_") Py (Bylz-ztl)az' =0 in pile
> (7.83)
f .
DLx@s(g) - Nr?r@s(z) +k NPUPQS(E') Pbo(Es’lz‘I'l)dE' =0 in reflector
D

the integral being taken over the pile, since fissions occur only there.

Since the reflector extends to infinity, the asymptotic solution of (3.83 )y
which vanishes periodically, is not acceptable by itself as the neutron-distri-
bution, although it will be a good approximation to the solution far from'the
pile-reflector interface. ”

The two equations (7.83 ) can be written as a single equation as follows:

DAB(2) - Mypoydo(z) + Naog(@Ba(x) + & | Mpodelz') Buflsfrr’Daz’ = 0 (7.84)
) .
where
Ngoq(r) = Npop - NPUP _ in pile
NdGA(g) =0 in reflector.

The last two terms in (7.84 ) can be viewed formally as space varying source
terms in an absorbing system whose reciprocal diffusion length is

N..0..\2

H




. The integral term represénts the source arising from neutrons which slow down.

- The term with N4y04, represents a sink which takes account of the fact that the
¢ pile is a heavier absorber of thermals than‘is the reflector.
api ) . .
K The point Green's function for the diffusion equation is (Table I , Chapter I )
) -)Crlr-r4
o e -——
o(lz-r'l) = ;

ﬁﬂDl£—£4

; hence the solution of (7.84 ) can be written

| | (7.85)
b(x) = (Mpop - Wpop) | dg(zn)o(lz-z ez’ + kNp"Pg( B(x")2, (Bglr"-rhe(iz-z"\)az'az".
- @D

b

\

The order of integration in the second integral can be interchanged, and the
résulting infinite integral is, in principle, known. We denote this function by
H(zr,r'):

»

s H(z,z') = | Poo (Eg,lz"-z'Ne(lz-r"Dar". (7.86)
0

Since H(E:E') is the convolution of two displacement type kernels, it is sym-~

metric in r and r'.

Upon introduction of H(r,r') into (7.85 ) we can write

le(g) N0y - Ny

NPGP Npcp

bz oUzrDaz + x| §z') B(z,r')ar’ (7.87)

4

P b

i.e., @8(1) satisfies an integral equation with symmetric kernel. It should
be noted that (7.87 ) defines @S(g) both inside and outside the pile, even

though the integrals extend only over the pile.

e Gt g

T To compute the critical multiplication constant k, we multiply (7.87 )

1y

by dg(r) and integrate over the pile. Thus we obtain

B43£€l51
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N.o. - N0
NF%’E i ¥o(r)ar - %;%—I)-ﬁ f Ps(z') cllz-z"\) Js(r)arar' 58

gg . (x") Blz,z') § (r)arar'
P .

It is easy to show that k, considered as a functional of @s(g) according

to (7.88), is stationary withrregpect to small deviations of @s(g) from the

function which satisfies the integral equation (7.87.). To demonstrate this
we form the differential quotient

k[ﬁfs(s) + 6»\(2)} - kEDs(z)]
lim _

B} (7.89)
= e»0 3

dk

where vl(z) is an arbitrary quadratically integrable function over P. A straight-
forward substitution of Qs + €n into (7.89 ) in vhich use is made of the symmetry
of the kernels G(|xr-r'|) and H(g,z')»yields

Ps(x) +Y N.op - Moo,

Npop Npop

gv\(z)d; gkﬂ(z,z’) Qs(r_')dz' -

G(lz-r'| )Pg(x*)ar’
P P .

. (7,905

8k = .
-4 “ §s(z) H(z,z')@s(z')dzdz'
P

]

If Qs(g') satisfies the pile équation (7.87 ), then, from (7,90 ), 8k = O for
any arbitrary variation functmon.‘q‘g); i.e., the value of k as computed from
(2»38 ) is stationary when the actual neutron distribution is used in‘(7,88 ).
Equation (7;88 ) therefore constitutes a variation principle from which fairly
good approximations to k can be computed by substituting convenient, but possibly
incorrect distridutions Qs(z). Better approximstions to both the characteristic
value and to the distribution can be obtained by assuming for Qs(g) a linear

combination of simple quadratically integrable functions and determining the

1
=
i

ArSwn .y

773’1‘3'5»}«.573




coefficients of this combination so as to make (ﬂ. ) stationary with respect

to_variations of the coefficients. Suéh a procedure: is merely the Ritz varia-
tion method.

It is, of course, always possible to iterate an assumed distribution to
get a better approximation -- i.e., to substitute the first approximation into

the integrals on the right side of ({7.87 ), obtain a second approximation, and

" then repeat. At the nth stage in the approximation the value of k appropriate

for the (n + 1lst) approximation is to be computed from the variation principle

with the nth

iterate used for Qs(g).
The simplest function to use as a variation function is Qs(i) = 1. To this

approximation the critical multiplication constant k is related to the pile

dimensions by the equation

Vp ~(Fpor - Nyop) fg ¢(1z-r'|)arar
% (7.91)
Sf B(zr,r')drdr’ :
; )

where Vb is the volume of ﬁhe pile.

To illustrate the use of this simple critical equation we compute the
critical size of a reflected slab for a one-group model both by use of (7.91)
end by the exact eduations. In the one-group model all neutrons are supposed

to have the same energy -- that is, no slowing down occurs and therefore
Pod Egs lz-z'1) = 8(1z-z'l). (7.92)

Since the geometry is a slab; the plane kernel is appropriate. From the usual

relation between point and plane kernel we have

o e'uf'x'x'\ (7.93)

Gﬁz(lx-x") =

2N..0,,

B-13545%
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and o
le(x,x') = Ibppl-(Es,|xlx"|)Gp£(‘x"—x")dx" = Gpg(lxix'l). (7'94)';
-
We denote the thickness of the slag by QRC. Then
c
gE Fs(m)ellzr (" )arar: = g f Gpg (17"l )axex'
P -R,-R, !

o - R |
- TT%T [xrgc - e & sinh ){IRC] (7.95)
rrr

HQS(E)H(E‘.,E')QS(E')&;&;' .
P

Substituting these expressions into the critical condition (7.91 ) we obtain

the following equation for Rg:

RNp0y
KNpap - Npop + N0, = ‘)érR (7.96)
c
e
Be =~ sinh ¥ R,
- r

If the slab thickness is small compdred to the reflector diffusion length,

}(ch<£JJ then (7.96 ) reduces to the following simﬁle result:

X
RBe=% 1 (7.97)

r
2 2
+ )
vhere B® = E%l = (k—l)}&2 .
L P
b

. o) .
Since M R <K1 implies )«65«132 + Mﬁ, i.e., M_/B°K1, this result
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- can be further amplified to

( .
- R~ ..’ér_ . - (7.98)
L 2
e B . i
- The assumption that the neutron distribution is flat evidently is most nearly
b correct when the critical thickness.is small compared to l/B because, in this
| 2 ..
® case, the active portion of the reactor covers only a small part of the unre-
flected critical dimension. It is therefore to be expected that (7.98 ) is an
‘\ accuraté formule for a one-group reflected core which is small compared to the
unreflected pile.
‘This is easily demonstrated by computing R, exactly. Inzthe éoré, (again
dropping subscript s),
' . Qp(x) # cos Bx | | (7.99)
b a and in the reflector
. . -)lrlx\
- Op(x) = e . - (7.100)
Equating flux and current at the boundary R, we obtain '
B ten BR, = M. | (7.101).

If the flux in the core is nearly constant, BRc<le, as can be seen from the .

fact that the cofe flux is a cosine. Replacing tan BR, by'BRc, we find

M

which is the same as the variational result.

The iterated neutron distribution which results from the use of a constant

trial function is

§a(x) = (N My W)

p% ' (7.103)

bj355156
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I N,o \ -
= 11+ (k-1) PP l-e rRe cosh)l;x inside core
Npoy
] . Npop1 ‘)4Qﬂ
= N+ (k-1) - sinh X R | e . outside core
Nro'r rc

The exact distribution and first iterate as given by (7.103) are compared
in Figure 7-IV..

A better value for the critical size and neutron distribution can be obtained
by setting

QS(X) =1 - Bxe s

substituting into the variation principle (7.98 ), and’then choosing B so that
k(B) is stationary. The details of the computaﬁion are rather tedious and will
not be reproduced here.

Extrapolation Distance by Two-Group Method*

In calculating the critical size of an unreflected pile it is customary to
assume that the neutron density extrapolateé to zero at a distance 0.71 Xtr’ In
general ‘xtr is a function df energy‘mathat.the'efféctive boundary is different
for each neutrqn energy. 1t is evidently useful to compute a suitable average
extrapolation distance which, when used -with the usual one-group equation, will
give the correct critical mass for the actual unreflected pile. Such a computa-
tion is of greatest interest for a water moderated pile since the mean free path
in water ié very strongly energy dependent, and therefore the average extrapola- -
tion distance will differ significantly from either the fast or the slow lengths.

.The genersal solution of this problem is essentially out of the question;
however, by two-group theory it is possible to compute an approximate averagé

extrapolaetion distance.

*Cf. B. I . spim‘ad, MOIP'ZSAN:
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We consider an infinite bare slab pile of actual height 2h, in which there is

no resonance capture; we seek the equivalent extrapolated height 2H -- i.e., the

extrapolated height of a pile which, by one-group theory, has the sa.mé critical

mass as would be calculated by two-group theory for a pile of actual height 2h.

It is assumed that h= H >> >\tr and that k is close to unityi

In the equivalent one-group pile, the fast neutron flux is

Q(x) = cos n_2§

while the slow neutron flux is, according to (7, 34Db)

Po(x) = A cos 12%

where A, is approximately 01/02 gince H >>_._ .

(7.104a)

(7.104b)

Actually the asymptotic distribution (7. 104) does not hold to the pile edge

beceuse the extrapolation distance is different for fast and slow neutrons. The

complete solution of (F.35) is

¢y (x) = cos 2_I_I + b cosh Bix
@2():) = Ay cos == + Ay b cosh Bix
2 2
L (¢} . . 2
whereAa:-——-i B~ |1+ L_+ X
27 20y 7 72 2" 2 2
Lo Iy Ly (=)
boundary conditions at x = h are
|
E =-0.71 xtr 1
h
[
— = - Ou l X
Q' T tr 2

bﬁ”"‘.\ we

(7.105)

, and b is an arbitrary constant. The

(7.106)

BA35455
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where ‘X and X. o are respectively the fast and slow transport mean free
paths. Upon substltutlng (8.105) into (8.106) there result two different lihear
equations for b. In order for these equations to be compatible, the following

determinant must vanish:

[ . nth | 1 1
cos 2H - 0.71 )\t N (e_ﬁ gin "2’_}'1) cosh Bih + .71 A,cr 1B} sinh Blh
=0
wth : . Y .
,fxl %os 5 .- 0.71 )\t (2H sin éﬁ)] A2 cosh Bih + .71 }‘tr .QBé sinh Béh} (7.107)
Bsh

We assume Béh. is sufficiently large so that sinh Blh ~ cosh Bih i-é——— 3

and that -’25-(%2 is small. Then replacing sines and cosines by the first

term in their expansions, we find that the determinant reduces to

tr 2

‘.A2(1+O71B >\t 2)(Hh-071>\tr1)=Al(l+o.7lBé>\tr1)(H-h o71)~ )

which can be solved for H-h:

Lg(l +0.TLBY N )(0TL N, o) + L (1 +0.71 By A, ,)(0.72 Xtr )

i - (7.108)
Ly(1 + 0.71 B} >\tr Q)+ L (1 + 0.71 B} Xtr 5
It L:eL > Lg ,. as is the case in a water moderated reactor, then
0.71 >\br 1
. g (- 20nd)
H-hs 0.71 |[X + 2 ,
. 1 tr 1 12 ( o71xtr>(>\tr2 trl) ; (7.109)
1 |1+ .

2 .
provided (%tli) is also much greater than Lg. Since the pile is large compared to
the transport mean free path; H-h can be identified with the extrapolation distance.
According to (7.108), the extrapolation distance always lies between 0.71 X‘br , and

0.71 ktr .

B=1255059




A

»q

N |64 |
. % . VIL-52
The results of this section can be summarized in the following remarks. If
the fast and slow extrapolation distances are different, then the neutron distri-
bution includes a non-asymptotic as well as an asymptotic part. The asymptotic
distribution extrapolates to zero at a distance beyond the pile boundary which is
intermediate between the fast and slow extrapolation distances, the exact distance
being.given by (7.108). Since the asymptotic distribution ié the solution of the
one-group pile equation, the critical size of a bare pile can therefore be deter-

mined by adding to its dimension the extrapolation distance (7.108), and treating

the problem by one-group theory.

General Kernel in a System with Finite Reflector

' Two general methods, aside from the group method, are available for deter-

" mining the critical conditions in & reactor with finite reflector which has the

s

same slowing down kernel as the reactor. The slowing down kernel can be com-
pletely general; the only requirement is that the extrapolation distance be
independent of energy.

The first methodl, which is applicable to slabs or spheres but not to
cylinders, is called the method of images and converges best when the reflector
is large compared with a reflector migration length. The second methode, which
is applicable'in principlé to piles of arbitrary shape, is called the method of
harmonics and converges best when the reflector is small compared to a reflectér
migration length. The relation betﬁeen the two methods is réther analogous to the
relation betweeﬁ the source-wise and the characteristic function representations

of the solution of the heat conduction equation in a finite system. .

1 See H. L. Serabedian and A. M. Weinberg, MonP-434k; H. L. Garabedian, MonP-435.

See G. Goertzel and H. L. Garabedian, ORNL-30.
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The Method of Images

We consider an infinite slab pile with reflectors of equal thickness on each
side. Since the pile reflector is finite; the slowing down kernel for the system
of pile and reflector is symmetric but it is not of displacement character. This
circumstance arises because the probability that a neutron born at x arrives at xf
depends not only on the distance between x and x' but also on the distance of each
of these points from the extrapolated boundary. However, at least in the case of
a slab pile surrounded by a finite reflector it is possible to write the pile equa-
tion in such a way that the displacement character of the kernel.is restored; and
in fact, that the kernel in the finite system is expressed as an explicit super-
position of infinite system kernels. The finite problem is.thus reduced to an
equivalent infinite one, and all the techniques -- in particular the variation
method -- which were used for the infinite problem become availeble for this one.

The device by which the fiﬁite kernel is expressed as a sum of infinite system
kernels is analogous to the one used in the method of images in potential theory.
The neutron density in a finite slab pile withva finite reflector must satisfy the
Pile equation and vanish on the extrapolated boundary of the reflector. Such a
solution can be viewed as arising from an infinite sequence of identical piles
and reflectors set side by side. That periodic solution of the pile equation in
such an infinite array which oscillates with wave length equal to the thickness
of pile reflector, and in which the neutron density elternates in sign in each
successive pile and reflector interval, is evidently an analytic continuation of
the actual solution in the finite system. Thus the problem in the finite system
can be replaced by the problem of seeking periodic solutions in a periodic structure
which extends from - to + oo . It is this extension of the finite system to in-
clude all space which makes it possible to express the kernel as & superposition

of infinite system displacement kernels.

Eiag, ™ -
o




The alternating positive and negative neutron densities serve as sources
and sinks which, from symmetry, must yield zero neutron density on the reflector

boundary (Fig. IV ). When the reflector thickness vanishes, the proper periodic
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Figure T-V
solution is cos Bx which is also the agymptotic solution. Then, as shown in
Chapter III, the slowing down density is everywhere proportional to the thermal
neutron density. In the.case of the reflected pile, the correct periodic solution

is not in general a simple cosine function and hence the proportionality between

slowing down density and slow neutron density is destroyed -- that is, the asymptotic

golution does not persist throughout the system. However, because of the high sym-
metry of the plane problem it is still possible to construct the image system which
leads to a solution satisfying the boundary conditions.

The decomposition of the solution into & superposition of images converges
well only if the successive immge piles are far epart. This is the case if the
reflector is thick compared to the reflector migration length, for in this event
the neutrons from neighboring image piles are "insulated" from each other. When
the reflector is thin, many images are required to represent the correct solution,
and in this case it is to be expected that the method will become unwieldy.

Since, from symmetry considerations, the infinite sequence of piles and
reflectors described in Fig. V is equivalent to a single pile with reflector,

provided QS(X) has the periodicity shown in Fig. V , it is a straightforward
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metter to write down the thermal slowing down density q(E4,x). Suppose Qé(x)

is the actual slow neutron density in the reactor and reflector, and its analytic
continuation to infinity.  The reactor is assumed to extend from -a to +a, the
reflector being of thickness b. The function Qe(x) will have the generél shape
shown in Fig. ¥V : it is periodic and goes through zero at the reflector edge.

The integral

00
a(Eg,x) = g K(x') Npop @s(x') Ro(Bg, lx-x"1)ax' ,
-

where K(x') = k inside the reactor or any of its images, and K = O in the re-
flector or any of its images, vanishes on the edge of the reflector by symmetry
and is therefore the slowing down density for thermal neutrons.

The pile equation, accordingly, can be written
foo]

DAY (x) - Nroréx(:x) + Naog(x) Jg(xp) K(x")Npopd4(x") By (Eg, lx-x'\)ax' =0  (7.110)
: -Co

where N o, and Njo, are defined as in equation (7.84). We seek a periodic function

Qs(x) which is alternately positive and negative in neighboring "imaege" piles, i.e.,

§y(x) must satisfy ,

o . i ’ .

O (x + 18) = (-1) § (=) (7.111)
where & = 2(a + b) is the itotal thickness of the reactor plus the two reflectors.

Then clearly

o0 & ®
X K(x') Npopﬁs(x') Bx,(Es,lx-x'l)dx' = k’I\Tchp‘f%(x')i=._00(-1)l]3:,o CES,|x+i5-x'|)dx' .3

- -a | | (7.112)
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i.e., the appropriate finite slowing down kermel, P(Es,x,x') is

@
' P(ES,X,X') = Z;co(')i Fo (Es:ix + 18 - x'1). (7.113)

Hence the pile equation becomes

DZ&@S(X) - Nror@s(x) + Nqog(x) @s(x) + KNyop §,(x') P(Eg,x,x")dx' = 0; (7.114)

O a0

this equation resembles (7.8, ) and can be treated similarly. We first convert

(7.114) to an equivalent integral equation by introducing the Green's function

Xr e'}‘(r'x"'x‘, ,

-x! =
() z=x'l) oo,

so that

@® ® a
@s(x)-= Ndcd(x’) Qs(x') G(lx-x'l)ax" + kNpcP g@s(x') P(Es,x",x') 6(|x"-x'] )ax'ax" .

-0 -0 -8 : (7.115)
Since Ndcd = NrO'r - dip in pile

=0 in reflector,

and since Qs(x)has the periodicity implied by (?.111),

fe o) ‘a,
NdUd(X') QS(X') G('X"X")dx‘ = (Nror - Npop) [ ?é(i')G(X,X')dXI (7.116)
-0 -a
where ©
Glx,x) = 2, (-1)Y allx + 15 - x'1).
i= -00
Hénéé the intégral equation is
a a -
@B(x) Nror - NPUP 1
g d(x') olx,x)axt + x| Gx') Hx,x')ax" (7.117)
Npop Npop g

-2




where

H(x,x') = P(Ey,x",x') G(I1x"-x()ax" =

;§:: (- 1) By (Eg, Ix'+ 18 - =) ¢(Iz" - x'|)ax"

i=-®
-0

"The critical value of k ishagain determined by

Npo - N,yo S Co. 1’ "_,‘4
4 Btmax - ‘E‘E—“B—pﬁ o(x7) o{xx') Golx)axaxt
— | (7.118)

j‘ Oo(x') H(x',x) Jg(x)ax'ax

Py

and k, as determined from (7,118), is stationary when §4(x) satisfies the integral
- equation (7:117).

The Harmonics Method*

The image method does not converge very well when the reflector 1is so
small (i.e., small compared to a migraiion area) that the "image piles" affect
the neutron distribution sensibly. In this event there is available a scheme,
called the method of harmonics, which consists essentially of expanding the
neutron diétribution in an orthogonal set of functions. The orthogonel functions
are characteristic functions for a uniform pile with the same dimensions as the
system pile and refléctor. The method bears a close resemblance to the harmonics
method of solving the multi-group equations. It is‘less general than the group-~
method in that the slowing down properties must be independent of pqsition; it is

more general in that the slowing down kernel can be arbitrary.

* ‘ .
G. Goertzel and H. L. Garabedian, ORNL-30; also, H. C. Schweinler;, MonP-152,

o

PN T
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To describe the method, we consider the pile equation

DAJ(x) - Nogdg(xr) + a(Eg,r) = 0, (7.119)

Q(E,_I‘_) = &\ kNaaQS(E?) P(E:I.a_{.’)d.{' (7.120)y

pile
where P(E,;,;') is the finite slowing down kernel. The absorption cross-section
No, is considered to be a function of space: thus & uniform pile surrounded by .
a reflector is a special case of (7.119).
The function chaQs is first represented as & series of orthonormal’functions .
Zij(r). The zj(r) are defined to be normalized solutions of the equation
az; + B5Z; = 0
which ﬁaﬁish on the extrapolated‘outer boundary of the reflector and are regular .
inside the pile.

The function QS(E) can be expanded in a series of'Zi(g)é

ds(x) = ; C;24(x) (7.121)

where
Ci = gés(f) Zi(z)dz s (7.122)

the integration extending to the outer édge of the gystem. Now if we put

Nodg(z) = 21 E4Z;(x) - .(7.124‘3a)

KNo,§q(x) = ? A325(z), (7.123b)
then, upon comparing (7.122) and (7.123) we easily obtein

No,g(z) = E; ZJ: Cyy 425(x) (7.124a)

ogJs(x) = 4? Zj C,81 25(x) (7.124b)

B=135=/6b )
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where n
Ty ™ ﬁoézi(g) z(x)ax | (7.124¢)
r' |
5‘ = | wogzi(x) 2y(x)ax (7.1244)
G5 |

Equation (@,124b) defines the analytic continuation of kNUa‘s(E) over all space.

Hence the slowing down density cén be written

a(E,r) = g o ds(rt) P(E,r,r')ar’ = KNogBs(z*) By (B lz-z'har'  (7.125)

pile all
space

where RI§E,IE-£‘I) is the slowing down kernel in the infinite system. By the

- fundamental theorem of pile theory,

f z;(z*) Rx)(E,lr-r;,)-dr' = ib (E,Bg)'zi(z) | (7.126)

all
space

where i%o denotes the three dimensional Fourier transform of Fo »

D
— 2 'sinB.jr o
B (B,B5) = bx | Feo (E,r) B redr. (7.127)
|0

Substituting (7.124b) into (#.125) and using (2J26), we obtain
a(Bg,xr) = ;EZ:: ziilcifkj %DSES’BJ) z(x)- (7.128)
i J
Substituting (¥:128), (7.124a) and (?.121) into the pile equation (7 .119) we obtain

> Zi Bgciz,i(z),_ z;' ; C1M 425(x) *zi— EJ: C1%1 %o <Es)B§)Zj(£) = 0. (7.129)

B—}}F% 7
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Since the Z;(r) are orthonormal, Fquation (2129) can hold only if the coefficients

of each Zi vanish. This leads to

2 5 2
-DBiCisij'-Z‘i cl[niJ - 611‘] PGJ (ES’BJ)] = Q (7.130)

~which is en infinite set of homogeneous linear equations in Cj. Equation (%.130)
has a non-trivial solution if and only if the determinant of coefficients vanishes;
i‘ea., ]
2 = 2

DB1®ij + M1y - §ij Pwo (Es,Bj)| = 0. (7.131)

Since néf depends on k according to (7.124d ), equation (7.131) may be viewed as
ij ‘ : .

the critical equation; for a pre-assigned No, and pile radius; for example, it
determines the critical value of k.

The Modified Pile Equation

In the first section of this chapter it was shown that, in a large, uniform

reactor the asymptotic slow neutron flux satisfies the one-group pile equation

Aby(z) + 55§ =0 (7.132)

We shall now show that an equation of similar form holds asymptotically in a
largé reactor ih which the ebsorption cross-section is a function of position

but the slow diffusion coefficient, i.e., the transport mean free path, is inde-

pendent of position, and the multiplication constant is everywhere close to unity.
A large reactor in which the concentration of fissionable material is variable 1s
an example of such a systen.

The asymptotic pile equation can be written

DAT(x) - Wog(r) falx) + | & (x') Noglx') Glz!) Bp (g, le-zbar’ = 0. (7.133)
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If k(r) is everywhere close to unity, it is permissible to expand the quantity
chaQS(_:g') around the point r in Taylor's series and keep only the first two terms,
since, as will be seen presently, the curvature of kNoaQs(g_) at a.ny point is less

then k;é' and is therefore small when k is close to one. Expanding in Taylor's

M B
" geries we have, as in ( 7.1 );

‘ 2
Mogfa(x') = Kogdgs(xr) + (z'-r) ¢ ViNogdg(x) + % [(;’-3) . v} WNogfg(z) + +-.-. . (7.134)

Upon substituting into the pile equation we obtain.

A ") -
DAJ(x) - Nog(z) §o(z) + W(r)Nog(r)8s(x) + Ak(z) I (Eg)Nog(x)q4(z) = O (7.135)
Since D = -La(g_').l‘lca.(g_) is assumed to. be independent .of ‘positiony it wan Merdntrar
wced Wder the'Kidperatddi: The résulting équation is

Al1%No, + k 2 (E)No,}d.(x) + (k-1)Nogd (x) =0 (7.136)
a —6" S ajiLs axs

which, upon putting

P(z) = M2 ()8 (r) - (7.137)
where MQ =12 + k6r2 (Eg); becomes
k(r) - 1

AXD) + | =] o) = o. - (7.138)

M2(x)

The gquantity 1)(_1_') is seen to satisfy the one-group pile equation in a large
reactor with & variable distribution of fissionable meterial. According to ({7.138)

the buckling of '1)(_1_') is (k—l)/MQ; this justifies the expansion in Taylor's series

when k - 1 <« 1.

B-135-/69
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It must be emphasized that the simple one-group equation is satisfied by

¥(r) only asymptotically -- i.e., far from a boundary, since otherwise Byp (Egslr-r'\)

must be replaced by the finite slowing down kernel. Also, the equation is satis-
fied.only in regions where tﬁe curvature of the neutron density is small, since
 otherwise it i; not correct to cut off the Taylor's expension at two terms. In
a8 heterogeneous lattice where the slow neutron density shows marked fluctuations,
the details of these fluctuations cannot be computed from (7.138) since (7.138)
wag derived on the assumption that the quantity chaQQ(E) varies slowly over
the pile. A

The modified pile equation is useful in computing the critical mass and
asymptotic neutron distribution in a system in which the digposition pf fissionaﬁle
material changes, but rather slowly; over the pile. Thus in a water moderated
thermal neutron reactor, %?)9,12. If the fissionable and other absorbing material

is disposed so that k(r) = k, a constant, then equation (7.138) reduces to

AV(T) + __12‘2 D(r) = 0; C(7.139)

T

i.e., in a slab geometry

Y (x)..zcA.cos Bx

where B° = _E'l and A is a constant. Hence
re/6
R . A cos BX : :
(x) s ey BZ)__ 5, B 08 B |
b () = e Y 2Nl - (7.140)
‘ N Vg .

L

i.e., the slow neutron density is inversely proportional to the capture cross-section.

R-j35%170
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FIGURE 7-III /
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FIGURE T-IV

The first Iterate of an
Assumed Constant Neutron
Flux Distribution Obtained
by & Variation Method.

— ——  Exact Distribution

First Iterate of an assumed
Constant Distribution

Thermal Neutron Flux

Core - Reflector

Interface — |

— /
obF———— x—— - —_—————

5

Distance from Center of Reactor (cm.)

o, 4%
Y&




THIS PAGE
WAS INTENTIONALLY
LEFT BLANK


spratt
Blank Stamp







