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VOLUME I

DIFFUSION AND SLOWING DOWN OF NEUTRORS

: | \
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" The large scale release of nuclear energy in a uranium fiZsion chain re-

action involves two essentially distinct physical phenomena. On the one hand
there are the individual nuclear processes such as fission, neutron capture,
and neutron scattering. These are essentially quantum mechanical in charac-
ter, and their theory is non-classical. On the other hand, there is the
process of diffusion -- in particular, diffusion of neutrons,&hich is of
R +  fundamental importance in a nuclear chain reaction. This process is classi-
cal; insofar as the theory of the nucletir chain reaction depends on the theory
of neutron diffusion, the mathematical study of chain reactions is an applica-
tion of classical, not gquantum mechanical, techniques.
In a uranium chain reaction, neutrons are produced at very high energy
( ~ several Mev) from the fission of uranium nuclei. The neutrons then dif-
fuse through the mass of chain reacting material and are ultimately either
captured (and produce further fission), or are lost through the boundaries
of the system. Most of the questions of importance in studying chaiﬁ re-
actions are concerned with the diffusion of the neutrons rather than with the

details of the nuclear processes by which the neutrons are captured or scatter-

\ . eed. The probasbilities for these nuclear processes enter the theory, for the

L. Y .

ﬁ ' most part, as empirically given properties of the medium in which the neutrons
J . ' diffuse. The theory of neutron chain reactions is thus to a very large eitent

‘ an application of the classical theory of diffusion in a capturing medium rather
aih 03
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than an application of the theory of nuclear reactions.
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Because diffusion of neutrons plays such a large role, it will be neces- .
sary to develop the mathematical theory of meutron diffusion before emwbarking L
on a study of chain reactions. The first section of this volume will there-  _ - 1

fore be devoted to an exposition of the mathemmtical theory of neutron dirf-

fusion.

.
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CHAPTER I HEQD-«?‘-HI I-1

| ‘ | ELEMENTARY TEEORY OF NEUTRON DIFFUSION

& - - The gross phenomenon of neutron diffusion is in some respec‘hs comparable
‘ to other dimm‘ion phenomena, such as diffusion of heat or of gas molecules.
It is found that whenever there is a spatial gradient in the density of mono-
. energetic neutrons in a medium, the neutrons tend to move from the region of
high density to the region of low density. This behavior is understandable
if it is supposed that the neutrons suffer random collisions v.ith the atoms
of the matter in which they are diffusing. The number of collisions in a
given volume element will be relatively greater where the densify of neutrons
is high. Since a neutron comes off each collision, the number of neutroms
- traveling away from the region of high density should be greater than the
) number traveling toward the region of high density. This gives rise to a
b_ net current of neutrons in a sense opposite to the neutron density gradient.
Reutron diffusion is in principle a simpler process than gaseous diffu-
- sion. The reason is that, on account of the extraordinarily small density
of neutrons in almost all physical systems, neutron-neutron collisions are
exceedingly rare. Practically all collisions that take place when a neutron
diffuses through a system are collisions between the neutron and the nuclei
of the molecules composing the system. This is very different from gaseous
diffusion, where intra-molecular collisions are the rule. The phenomenon of
neutron diffusion is in this one respect more like diffusion of electrons in
a metal than like gaseous di:ffusioﬁ.
s The fact that neutron-neutron collisions can be neglected implies that
=T the fundamental equations describing the diffusion of neutrons are liﬁear.

‘ These equations can therefore be integrated in many more cases than can the
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non-linear equations of gaseous diffusion, and in general, the theory of neu-

tron diffusion is simpler than the diffusion theory encountered in the dynami-

cal theory of gases. o ’
In all diffusion phenomena the net diffusion flow of a substance ~- that ) .
is, the difference between the number of particles crossing, from each side, a .

unit area per second ~-- 1s taken to bev proportional to the negative gradient of
& quantity §o which ie simply related to the demsity of the substance diffusing.
In the case of heat diffusion, ¢, is just the temperature, and the constant of
proportionality is called the thermal conductivity. In the case of neutron
diffusion, the quantity §, is the sum of the speeds of all the neutrons in &
unit volume. Thus, if ny is the total number of neutrons in & cubic centimeter,

and Vv is their average speed, while n, 1 is the number of neutrons per c.c. having

9, = {', Do, Vi = % Fo(vy) = ng v. (1.1) _‘

We shall call §,the total meutron flux, and Fo(vy) =1 ; 7y ‘the total flux of

speed vy, then we define

neutrons of speed vi.

The difference between the number of neutrons striking from each side a .

square centimeter per second is called the net diffusion current. It is evi-

dently a vector quantity, and we shall denote it by Jj. The assumption that

the neutron diffusion current is proportional to the negative gradient §°

3 = -Dy(v) graa §, , | (1.2)
becomes in the case of monoenergetic neutroms, or if V is independent of position, - .
. .
:j_ = - Do;; gradn, = - D gradn,. (1.3) "

)
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Equation (1.3) is & statcment of what 1s sometimes called Fick's Law; we shall
-~ call equation (1.2) the generalized Fick's Law. The proportionality factors D,
or Do? = D, are called the diffusion coefficients. The quantity D, may depend
on the average velocity, v, of the neutrons, but according to Fick's Law it bas
the same dependence on neutron energy everywhere in a unlform medium.
Fick's law is the fundamental agsumption of elementary diffusion tkeory.
We shall gsee presently that it is a valid assumption in general only at large
distances from sources, sinks, or boundaries® Since there are many instances
in a chain reacting system where neutron diffusion takes place near sources,
or boundaries*, it is not always correct to apply Fick;s Law. It is therefore
necessary to derive Fick's Law for neutrons from first principles, and to examine
in detail its limitations.

Diffusion Theory and Transport Theory

Ordinary diffusion theory, based on the generalized Fick's Law (1.2), con-
cerns itself only with the neutron flux Qo, and with the net diffusion curremt J.
Evidently, there is more to be known about the distribution of neutrons then simply
the flux, @o, or, in the case of monoenergetic neutrons, the density, n,. In a

volume element at a given point in space neutrons travel in all.directions, The

instantaneous velocity vectors of all the neutrons which are contained in that
volume element form a pattern which characterizes the neutron distribution much
more fully than does the total flux of neutrons in the volume element. The sum

‘of all the velocity vectors emansting from a unit volume in & particular direction
is just equal to the number of neutrons per unit volume which cross perpendicularly,
P in one second, a unit area normal to the direction of the velocity vectors. The

i scalar sum of all these velocity vectors is evidently Qo.

. * Or, in general, if the neutrons are not monoenergetic.

it/ IR
nihg oY




f'¢. | | I-4

The calculation of ths angular distribution of neutron velocity vectors
ir a medium is the central problem of what is called "transport” theory. The
caleulation of Qo, the flux, based on the assumption of Fick's law, is the central
problem of elementary diffusion theory. Clearly elementary diffusion thecry is
less general than transport theory since & knowledge of the angular distribution
of the velocity wvectors implies a lmowlédge of @o, but not conversely. It will
be our task in this chapter to trace the relation between the two. In this we
shall adopt essentially the methods described by W. Bothe, Zeit. ﬁ';r Physik, 401,
118, (19k2).

The Boltzmann Ejuation without Energy loss

Let n(r,v,0,()dvaxdydza/ . be the number of neutrons in the volume element dxdydz -
at r, whose speed lies betwesn v and v+dv, and whose directions of motion lie in

the element of solid angle 8in6d6dQ around the direction fl. The vector Sl is a unit

vector whose components on the X,y,2 axes are (Figure 1)

cos O

i

0,

{1y

f,

The element of solid angle around ._Q., that is, the area of an element on a unit

sin ¢ sin ©

cos (p sin 6.

‘sphere of which .D; is a radius, is sinBdodP. We denote this element by dg.

The quantity n(_x: 3 v,ﬂ)dvd_& is the number of neutrons per unit volume whose
directions of motion lie in a solid angle df) around {) and whose speed lies in
a range dy around v; or more briefly, whose velocity lies in a rangé dy around the
vector velocity v = v§l. For brevity we shall call n(r,v,{)) the number of neutrons
per unit volume with speed v and direction '&. The total number of neutrons of

speed v per unit volume is

n(z,v) =/ n(zr,v,0)af) (1.4)

§04 708
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and the total mumber of neutrons, per unit volume, of all speeds is

n(r) =/n°(_:g,v)dv. (1.5)

We shall distinguish betweer n_(r) and n,(r,v) by the argument following n,.
In an analogous menner, we define the vector flux, E(g_,v,ﬂ), of neutrons

of speed v ard direction {1 to be
(v, 8)) = Pz, v, D0 = n(z,v,Q)v0. (2.6

The vector F is a vector whose magnitude F is the number of neutrons of speed
v which in ore second cross perpendicularly a unit area normal to the direction
f). The total flux of neutrone of speed v -- that is, the demsity of neutrons

of speed v multiplied by v -~ is

Fo(_x_‘,V) =/1(_1_‘,V,_Q)W1Q_ = F(.I_':V:_Q-.)d_-Q° | (1-.7)

The total number of neutrons crossing perpendicularly a unit area per second

in the direction £),§(xr, 1), is & vector which is the sum of the vectors F for all

speeds but fixed ._O.__ :
§z,0) = 0 = O [F(z,v,L)av. (1.8)

We call §(r,f)) the vector flux of neutrons in the direction fl. Finally, the
total flux of neutrons in all directions and having all speeds -- that is, the

sum of all the speeds of neutrons in a unit volume -- is

§,(z) = / no(z,v)vdv = f o(x,Q)af). (1.9)

With these definitions stated explicitly, we can now proceed to set up an

equation which will describe the variation of F(_::,v,ﬂ) in the steady state.

GiL 010
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We therefore consider a material balance of neutrons in a cubical volume element .

of sides dx,dy,d4z, at r. The number of neutrons whose directions of motion lie
in Af) around {) and vhose speeds lie in dv around v which enter the volume element .

through the face dydz in one second is the x-component of the vector flux: ,
F x(E: v,{1)dydzavaSl,
and the number which leave through the opposite face is

Fy(x+dx,y,2,v,01)dydzd0dv = F (x,¥,2,v,{))dydzdQdv + iaaf-x- (x,5,2,v,{) )dydzd(ldvax.
x _

The net number of neutrons travelling in this direction element which are gained
by the volume element through the yz face is the difference of these two expressionms,

namely

- -

an
- —= (x,¥,2,v,f))dxdydzavd ().

: o

A similar expression holds for the number of neutrons gained through the other
two sets of faces. Hence the total number of neutrons of speed between v and w+dv
and direction between () and [} +d() which are gained by the volume element per
second is ‘ .
-V F(z,v,{))axdyazdva(}. (1.10)
The second way in which the number of neutrons with vector velocity v = v&
in a volume element can be increased is by scattering collisions which change
a neutron's velocity from y' to v -- that is, 1ts speed from v’ to v and its
direction from N ' to N. Let o (¥,v')avdv! = o (v,,v', L' )avav'dQd’ be
the differential scattering cross-section per atom of the medium for the process .
of scattering a neutron from its original velocity between v' and v'+dv' into a - -

final vector velocity between v and v+dv. Then the total number of scattering

n11

664
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collisions per second in dxdydz which lead to neutrons having_ speeds between

v and v+dv and directions between {l and N +dQ) is

dxdydzdvif) U n(z,v',0.')v'No (v, v',Q,Q " Javian’ = |
v! &l (1011)

= dxdydzdvd_f_l_/ﬁ'(g,v',ﬂ')Ncs(v,v',__J_f_)_._')dv'd.(_)._' .
V'&'

The meaning of o (v,v')dvdv' is, more precisely, the following. Suppose a
well collimated beam of neutrons of velocity between _gi and v'+dv' strikes a
square centimeter of a thin foil of scattering material placed normal to the
beam. let the number of atoms per cubic centimeter of the material be N; the
number of atoms per square centimeter will then be Nt, where t is the thickness
of the scatterer. We suppose t is so small that a single neutron suffers at
mbst one collision in traversing the scatterer. As a result of scattering, some
neutrons will be deflected out of their original speed and direction element
(between v' and v'+dv') into a new velocitj element between v and v+dv. The
number of such scattered neutrons per second we call P(v,v')dvdv'. Evidently
P(v,v')dvdy' must be the product of F(y')dv', Nt, and a proportionality factor

og(v,x')dv:

P(v,7') = No (v,v')t | F(x")] . (1.12)
The quantity cg(v,v') is called the microscopic differential scattering cross-
section. "Microscopic" indicates that it refers to a single atom, and "differ-

ential", that it gives the probability of scattering from one velocity element

to another. The quantity Nas(x,_y_') is called the macroscoplc differential

~ ‘
byes % 12
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cross-section; it is the sum of the cross-sections for all the atoms in a

cubic centimeter. The microscopic cross-section has dimensions cm2; the

macroscoplic cross-section has dimensions cm_l. The reciprocal of a macro-
scopic cross-section has the dimensions of cm and will be deﬁoted by A with .
| a subscript which refers to the type of collision process. Thus )‘s » the -

scattering mean free path, is

A, = (N0 ). (1.13)

A third way in which neutrons of a particular velocity‘ can be added
to dxdydz is by means of an extraneous source, such as, e.g; & Ra-Be mixture.
We denote the number of neutrons produced with velocity v in the volume element
dxdydz by such a source by
S(z,v,0)dzdydz dvall . | (1.14)

The quantity S(r,v,f)) is the source strength.

The total number of neutrons which are removed from the velocity inter-
val around v consists of those which are removed by scattering a.nd those
vhich are removed by absorption. Let o,(v) be the microscopic absorption
crogs-section of the medium for neutrons of speed v. The total cross-section .

for removal of neutrons from the velocity v{l is

o(v,1) = 0 (v) + o (v,0) (1.15)
where

og(v,Q1) =/ rg(vt, L, v,NL)av'a)’ ,

v

and the total number of neutrons in the element dxdydz which are removed

from dv per second (either because of deflection or.by absorption) is - ..

No F(r,v,Q))dxdydzdvdf) . (1.16)
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' We ascume the medium is isotropic; hence No(v,_.(_l__ ) is independent of the
‘ -direction {1 . 1In practice this means that we ignore "crystal" effects.
In a steady state we can equate the number of neutrons removed from
- "é. given direction in the volume element (1.16) to the number entering that
direstion (1.10, 1.11, i.lh) . The result is the steady state Boltzmann

equation: -

AV E({:V’I_\-) + No F(_I_',V’_Q) = F(r:v',Q.__') NUB(V,V',Q,Q' )dv'd_Q._' + S(E)V)Q‘

vl (1.17)

This is an integro-differential equation since the variable E is operated on
both by a differential and an integral operator.
We now restrict our considerations to systems in which the neutron distri-
.- bution depends only on x. Furthermore we agsume the angular distribution of
. the neutrons at a given x depends only on u, the cosine of the angle betwegn
~ ) and the x direction. This is the case if the a.ngula.r‘distribution of
neutrons emitted from any gource is radially symmetric about the x axis.
With this assumption the term V/* F(r,v,Q1) in (1.17) becomes p % (x,v,f1).
. It is convenient to integrate the Boltzmann equa‘l;ion (1.17) with respect
to ¢ from O to 2x; this amounts to lumping all neutrons of a given velocity
together whose directions make an angle © with the x axis, regardless of their

azimuth. Since F(x,v,{)) is independent of @, we obtain

2 co?n 1

M g (x,v,u) + NoF(x,v,u) =[[ﬂF(x’v"&') x

. © 00 -1 (1.18)

Nog(v,v', 0, Q" )au’agrav'ap + 5(x,v,u)

P 4
gy v &
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F(x,v,u)an = [F(x,v,0)audp = 2x¥(x,v,0)du (1.19)
0

vhere 2n

is the number of neutrons of velocity v with direction cosine between p and
u+dp perpendicularly crossing in one secongna ring of area 2n on the unit
sphere around the point x,-and S(x,v,u) = £S(x,v,__(l)d, = 2x5(x,v,(L) is
the number of neutrons of velocity v emitted with direction cosine p per
second by the source. In the integral term of (1.18) it is not possible in
general to integrate out the @ variable because, while F(x,v,{)') is inde-
pendent of @, os(g_]__,&') is not, necessarily.

In order to proceed further, it will be necessary to express the scat-
tering cross-section in terms of the direction coeines p and p'. The average
sca.ttering crosg-section, in an isotropic medium, can depend only on the angle:

between the direction of the incident and scattered neutrons and must be inde-

pendent of the azimuth of the scattering, i.e.,

UB(V:V',ﬁl;il') = US(V:V')gl '-ll') = g; Gs(V,V',uO) .(1-20)

where p = (L - {1' is the cosine of the angle between incident (direction{1')
and scattered ({)) neutrons, and o (v,v',u,)dn, is the v' into v cross-section
for scattering neutrons from their original direction into an elementary ring

1

on thke unit sphere which subtends an angle between cos™ 1, and cos"l( Hotdig)

with the initial direction. From the components of & and S_l_' we have that

Ho =) + Q' = cos6 cosé' + sind sind’ cds(@-tp'). (1.21)

=N
Y

)
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The scattering cross-section cs(v,v',uo) is a known function (experimentally

determined usually) of the scattering angle éos_luo and of course, of v and v'.

Hence we suppose that it can be represented as a sum of'Legendre Polynomials

a(vrvme) = T 2 o (v,v)p () (1-22)
where 1
ds‘e(v,v‘) = Og(vyv')l*o)lj(_(uo)d“o° ' A (1.23)
-1

' The coefficient aqt(v,v') of the {-th harmonic gives the contribution to the

total scattering from velocity v' to v of that particular harmonic. It is
customary to use spectroscopic terminology and refer to Og, 88 the cross-
section for s (spherically symmetric) scattering, Usl the cross-section for
p-scattering, and so on.
The first two terms in the expansion of the scattering cross-section
have particularly simple physical interpretations. Thus
. _
cso(v,v') = Us(v,v',uo)duo (1.24%)
-1
is the total scattering cross-section from v' to v, while
1
Ugl(v)v') = uooa(v,V',uo)duo = ;Ooao(v’v') (1.25)
- L
is the total scattering cross-section times the average cosine of the scat-
tering angle.
It is still necessary to express as(v,v',uo) in terms of y and p'. To
do this we make use of the addition theorem for Legendre functioné ( Jahnke-Emde,

p. 115): )
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(4 mlt o) Bf(ut) cos m(p-p*) (1.26)

where lin(po) is an associated legendre function. Substituting (1.26) into

salom

£
F (i) = Bpln) B (n') + 2 z

m=1

(1.22) we have ‘ )

oa(v v L") = 5r %alvviame) =L B B ay (v,v g (W () + ".v
(1.27)
2 Y . :
* 51-1!- i xil :-?1 . (2‘0"'1)05 (V:V')%(H)Pz(u')cos m(l?-tp') .

If we now substitute thie into the integrand of (1.18), the double
sum drops out after integration over @, as does the factor .é];“. in the first ’
term. Since F(x,v',{)') is independent of ¢', the integration over §' Jjust
introduces a factor 2r which is absorbed by (1.20) in transforming from M‘

F(x,v',{)') to F(x,v,n'). The final result is therefore

(0 o] 1 .
1% (x,v,n) + NoF(x,v,u) =% % (2l+13/Nas£(v,v')§Q(y‘lz(u')F(x,V'u')du'dv' v
0 -1

(1.28) ;
+ S(x,v,u).
In this chapter we shall be interested primarily in diffusion without

energy loss. The scattering cross-sections g l(v,v') will therefore be taken

to be zero unless v = v'; in that case they will be 5-functions such that

(v o)

/Nusl(v,v') F(x,v'p)dvt = Nasl(v) F(x,v,u). .

oa £
LR N T
.
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. The transport equation without energy loss therefore is
- 1l
u & (x,v,0) + Bal(x,v,) = § 2, (2441080, (M ()] B (u )R(x,v,m0)aut +
. ) ax ‘7 AL 3 7 8 Y ’
- ’ .
. (1.28a)
+ S(x,v,u).
‘- Usually the scattering is sufficiently isotropic so that only the
first two terms in the spherical harmonics expansion of o, are needed. With
this restriction (1.28a) becomes
1 i |
aF NUBO l .
L T (x,v,u) + NoF(x,v,n) = 5 (vy F(x,v,u')dn' + g ] NUBI(V) F(x,v,n)u'du' +
-1 -b
. (1.29)
- - + 8(x,v,u).
‘* Boltzmann's equation in the forms (1.28) and (1.29) will be used as
the basis of most of our remaining discussion.
Derivation of Fick's Law
We proceed to derive a generalization of Fick's law from the transport
equation (1.28a). In the first place we observe that the net number of neut-
rons of speed v which cross a square centimeter of surface in the y-z plane
per second is
' , 1 1
: J(x,v) =/mr(x,V-u)udu =/F(x,v,u)udu ’ (1.30)
-1 -1
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while the total current of all velocities is

; (o o) 1
(=) i‘/’«j(x‘vv)dv =/§(x)l1)lldl-1 . (1.31)
0 -1 _

We shall call j(x,v) the net diffusion current of neutrons of velocity v;
and j(x) the total net diffusion current. The net current j(x) is the differ-
ence between the current of neutrons going to the right, j+(x,v), and the
cufrent of neutrons going to the left, j_(x,v). Since neutrons travelling
toward the right must hﬁve direction cosines between O and 1, while those
travelling to the left must have direction cosines between O and -1, we write

1

.j+(x;v) =ﬁ(x:V:#)P@ (1.32)

0

-1

j_(x)v) =-/‘F(xﬁ,u.)udu (1.33)

0

1
(=,v) = 3 (x,v) - J_(x,v) =fF(x,v,u)u® . (1.34)
-1
The formulas for j(x), j+(x), and j_(x) are the same except that we must
substitute the total flux, Q, for F, the flux of speed v.

In order to establish Fick's law we must find a relation between j(x,v)
ad, (x)

—
We start with the source free transport equation (Eq. 1.28a with S = 0),

and the derivative of the flux, 92%5;!1 , and also between j(x) and
x

qosn 019

v
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maltiply by p and integrate with respect to p from -1 to +1. On the right

- hand side all terms except the one involving Pl(u) drop out. After a little

algebra we obtain 1
‘//A;Q dF!‘E;:E!QE
ix,v) = - 20— | (1.38)

Since p and x are independent variables, it is permissible to imterchange the

order of differentiation and integration. Then introducing the quantity

1
/ JBF(x,v,1)dp uB(x,v,u)dp

. G , (1.39)
jF(X:V:P-)dP Fo(x:v)
-1
so that
1 / |2 7o)
: ajuc F (x,v
/}12 QF_(%%:E)EE = %/\peF(x,V,p)du = ! o™’ 3 (1.40)
dx
-1 -1

we can write (1.38) in the form

_ - 2%; KFo (1.41)
J(x,v) = o
No(l - =2 )

which is the generalized Fick's Law for neutrons of speed v.

It is important not to confuse p2 and Ho e The quantity p2 is the mean

square cosine of the neutron angular distribution at speed v; in general it



17 1-16

will vary from point to point if the neutron angular distribution varies

with x. The quantity Ho is the average cosine in an individual scattering

process at speed v. It depends only on the interaction between néutron and

scattering atom and is the same throughout a medium having the same nuclear

composition everywhere, and through which monoenergetic neutrons diffuse. -
o =R,

The coefficient of — is the reciprocal of a macroscopic cross-

section. It therefore has the dimensions of a mean free path, and in fact

is called the "diffusion” mean free path, ,)\d(v):

A7) = 1 _ L ,
No(v) [ 2ot .:'o(v] Nog (1 - Fo) + oy

(1.42)

With this notation, (1.4t1) may be written

i(x,v) = ‘Xd(V) d%[? Fo(x,V)] . (1.41a) .

If the absorption cross-section is zero then the diffusion mean free path
becomes equal to the so-called "transport mean free path", )\t’ which is

defined as

Ay (v) = - ’ (1.43)

1t is worthwhile to note that the transport mean free path is larger

than the scattering mean free path, /\ =L s by the factor 1 . This
s Nog 1- Eo

factor measures how strong is the forward bias in a scattering collision. If

vhie scattering is completely forward, Ho =1, )\ = ; while if the scattering -

t
is isotropic, ;o = 0 and X‘t = )\s. For forwerd biased scattering, the
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coefficient of - % (:éFo) , and therefore j(x,v) is greater than for iso-
tropic scattering. Hence a given gradient of :2—1‘0 will maintain a larger
net flow of neutrons the greater is the "forwardness" of the scattering.
This result is very reasonable physically.
In order to find a relation between the total net diffusion currenf »

J(x), and the total flux, §o(x), we integrate (1.141) over all velocities..

/

Then
a @D
i(x) = / Hx,v)av = / N(¥) {“2F°‘x"’)] av (1.44)
o 0

is the generalized Fick's law when the neutroné are not monoenergetic, al-

though the scattering is assumed to occur without energy loss.

Another way of writing the generalized Fick's law, for polyenergetic
neutrons, -- and this holds whether or not the scattering occurs with energy
loss -- can be found by multiplying Eq. (1.128) by p and then integrating with

respect to both p and v. The result is

@

= .
i“_.gx?(_x.). /N (1 - 0_- o) J(x,v')av' (1.45)
o _

where TE is the mean square cosine averaged over both angle and velocity, and
where og o and o are functions of v' only ,. since their dependence on v has been
integrated out. Evidently neither (1.41a), (1.44), nor (1.45) are in the form
of Fick's law; for example, in (1.45) ,.-LEQO and not Qo, appears under the deri-
vatiﬁe gign.

We now discuss the relation between the generalized Fick's law for mono-

energetic neutrons (1.41), and the Fick's law of elementary diffusion theory.

S 4 .
fyeodo ’.’22
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Elementary diffusion theory, which is based on the proportionality between - .

J(x,v) and dF _/dx holds rigorously for monoenergetic neutrons only if 2

is independent of position; for in that case (1.%1) can be written

— ﬂ' s
J(x,v) = - dl-12 —ax—o {(1.41b)
and the diffusion coefficient is
D(v) = Ag? . (1.%1c)

If the neutrons are not monoenergetic, then the conditions for the

validity of elementary diffusion theory, i.e., that j(x) be proportional to

d@o(x)
dx

for elementary diffusion theory of monoenergetic neutrons is fulfilled, namely

are considerably more complicated. Let us suppose that the condition

p.a(v) is independent of x. Then ua will also be independent of x, and we can -

write (1.45) as
©

= o |
Z Bl ﬁa(l - 22 ) Hxvav. (1.46)

0 -
In general, the energy spectrum of the neutrons will change fram place to
o
place in the medium. Consequently the average of No(l - _‘9;9 Ho) over j(x,v')

which enters in (1.46) cannot be evaluated, and so it is impossible to write

d o(x)
dx

equation. This we interpret as a deviation from elementary theory. We there-

a proportionality between j(x) and without first solving the transport

fore state that deviations from elementary diffusion theory are associated in

general with non-constancy of the neutron energy spectrum as well as with non-

constancy of the —;1_2— for neutrons of each energy.
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- There is a rather trivial case in which the conditions for applicability
‘ - of elementary theory is the same for both polyenergetic and monoenergetic
" neutrons » namely, when all cross-sections are energy independent. In this case
. we can integrate the Boltzmenn equation (1.28) over v. The resulting equation -
is identical with (1.28) except that the total flux, §(x,u) replaces F(x,v,pn)
« everywhere. Hense all statements about F(x,v,u) apply in toto for §(x,u); in
) particular, if the cross-sections are energy independent then it is sufficient
for :1_—2- to be independent of x in order for elementary theory to be applicable.
The assumption of constant cross-sections does not correspond very well to
any physical situation. The nearest approach would be the diffusion of thermal
neutrons in a non-capturing, non-crystalline, non-hydrogenous medium -- diffusion
in He gas is the only strictly applicable case.
- - If there is no energy loss on scattering in a uniform medium, the conditioﬁ
. for elementary theory can be stated fairly simply. We return to (1.44) where
~ the total current j(x) is expressed as the sum of the individual currents of

each speed. Since In a uniform medium )\d(v) is independent of x, we can write

(1.44) as ‘ [

ox) = - L a2 io(x)] (1.47)

where

m ——
/ Ag(¥) ue(v) Fo(x,v)av

}\‘d:s—é = 2 . (1.48)

)
ﬁo(x,v) av

0

In general \ d|.4.";-‘(v) may be a function of x, even if p2(v) is not. This

- arises from the fact that the energy spectrum can change from place to place

because of energy dependent absorption, even if a neutron cannot change its

‘ | L GnL N

’

[~
(o |
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energy in a collision. The condition for applicability of elementary theory - ‘

can evidently be stated as -

—

Adua be independent of x . (1.49) - -

It p_é(v) is indepena.ent of x, then >‘d‘:§ will also be independent provided
the energy spectrum is the same from point to point.

The cé.se of diffusion without energy loss is really Jjust a superposition
of diffusion of neutrons each with a fixed energy. It is therefore a fairly
easy problem to solve, even though it is not strictly reducible to elementary
theory, and we shall return to it later. Thermal neutron diffusion in a very
heavy medium is a good approximation to this situation. |

There is one case in which there is energy exchange between medium and

neutron and which can be reduced approximately to elementary theory even if

.

the cross-sections are energy dependent. This is the case of thermal neutrons
diffusing in a very weak absorber. We shall deal with this problem also in “‘
a later paragraph.
Agide from these two cases, all of our discussion of transport theory
in this chapter will be confined to monoenergetic neutrons, or the trivial
case of constant mean free path for polyenergetic neutrons. Thus all devia-
tions from élementa.ry theory which we encounter will arise from variation in
:é, not from variation in the neutron energy spectrum. The reason we confine
attention to variation in :15 alone 1s hot that the corrections due to the
polyenergetic character are unimportant; rather it is because there is no
general theory of the effect of energy distribution on the diffusion of neutrons.

This fact must always be kept in mind when assessing the value of results ob-

tained from monocenergetic transport theory.

4 ‘)
G5 295
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_ The Angular Distribution in Elementary Diffusion Theory, and the Value of p2

. - Thus far we bave sald nothing about the specific form of the angular dis-
tribution of the neutrons diffusing in a medium. We have simply contented our-
" selves with the observation that Fick's law, with diffusion coefficient which

depends only on the enérgy distribution of the neutrons, is applicable whenever

;_2_ is independent of x, if the neutrons are monoenergetic, or whenever )\d;5
1s independent of x if the neutrons are polyenergetic.* We shall now inquire
more closely into the form of the neutron angular distribution, and shall compute
the diffusion coefficient in some simple cases. The argument wh:lch follows is
stated for the case of monoenergetic neutromns; if the cross-sections are inde-
pendent of v then it holds with equal weight for polyenergetic neutrons with
§(x,u) replacing F(x,v,n) .
r . - It will first be useful to examine how the angular distribution of neutrons
' in a given volume element arises. The number of neutrons going in the direction
) 4 in a volume element around a given point is made up of all those neutrons which,

a8 a result of their last collision, were re-directed toward the volume element

in the direction u and have reached it without intervening collisions. It must

~ therefore be possible to express the angular distribution at a point in terms of
the flux at surrounding points, at least in the case where the scattering is
igotropic. |
To show this we start with the transport equation for isotropic scattering of
monoenergetic neutrons in a uniform medium:

1l

' ar NUBcs ‘
. LT W ax (x;v,u) + NoF(x,v,u) = 5 F(x,v,u)dp +
: , (1.49a)
-1

No
+ S(x,v,un) = —é#s-oFo(x,v) + 8(x,v,u).

*
‘ Ard the scattering does not change the neutron energy.

- &

e
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Since we wish to express F(x,v,u) in terms of F,(x,v), we shall assume

E(x,v) as known, and shall therefore view (1.492) as an inhomogeneous, first J
order differential equation with constant coefficients. The solution which ) )
R |
is finite at x = + @ is
x x
No - Fo(x-x') - N9 21y
s 1 dx! .
F(x,v,u) = 20 Fo(x':v) e ¥ %—+ S(x',v,u)d " o oW
- -w
G _ b>0
(1.50)
X b:4
No
No - =—(x-x") No '
8 m 1 -~ Z(x-x')
= o Fo(x',v)e ax? S(x',v,u)e H ax'
2 H 3!
w (o] <O

The pair of equations is the required relation between the angular distri-

bution F(x,v,u) and the total flux of velocity v, Fo(x,v). Physically the
No

8
first integral has the following simple Interpretation: E‘JFB(x',v) is the

number of particles per unit volume at x' which are scattered into unit solid N !

angle per second. The probab?lity that these neutrons reach a volume element
at x is e %%(x-x'). The total number reaching x in the direction p is the sum
of all those from the elements of volume lying along the radius vector connecting
the elements at x and x': the length of each such element is dx'/p. Hence the
flux F(x,ﬁ,p), which is the total reaching unit volume per second from all ele-

ments along the radius whose direction cosine is u, 1is

= -
No .
Nas - ’—‘(x-x')
S [F.(x',v)e M ax' u>o0 (1.51)
2 ° " - -
~Q0
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- The second integral in (1.50) evidently represents those neutrons which reach

- the volume element directly from the gource.

We now suppose that F (x',v) can be expanded in Taylor's series around x:

& ?
2;0 gx-;;)? d F;S,v) 1.52)

Fo(x'Jv) =

and that the point x is so far from the source that the source integral con-
tribution to (1.50) is negligible.

~ If we substitute the series (1.52) into (1.50), and integrate term by term
we obtain a series in é.scending povers of p. If we now recall that any power

of p is expressible as a linear combination of Iegendre polynomials, e.g.,

uO Py(u)

i

pt P (n)
ue = % P(n) + % Po(n);

then, upon collecting coefficients of legendre polynomials of the same order,

we can write the result of this term by term integration as

o

F(x,v,u) = ,QZ 21‘; L 5 (x,7) By(n). (1.53)
=0

The general problem of transport theory ig to determine the functions

Fj_(x,v) 3 this can be done, in principal, by substituting (1.53) into the
transport equation even the non-isotropic equation (1.28ﬂ and equating
coefficients of spherical harmonics of the same order. This procedure leads
< - to an infinite set of linear equations, the solutions of which are F"e(x,v).

. We defer consideration of these equations until Chapter III and consider

instead the relation between :15 and the ?Z(X’V)' Since p2 = %— Po(u) + %PQ (1),

. we f£ind from (1.53) ,
TR
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/“QF(X:V:P)@ :
") L -1 Fa(x,v) . 1.
k2(x,v) I 3|1+ F———o(x,v) (1.54)
F(x,v,u)dp
1

Since the requirement for the applicability of simple diffusion theory is
that ;5 be independent of x, from (1.54) we can say that simple diffusion theory
in these cases is applicable if the ratio of Fo(x,v) /[Fo(x,v) is independent of x.

There are two importent cases in which.Fé(x,v) and F_ (x,v), that is the
strength of the second and zero-th spherical harmonics, are in constant ratio.
These are

(1) P(x,v,u) =2 Fo(x,v) +4 Fy(x,v) Py(n). (1.55)

(Asymptétic distribution in non-capturing medium.)

In this case F2(x) = 0 and ;5 = 1/3. Under what physical conditions cen
we expect (1.55) to hold? The answer is that the very simple angular distri-
bution (I) holds, strictly, only in & non-capturing medium far from sources
and far from boundaries.

That the medium must be non-capturing in order for (1.55) to hold rigorously
can be shown by returning to (1.50), where, with S = 0, we express the angular
distribution in terms of the density. Evidently, if the series (1.53) is to
break off after the second term, it is necessary that the Taylor expansion (1.52)
break off with the second term also:

Fo(x',v) = Fo(x,v) + (x'-x) Fi(x,v). | (1.56)

Substituting this into (1.50) we obtain as the angular distribution corres-

ponding to a linear density distribution,

gs og. F'{x,v) :
F(x,v50) = 5= Fo(%,7) - 52 =" Py () . (1.57)
(‘zr)g

-

GO
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. - Now by definition,
T - 1

F(x,v,u)du = FO(X)V) ’ (1.58)

.. -1

and this condition can be fulfilled by (1.57) only if
980 = 0 ;
i.e., if there is no capture in the medium. In other words, if the angular
distribution at every ﬁoint is strictly representable by a sum of only the
first two Legendre Polynomials, then there can be no capture in the medium.
Close to a localized source the neutron angular distribution will gen-

erally require many spherical harmonics for its representation. Thus if the

source is an isotropically emitting plane sheet at xo, i.e., S(x',v,u) = 8(xg-x'),

-
-

then the contribution to the angular distribution of those neutrons which have

’ - made no collisions is, according to (1.50),

- E-glxoaxl
e M

T 1

-and this evidently requires an infinite number of harmonics for its repre-
sentation. A few mean free paths away the effect of the source angular dis-
tribution will be "forgotten" by the neutrons, the dlstribution characteristic
of the medium will take over, and‘:é will become constant.

Near a boundary between medium and vacuum, or between non-capturing and

capturing media, the two harmonic representation which leads to u2 = constant =

W

- will also be invalid. For in the case where the medium is bounded by a vacuum,
no neutrons can be reflected back. Hence the angular distribution at this

— interface (x = 0) must satisfy

I . : F(x,v,u) =0 -1 » 0. (1.59)

o~ .
O ke 53 (3
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Since this distributicn is very different from that which characterized the
interior of the medium, there must be & transition region in which the Py(n)
harmonic is involved in the angular distribution. In this region, which 1s
alsc of the order of a few mean free paths, simple diffusion theory is inappli-
cable. A vacuum can be considered as the extreme case of a medium which has
infinitely large capture. If the capture is finite, the angular distribution
at the interface will not be as drastic as (1.59) -- i.e., source neutrons can
return to the medium but it will in general still require more than two har-
monics for its representation, and ;5 will not be constant near the interface.

It is emsy to show that the angular distribution of the general form (1.55),
which we have shown corresponds to the linear total flux distribution (1.52),
does indeed satisfy the Beltzmann equation if there is no capture. We start

with the general equation with no capture and no source,

1
M % + Nog F = % Z (24 +1) B (1) Nc%/’lje(p.)qu (1.60)
-1
and we try to determine a solution
F(x,v,u) = A + Bx + CPy(u). (1.61)

where A, B, C, for a given v, are constants which are to be determined.

The total flux F (X,v) is linear,

Fo(x,v) = 2A + 2Bx (1.61a)

as can be verified by integrating F over p. Substituting (1.61) into
(1.60) we observe that all terms in the infinite sum except the first two -

fall out; what is left is

Bu + (Cp + Bx + A)Nog, = Noso(Bx + A) + CuNcS1 .

AT r |
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This is an identity in p which is satisfied if

C = -B ,
N(°s° - asl)

or, by the definition of gg and ')\u.(v),

-B = -A¢B. (1.62)

C = —
Nog (1 - %)

Now B is related to the space derivative of the total flux F!; for, from (1.61),

1

F(;(x:v) =/F'(1)VJP)GN = 2B,

-1

so that {1.61) can, according to (1.62) be written either as

F(x,v,u) = A+ B[x - Ny Pl(p,)] (1.63)
or as
F(x,7,1) =% Fo(x,7) - 5 My Fa(x,v) Py(n), o (1.6%)

where F,(x) = 2A+2Bx, A and B being arbitrary. Since, by comparing (1.61)

_with (1.53) we can identify C with %Fl(x,v), we see that (1.63) -- which we
have shown is 3 solution of the Boltzmann equation -- is Jjust the same as the
originally assumed angular distribution,-%-Fo(x,v) +-%-F1(x,v) Py(u), with the

understanding that F,(x,v) is linear in x, F;(x,v) is constant in x.

The value of the diffusion coefficient corresponding to (1.63) is found,

———

according to the formula for D, (Eq. 1.4)9, by evaluating 2 for the angular
distribution (1.63). The result is

1
D, = & frog 2 - ] - I (1.65)
LS
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" Formula {1.65) is the one ordinarily derived in kinetic theory. As we see,
it is rigorously correct only in a non-capturing medium far from sources or
boundaries. | .
The angular distribution (1.63) is the onme which is usually understood as
the angular distribution corresponding to elementary diffusion theory. It
applies strictly to media which do not capture neutrons; it is customary to
assume this distribution in weakly capturing media, but this is correct only
to the extent that the capture is small. Actually there is another angular
distribution which is somewhat more general than (1.63) and which applies
rigorously to media with finite capture which also leads to elementary dif-

fusion theory, and this is described in the following paragraph.

II. If F(x,v,u) is a product of function of x and function of u

(asymptotic distribution in capturing medium).

In this case the coefficients of all the harmonics bear a constant ratio
to Fo(x,v) for all x; in particular F2/Fo = constant, and so ;5 will be inde-
pendent of position. However, the formula for D will not be (1.65).

To calculate w2 in this case we start with the no-gsource slightly non-

isotrople transport equation with capture in which the scattering cross-section

is representable by Jjust two harmonicg. Then we have

1 1
arF Nos 3
K = (x,v,u) + NoF(x,v,u) = 20 F(x,v,u')du' + ) Nqso“o“ p'F(x,v,u' )du
-1 -1 (1.29)
We try a separable solution
+Lx
F(x,v,u) = e £(u), (1.66)
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~=
_ and seek to determine M and f(p). Substituting into (1.29) we obtain

1 1
) NUS 3NGS .
(No + Ju)e(p) = 2° fu')au' + —— il pre(ut)dut .
- . -1 . -1 (1.67)

Our separable solution (1.66) will indeed satisfy (1.29) if we can find
an f(u) which gatisfies the integral equation (1.67). We therefore try a

solution of (1.67) of the form

A+ H
f(u) = constant x .._._I_If__ ; {L.068)

No + Xp ’
in general, this assumed solution will not satisfy (1.67). Only for
perticuler valuesof A and M will £(p) (1.68) solve equation (1.67), and
to find these characteristic values will be our task. We substitute (1.68)

into (1.67), ard, making use of the integrals

1
dp = 1 No + M
No + Mp -R-ln No - X
-1
y Y,
- b _____."_ n Yo +
-1
y N22 y
0 QE Lo c No + X
Ne: Mr 2 In o=
-1
we obtain
Nog A No
- No + M 8ofo [ 2 Hogp Mo + X
A+|.lo}l-- Wz‘ No — L 2 (}'('_Fl NU*)’()

3Nog_PH,A N + 3Nog, 2N 242
B (o0 e gt ) Bt g (L W g )

s

)
FAE
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This is an -identity in pu; hence we can equate coefficlents of powers of u,

and we obtain

Nasoﬁo/%__ﬁzax_n No +)()

A= —2 € No -/ (1.69)
Nosol No + X
1l n
and
3N20300a -
1+ ——
{?icy_zn No + W _ g P (1.70)
2X No - W 32y _
1+ —2=a,
w2 °
When E; = 0 (isotropic scattering), M is determined as the root of
No
8y No + Y
= l l. l&.
or
Nog
© vamn~! X - 1. (1.710)
X No _

Equation (1.7la) has one pair of real roots, + M, which are less than No
in absolute value, and an infinite set of imaginary ones. We will not be
concerned here with the imaginary roots. We note in passing that in order for
our derivation of the form of £(n) to be valid it was necessary for (M) to be
less than No; otherwise f(u) would have singularities for those values of p at
vwhich the denominator of (1.68) vanishes.

| The guantity A has a finite value, in the isotropic case, which we need

not compute. The isotropic scattering angular distribution F(x,v,u) is therefore

+ Hx
F(x,v,u) = consgtant S __ (2.72)
No + Au
providea X is a root of (1.71). .,'):5

i’{r-
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To calculate the diffusion coefficient, Do, we must first compute 92.

- We find, for the value of u2 in the isotropic case (1.72),

] 2 - Moo (1.73)
VE
and
o HNo
DO = .NP:_O = —Rg- . (1'7,‘")

We shall see in the next section that (1.74#) reduces to the usual D

-
3
if the absorption is very weak.
When the absorption is very small compared to the scattering, then as
"will be shown later, )( is small compared to No. In this case it is permissible

to expand the denominator of (1.72) and keep only the first two terms:

. + X —
F(x.!v;“) 2~ constant x e~ o2 (1 + ﬁ)‘% p).

The angular distribution contains only the first two Legendre functions and

is therefore the angular distribution of elementary diffusion theory. Since

+ Mx + MU
Fo(x; V) e ;] XtrFé(x,v)N :Ni e >
[+

this form is the same as (1.64). It is clear then that in a weak absorber,
the angular distribution of elementary diffusion theory is a good approximation
to the asymptotic distribution (1.72).

The angular distributions computed in this and in the previous paragraph
are very special ones. They involve only a single multiplicative constant and
are not sufficiently general to enable one to satisfy arbitrary boundery condi-
tions, such as would be imposed on the neutron angular distribution near a source'
or a boundary. Thus, as we have already stressed, the two harmonic solutions in

the case of the no capturing medium, and the separable solution in the capturing

- 2
Ghg 636
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medium are solutions which apply only at great distances fraom sources, or -

boundaries between two media at least one of which has absorption. In other
words, these solutions are "asymptotic" solutions of the Boltzmann equation,
the first one being the asymptétic solution in a non-capturing medium, the

second the solution in a capturing medium. We can therefore summarize the _

situation by the statement: sgimple diffusion theory, based on Fick's law,

holds strictly only for the asymptotic solutions of the Boltzmann equation.

Only insofar as the neutron distribution approaches the asymptotic distribution,
as it does far from sources and boundaries, can simple diffusion theory be
applied.

The Diffusion Length

In both the isotropic and the slightly anisotropic scattéring cases, the

asymptotic flux distribution in a capturing medium is N

+J e x
Fo(x,v) = constant e~ . (1.75)

The quantity 1/} has the dimensions of length; it is called the diffu-
sion length of the medium and is dencted by L.
The asymptotic flux, since it is exponential, satisfies the following

differential equation:

a? R
""EFO(XJV) - A" Folx,v) = 0. (1.76)
ax

This equation can be written, by virtue of the relation between D,, Nog, and
2
A s as

2
D, i'é Fo(x,v) - No, Fo(x,v) = O. (1.77)

’

N
—
e
-
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’ - In this fbrm it is easily recognizable as the elementary diffusion equation

. . without sources. It could have been derived from a consideration of the mater-

lal balance in an element of volume AxDy/Dz: the net flow per second into the
) volume minus the net flow per second out of the volume is just D, ég; FolkxllylSz,
LT which, in the steady state, is equal to HoF,AxAyAz, the number caoiured

| per second.

If the capture crossg-section is small compared ?o the scattering cross-
section, the'transqendental equation,(1.70) which defines the diffusion length,

can be solved by series expansion. The result is, correct to terms of the first

degree in og/oa,

2 — l'. [¢] Ua K
A =}2.=3No(1-p0) Noa<1—5-fl-+-__.-—9_...> (1.78)
1 o n
o(l - u,)
- +

. Tor isotropic scattering (Eo = 0) this becomes

2 4y og,°
A = ;‘% = 3Ncha(l-—5--3a-), (1.79

while, if the capture is so weak that oy/c is negligible,

XE = £1§ = 3No(1 - W )Nog - (1.80)

The relation (1.80) between diffusion length and cross-sections is an immed-

iate consequence of the elementary diffusion equation and follows from the
-1
3No(1 - |,)
o7 being more fundamental has the advantage of yielding the exact formula for }{2.

assumption D, = However, the derivation given here, besides

The diffusion length of a medium is important practically because it is

a measure of the distance that neutrons travel before being captured. TFrom a
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plane source the asymptotic flux is of the form e_‘ x; in spherical coordinates

-Hdr

e

the asymptotic distribution from a point source is . The mean square dis-

tance, r2, that a slow neutron travels from & point before it is captured is

therefore ) : . A
@

r,3 e err :

) 6

r = 612 (1.81)

2 0 . .
T - )’(2 "
- Wr .
g//; e s dr
/ | )

that is, the square of the diffusion length is 1/6 times the mean square dis-

tance that a slow neutron travels from birth until death, assuming the asymp-

totic neutron distribution holds up to the point source. Actually the asymp-

totic distribution does not hold very close to the SOurce,'but the error

caused by this is small if the capture is‘not very great compared to the z K

scattering.

The diffusion length in a medium will be large if the transport mean free
path is long, or if the capture cross-section is very small. Since the diffu- -
sion length is directly proportional to the capture mean free path, it is a
confenient méasure of the relative neutron absorption of two media which are

weak neutron sbsorbers, as for example, two different samples of graphite.

Diffusion of Thermal Neutrons

The formulas for the diffusion length and for the diffusion coefficient
which we obtained in the preceding section were derived for

a) monoenergetic neutrons

b) polyenergetic.néutrons seattered in a medium in which all cross-

sections are independent of speed. N
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' - Neither of these assumptions is very realistic for the diffusion problem

‘ .of moat relevance to slow neutron chain reactions -- viz., the diffusion of

thermal neutrons. Thermal neutrons are not monoenergetic -~ for example,
. . their energy distribution is Maxwellian in a non-capturing medium. Furthermore 3
8 most slow neutron capture cross-sections are 1l/v, and in crystalline media,
the scattering cross-section is étrongly affected by interference phenomena
which depend on the wave length, i.e., on the velocity, of the neutrons. For
both of these reasons it is not justified to regard thermal neutron cross-
sections as velocity independent.
An accurate calculation of the energy distribution of thermal neutrons has
been performed by Wigner and Wilkins for the case of neutrons slowing down in
atomic hydrogen gas whose atoms are in motion with a Maxwellian distribution of
"_ wvelocities. In this calculation the details of the energy exchange between
‘ neutron and proton at each collision were taken into account rigorously. The
i details of the transition from the energy distribution of neutrons which suffer
_elastic collisions at high energy, where temperature motions are urnimportant,
to the thermal neutrén distribution, which is predominantly Maxwellian, were
“traced.
We shall concern ourselves here with two very much simpler, and over-idealized
problems » which nevertheieés approximate certain important cases of thermal neutron
diffusion. The two casges are |
I. The neutron energy is unaffected by scattering collisions with the
medium. This corresponds to diffusion in a medium of infinite
atomic weight; it is a falirly good approximation for thermal neutrons
diffusing in U.

II. The neutron suffers complete "ammesia" after each scattering collision;

‘ that 1s, 1ts energy after collision is uncorrelated with its energy
. ;S F o o”
: 6ot 40
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before a collision, and it is thrown into a Maxwellian energy

distribution, regardless of its initial energy. This is more . ‘
nearly correct for collisions with light nuclei than with heavy
ones, but is of course not strictly correct for either.
Cagse I. 1In this case the neutrons of each speed, can be treated independently
of all others. The flux, F,(x,v) of neutrons of a particular speed will fall
off exponentially far from a source, and the diffusion length for eagh speed
will be different: }
F(x,v) = constant e-)((v)x s ‘ (1.82) .
where M (v) is the root of the usual characteristic equation (1.70) with
all cross-sections evaluated at spreed v. If the neutrons start at x = 0 with

a Maxwellian energy distribution,

~

Folo,v) = M(v) = v exp - L., (1.83) ‘

e

ol o

where o is the most probable sﬁeed of ﬁhe neutron; then in a l/v absorbing

medium the Maxwellian distribution will not be maintained as the neutrons

move out from the source. The low energy neutromns, being\abaorbed more strongly, .

have a shorter diffusion length than do the more energetic ones. As a result

the average energy of the neutrons increases with the distance fram the source;

at very large distances only the most energetic, which have a very small cross-

section, survive. This phenomencn is called "hardening"”. It occurs in any

medium in which the absorption cross-section increases as neutron energy decreases.
The total flux Qo(x) can be computed by summing Fo(x,v) over all v. For

neutrons which were Maxwellian at x = 0, the total flux at x is

@ o)
b (x) =/F°(x,v)dv ==/v2 exp -[22-2- + ){(v)x ]dv. (1.84)
o
6] 0

SRR Y/ § -
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. A comparison of @o(x) and Fo(x,;) s the flux of neutrons of average speed v,
‘~ - 1is given for neutrons diffusing in uraniim metal in the accompanying Figure 2.
Case II. In a medium which does not absorb thermal neuf.rons at all, temperature

) equilibrium will ultimately be established between the neutrons and the medium.
Lt When this state of affairs has been achieved, the total number of neutrons thrown

into a given gpeed range in one second is the same as the number removed. Now

if the neutrons are in a Maxwellian distribution, M(v), then the number per c.c.

removed from unit speed range in one second is

Noso(v) v M(v);

since the total number of colllsions in one second is

®
ﬁcso(v) v M(v)dv

0

-

. the probability P(v) that on the average a collision will result in neutrons

of unit speed range around v is

- Nogo(v) v M(v)

P(v) = . (1.85)
0
- ﬁcso(v) v M(v)dv
0
. In any individual collision the initial and final neutron speeds are, of

course, correlated; the heavier the scattering material, the greater the corre-
lation. Thus P(v) is not the probability that each collision will give rise to
neutrons of unit speed range around v; rather it is the probability, averaged

. over a large number of collisions (in each of which there is correlation before

and after), that a neutron will come off a collision in a particular speed range.

The assumption of complete "amnesia” is that the probability of a given neutron

. speed following each colliaion is independent of the initial speed and is the

N ke v
iyt LD
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same as P(v), the probability averaged over a large number of collisions. - I

The form for P(v) assumed here will not be correct, even on the average,
if there is velocity dependent absgsorption in the medium. However, if the
“absorption is very small, so that many scattering collisions occur for each
| absorption, we can expect results based on this P(v) to be reasonably good. .
The neutron distribution which we calculate will therefore be approximately
right for diffusion of thermal neutrons inv a weakly absorbing, low atomic weight
material.

‘The Boltzmann equation for thermal neutrons which suffer complete amnesia

at each colligion is, in the case of 1sotropic scattering,

o 1
K % (x,v,u) + NoF(x,v,u) = ]_?.(211 ‘/NUSOF(X)V':P')dH'dV') (1.86)
-1

-

vhere P(v) is given by (1.85). We wish to find an asymptotic solution of (1.86). ‘

We therefore try

+ 3¥x -
F(x,v,u) = constant e"x v (1.87)
No + Mu
and substitute into (1.86). After cancelling common factors on both sides
of the resulting equation, we find that in order for (1.8T7) to be a solution

of (1.86) it is both necessary and sufficient that M satisfy

o o)
No
1 8¢ Ko + M
l= é T ,en N—_O' ~ y‘ P(v)dv. (1.88)
J
Thisg is the generalized characteristic equation whick determines the diffusion T

length, l/){ s for thermal neutrons in a weakly absorbing medium, if the neutrons

L
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- suffer complete "amnesia” at each collision. Since the whole argument is
-valid only if O'a,/dso <<€ 1, we may expand (1.88), keeping only the first two

terms, and we may ldentify og o and o. After a little algebra we obtain

2.1 oA (1.89)
v »E 3No,
where
o,
O ¥ M(v) dv
- J
% = (1.90)
/v M(v) dv
0
and ®
v
o / Ho M(v) dv
X = %-5 =% ] (1.91)
/v M(v) dv
Q
The total flux of speed v, F,(x,v), is, according to (1.87)
1
- . +Xx .
Fo(x,v) =/F(x,v,u)dp = e Nog v M}{l £n %g——t—))i— (1.92)
-1
which for small og/o0 is
*rMx N"so v M(v)
ov(x,v) = F (x,v) a5 € —_— (1.93)

No

Thus the neutron density, n(x,v), is not quite Maxwellien; in a 1/v absorber
with constant scattering cross-section, for example, there is a deficiency of

neutrons at low energies where og, and hence o, is large.

L
b
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The total flux of all neutrons, § (x), is

@ ' N © ‘
+Hx -
Bo(x) = ﬁo(x,v)dv - e—x ﬁoSovM(v)ln N—"—%‘ av; (1.98) '

v 0]

it is exponential in space and therefore obeys the differential equation

2 .
ax o(x) =0

which is the elementary diffusion equation in a capturing medium. Hence ele-

mentary diffusion theory holds, to the extent that the complete "amnesia"

agsumption is good, for the asymptotic distribution of thermal neutrons in a

weaekly absorbing medium.

What we have shown in the preceding paragraphs is that thermal neutrons in
a weakly absorbing medium behave, approximately, like monoenergetic neutrons R ‘
whose absorption cross-section is given by (1.90) and whose mean free path is
(1.91). It is important to note that it is not the cross-section, but rather
the mean free path which is averaged in (1.91).
If the absorption cross-section is l/v, as is usually the case for thermal

neutrons, then o,v = s,a constant. Hence
oo

8 / M(v)av

- 0
Oy =% =

. /f M(v)dv
J

that is, the appropriate average absorption cross-section for a l/v absorber

(1.95)

<:l'm
“eo

is exactly the absorption cross-section at the average speed v of the Max- -

wellian distribution M(v).

.-
L™
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If the mean free path A\ is Imown, then a measurement of the diffusion

" -length yields a value for -‘;a . This is o practical way of measuring the ab-

sorption cross-section of weak absorbers for thermal neutrons, although it is

complicated by thé fact that anmy be hard to evalvate on account of crystél
effects. The absorption crogs-section which is obtained from these measurements
refers according to (1.95) to neutrons at the average speed of the Maxwellian
distribution. Since the average speed v is 2 . 1.128 times higher than the

/=

most probable speed, a, the absorption cross-section in a 1/v absorber found
. . 1 R . .
from a diffusion le h measurement is times the absorption cross-section
ngt T.128 P
at the most probable velocity. It is customary to refer cross-sections to
neutrons of energy KI'; this is exactly the energy of a neutron with the most

probable speed &, since o2 = SKT

; where M is the neutron mass. Thus the kT
absorption cross-section of a 1/v absorber is 1.128 times larger than the cross-
section found directiy from a diffusion length measurement.

Boundary Conditions between Two Media

Suppose neutrons diffuse in a composite system consisting of one medium
in the left half-space (x £ 0) and a different medium, with different scattering

and absorption properties, in the right half-space (x > 0). We denote quanti-
(-)

ties referring to the left hand medium by a superscript

(+)

to the right hand medium by a superscript .

» and those referring

At the interface (x = 0) between the two media, the flux of speed v,
F(x,v,pn), must be continuous for all p and v. For if F(x,v,u) were discontinuous
at x = 0 -- for example, if F(-)(o,v,%) # F(+)(o,v,%) -- then the nmumber of
neutrons of speed v reaching the interface from the left in the direction p = %

would not be the same as the number leaving the interface toward the right.

(et or o
LA R i
: [

[
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This would be possible only if there were a source or sink of neutrons at - ‘
the interface which made up the difference between the two neutron currents. -
Now F(x,v,u) is expressible as a sum of spherical harmonics in both media:

s(ryvw) = 2 2ty (x5 (196)

and the requirement that F(+) = F(') at the boundary can be stated -

I*'/‘é—‘)(o,v) = Eﬁj)(o,v) for all v, 2. (1.97)

Equation (1.97) is the correct boundary condition at the interface.
If neither of the media captures, and the neutrons are monoenergetic,

then the asymptotic solution (far from sources)

F(x,v,0) = & Fo(x,v) - $ NyFo(x,vu = § Fo(x,v) + § 3(x,v)n (1.98)

»

where F,(x,v) = 2A + 2Bx, holds even at the interface. For (1.97) is auto- ‘

matically satisfied if we choose the arbitrary constants A(+), B(+), A('), and

B(_) go that -

Fg—)(o,v) = Ff:)(o,v) (1.99)
(-) (+)
.y @F aF - .
>\$;r) f;x (o,v) = >~(c;) Zx (0,v) . (1.100)

The first boundary condition (1.99) states that the total flux of neutrons

is continuousj the second condition states that the net diffusion current is
also continuous. Since F, in elementary diffusion theory is the solution of a
second order differentia.l equation, it is possible to specify both F, and Fc'> -

at an interface. This pair of elementary theory boundary conditions leads to a

rigorously correct solution when neither medium captures.

BEAl

~
&
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If one of the media captures, then continuity of flux and current is
-not a rigorouély correct set of boundary conditions even i1f the neutrons are

monoenergetic; for the asymptotic distribution in a capturing mediuvm involves

-

all the spherical harmonics, whereas continuity of flux and current simply
ensures that the coefficients of the first two spherical harmonics are con-
tinuous. In order to satisfy the rigorous boundary condition (1.97), a large
nunber of non-asymptotic solutions, which die away within a mean free path or
so of the interface, must be added. This is rather complicated; what is usually
done 1s simply to use the elementary theory boundary conditions, Fo and j con-
tinuoué. By so.doing we ensuré that the number of neutrons striking the inter-
face is continuous up to terms in Pl(u), and that there is no discontinuity in
net flow of neutrons. There may be discontinuities in flow in particulaf dir-
ections, but by requiring continuity of net flow we balance discontinuities in
different angles against each other so that the average flow 1s continuous, and
neutrons do not build up indefinitely at the interface.

- The diffusion coefficient in & medium with cepture is D, = ?E%.. Hence

the boundary condition (1.100) becomes, for capturing media,

| No, =) ng-) Nga1(+) ng+) ,
()‘2) “x (x,v) =[( )4222' iz (x4v) . (1.101)

We shall teke this as the second boundary condition of elementary diffusion

theory.

Since the asymptotic distribution breaks down near the interface, and the
diffusion coefficient Naa/)(2 is based on the asymptotic distribution, there is
some question whether the formula (1.101) is a cons}stent approximation.  An

alternative approximation would be to assume in the capturing medium the two
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harmonic solution (1.98); although this does not satisfy the Boltzmann

equation with capture, it is a good approximation if the capture is weak.
The diffusion coefficient would then be given by 1/3 Xtr and (1.101) would

be replaced by

(NG F8) = (N BT (1.102)

In general it is impossible to say which approximation is better without }
solving the transport problem exactly first. Both (1.101) and (1.102) have
been used by different authors. We shall return to this question again in
Chapter III.

If the neutrons are not monoenergetic and the media are at different
temperatures, then fhe elementary boundary conditions again become not
strictly applicable, in general. If all cross-gsections are energy inde- N

pendent, this case reduces to the monoenergetic one with § replacing F every- ‘

where. But if the cross-sections are energy dependent, then the neutron energy
spectrum will change near the interface; in this region elementary theory is
inapplicable. The rigorous (1.97) is still correct of course, but (1.99) and
(1.100) or (1.101) with §, replacing F, will only be approximations.

For two adjoining week absorbers in which thermal neutrons are diffusing,
it seems reasonable té aggsume the validity of elementary diffusion theory with
the averagé cross-sections’found in the preceding section (BEq. 1.84, 1.90, 1.91).

We therefore take as our boundary conditions

S,_)(X) = <(,+)(x) (1.103) o
=) (- __\+)
(“"a) ) y (f‘f_e ag; ) (L.ok) ~ -
2 dx X2 dx )
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- where the (EEA/)(Q) denote the diffusion coefficients found in (1.89).
-~ It is important to notice that at the interface between two media it is

the flux §, (that is,d//;vdv) which is continuous -- not the density, n. The
) distinction between continuity of flux and continuity of density becomes very
important when the two media are at different temperatures. The density will
be discontinuous at the interface, being lower on the side with the higher
termperature. The situation is quite analogous to the phenomenon of thermal
transpiration in a two-compartment vessel containing gas at low pressure; a

pressure difference can be meintained across an open hole in the membrane sub-

dividing the vessel if the temperature of the gases in the two compartments

are different. M 2“ -33 3 k@’( >
w-3336

Boundary Conditions at Interface between Medium and Vacuumy the Extrapolation
Distance

If the right hand medium is a vacuum, or is a perfect absorber, the boundary
conditions of the previous paragraph become meaningless. In a vacuum there are
_no collisions at all, and so it is impossible to speak of a net d&iffusion current.
In order to find an appropriate boundary condition we return to the fact, already
~pointed out, that since no neutrons can return to the medium from a perfect ab-
sorber, the rigorous boundary condition must be
F(o,v,u) =0 n 0. (1.105)
Since we are confining ourselves to e;ementary diffusion theory, it is
evident that we cannot hope to satisfy (1.105) rigorously. Instead we shall
be content with requiring that there is no net current of neutrons back from

the vacuum. This is much less stringent than (1.105), since we allow neutrons

to be reflected from the vacuum in certain directions if we compensate by in-

creasing the flow into the vacuum in other directions. Now the net current

-~
~ AN F KA o
‘ Ry \'-)0
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rerlected from the vacuum is

J_(0,7) = /uF(O,v,u)du ‘ (1306}

and we require j (o,v) = O instead of F(o,v,u) = 0.
In a non-capturing medium the asymptotic, i.e.. eiementary diffusion

theory, distribution is

F(x,v,u) = A + B(x - xtr“) = % Fo(x:v) - % )\trFS(K)V)F , (1%07)

and

3(x,v) =k Fo(xw) + EAFY=Y) . (1.08)

Byuation (1.108) is the familiar formula for tne number of neutrons striking

a unit area per second from the right. If j (o,v) vanishes ihen

Folo,v) _ 2y (1.109)
Fl(o,v) 3

that is, at a plane interface between a non-capturing medium and a vacuum the
logarithmic derivative of the total acutron flux must haveithe value - % X;i. =
another way of caying this ig that the asymptotic distribution of the neuvtron
flux extrapolates Lo zero a%t a distance % )%r beyond the edge of the medium.

An sccurate calculation in which all the non-asymptotic solutions are used
to satisfy (1.105) rigorously gives the value $.7104 X%r for the extrapolation
digtance in a non-capturing medium. In the rigorous theory it is the asymptotic
flux distribution which extrapolates to zero st the exitrapolation distance
.T10k4 Xtr; the actual flux falls below the asymptoilc distribution (which is
linear) close to the boundary. At the boundary its ratio to the asymptotic

flux 18—t~ = 0.81. It is not surprising that the flux falls off

(.7104) (4/3)
( \l-." L4 ' 51
SRR
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faster near the boundary than in the interior, since close to the boundary
. neutrons arrive at a point almost entirely from one side while in the interior
v ~they came fram both right and left sides in comparable amounts.
- The extrapoJ.atibn distance 0.71 )\tr is correct for the case of a non-capturing |
medium at a plane boundary. If the medium captures, then the formula for the
extrapolation distance is more complicated; however, if the capture is not very

; strong and if the scattering is isotropic the only change in the formula is

that the mean free path for scattering, rather than the total mean free path,

| _° 1is substituted for Agp
If the boundary is curved, then the extrapolation distance is longer than
0.7 )\tr. In the limit of vanishingly small radius of curvature of the boundary --
this would correspond to an extremely small black sphere imbedded in a scattering
) X material -- the extrapolation distance is % X. The extrapolation distance for
- intermediate radii of curvature bas been calculated by B. Davison.* We shall
-‘ - refer to his results later in comnection with the theory of control rods.
The Albedo
i If the angular distribution in a medium is kmown, then it is a simple matter
_to compufe the albedo, or reflecting power, i.e., the ratio of the number of
neutrons reflected from a medium to the number of neutrons incident on the med-
ium. Evidently the reflecting power of a medium depends upon its size; a thin
sheet of scatterer will refiect fewer neutrons than a thick one. It also de-
pends on the angular distribution of the incident neutrons. Thus more neutrons

will be reflected if they enter the medium at a sharp angle (and therefcre do

not get very far from the surface) than if they enter with a uniform angular

distribution. We shall calculate here the fraction of neutrons which are re-

flected from the plang surface of an infinite medium assuming that the angular

r)

‘ T MT - 93 - B. Davisom - "Influence of a Large Black Sphere upon the Neutron
Density in an Infinite Non-Capturing Medium" ., (52
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distribution of the incldent neutrons is the angular distribution of elementary
diffusion theory. .

We consider an interface between two media and, as before, let - denote
the left hand medium, + the right hand medium. The albedo, B, of the right
hand medium, is by definition the ratio of the current reflected from tHe

right hand medium, j_, to the current incident on the right hand medium, j,,

J-
-+

Now since we have assumed elementary diffusion theory,

F(o,vsh) = oty (1.111)

and so

-1
= No
. /[ - X -5 br+ X
ONU n =1 n(1l + M/No)

p ==
Je

1 No
; -1 - Y An(1 - M/No)
No - Mpu
Q0
If the absorption is weak, then Y & N11300& & Nao, and we can expand the

logarithms. The result is

l!» Ja. Ua q
ﬁzl-%ﬁ =1‘2-3]{; B (-‘-’113)

The albedo of a medium decreases as the ratio gp/c increases. This is natural
since a/aa is the number of collisions before capture, and the smaller the
number of collisions before capture, the smaller is the probability that an
incident neutron will be reflected before it is captured. If the capture is O,

then B = 1; this again is a physically obvious consequence of (1.113).

-
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In case the absorption is so slight that the two harmonic angular dis-

‘ _tribution (1.98) is justified, we can write

-1 -1
- 1 3, 2 Fy a9
B j. 3 Folo,v) J udn + 3 J(o,v) J u-du % -3
' p=—-= > o = (1.114)
- Jy F
; . . o)
% Fo(o;v)/ld}l + % J(o,v) [12&# N g
- ) J
" and, since j=i A\
2 3 d le) 2
F'
1+ L) 2
3°d Fo F!
8 = —- r xl+3 )\ Io (1.115)
¥y 3 (]
1-2) — Fo
- 3°4aF
o]
Since for isotropic scattering and weak absorption,
I 30T -
-formula (1.115) is really equivalent to (1.113). We can express the log-
arithmic derivative Fé/Fo in terms of the albedo by solving (1.115):
Fo 3p-1
A= = 3 g-1 . (1.116)
F 2- ﬂ + 1
o]
) ]
Now the boundary condition of elementary diffusion theory is that )a EQ
o)
is continuous across an Interface. Hence, if B, denotes the albedo of
Fl
the right hand medium, and ( N 59 ~ refers to the left hand medium, then
o
the boundary condition of elementary diffusion theory can be written
‘ ' B, -1
, (X o\ -3 % : (1.117)
.7 - (Mar)) 2p,+12 . |

A
MY
o
1
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Some Plutonium Project writers, notably Fermi, bave used the boundary con-

dition in this form rather than in the form discussed previously (1.'99) - (1.100).

Since the albedo is cmﬁmed by elementary theory, the two formulations are

equivalent. | "
The albedo of a perfect absorber or a vacuum is O. Hence, from (1.117),

at an interface with a vacuum we must have

2o
that is, the elementary theory extrapolation distance is % >‘d’ as we have
already calculated. |

A problem vhich is of considerable importance in pile neutron physics,

and which can be solved rather handily by use of the albedo is the following.

Suppose the net current, j, of neutrons in a weakly absorbing medium is known. -

Now suppose a thin, weak absorbing sheet is placed normal to the neutron flux
gradient. It is required to calculate what fraction of the net neutron current
is absorbed in the sheet.

We assume, asg usual, elementary diffusion theory. Then the current j is

'j ® o= DOQé = DOXQQ
while the number of neutrons absorbed per cm2 per sec in the sheet, assuming

it is very thin, is

(Nop)g ot
where @a&sis the absorption cross-section of the sheet and t is its thickness.
Hence we have L
absorption _ Noa t .
* current ~ p W : -

(A
(91
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+

| - and, since by (1.116)
. - DO)L =

11 -p
2]+’
.We can write
. a:lslgrggezzon - 2N"a8t ;]l._tg’ - (1.117e)

a formula which is applicable if the sheet is thin and absorbs very weakly.
- This formula Eq. (1J17a), has a rather interesting physical interpreta-
tioﬁ. The quantity -i—i_'_g 'is the number of times a neutronr crosses the sheet
per unit net current, while Noast is the number of absorptions which would .
occur, per pass, if the neutrons traversed the sheet normally. Actually
the neutrons strike with a cosine distribution* (since j(u) = #8); hence
the average path length that a neutron travels through the sheet is greater
than t, and in fé.ct is 2t. The fact that the average distance traversed
. ‘by neutrons in a sheet is 2t, if the incident flux has a cosine distribu-
) tion, is a special case of a famous geometric theorem due to Gauss; namely,
-that in a solid of volume v and surface s, the average chord length, e,

weighted with the cosine of the angle between chord and normal is

o= bv
8

Diffusion through Channels

If a scattering medium is traversed by long cylindrical channels or gaps,
the net diffusion current for a given flux gradient is greater than it would

be in the absence of such gaps. In a general way this can be predicted from

* In thé approximation used here the angular distribution Jo(x,p) = éo /2 - % Qép,;
hence j, = Jo/b - A/6 § and §_ = § /4 + N6 §!. In caloulating

the net number which strike from both sides of the sheet, only the Qo tern,
»+ which corresponds to the uniform part of the flux, (and therefore & cosine
. current distribution), need be considered.

,‘

6s
-

1
(=
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the fact that in a vacuum the mean free path of a neutron, and therefore =

the diffusion coefficient, is infinitely long. The average mean free path
is thus increased by the presence of gaps, and this increase is reflected
in an increase in the net diffusion current per unit gradient of flux.

The net diffusion current through a channel depends upon (1) the dim-
ensions of the channel; (2) the orientation of the channel with respect to
the neutron flux gradient; (3) the scattering properties of the medium in -
which the chamnel is placed; (4) the flux distribution. Because the flow
per unit gradient depends on the orientation of the chennel, 1f a medium
is traversed by a large number of parallel channels, the net diffusion
current will be anisotropic; i.e., the diffusion coefficient is a tensor.

The current through an infinitely long channel is not always finite;

x
for example, if the neutron flux increases exponentially, say like e ’

and the channel axis is parallel to x, then the current is infinite. .
On the other hand, in a non-capturing medium in which the asymptotic

flux distribution is -

s

Bxw) =4 8o+ 38 - HBow (1.118)

vhere Qo and Qé are constants, the total number of neutrons which traverse
per second a plane perpendicular to the channel is finite. We proceed to
compute this current; in this calculation we follow esséntially the method of
Nordheim and Soodak.

Consider & cylindrical channel of arbitrary convex ehape (Figure 3) whose

axis lies along x, in a non-capturing infinite medium which scatters isotropically.

The net number of neutrong which cross the plane x = O per second congists of




those which cross the plane x = O inside the cylinder, plus the number which

crose x = O outslde the cylinders. We denote the net number which cross inside
the cylinder by Jj, and the difference between the net number which cross x = 0
outside the cylinder after and before the cylinder was in place by Jex’ We
assume the validity of elementary diffusion theory; 1.e., we assume the asymp-
totic flux distribution (1.118). This is correct if the total neutron flux is .
g linear functiun of x. |

To calculate Ji, we first find the f::::::::::::::>
net number of neutrons which cross an /—'9'-

element of ares 4o in the x = 0 plans

10
ingide the cylinder; we then integrate
over the interior surfece. The number >
r
n
of neutrons which strike the element do g// =

in the x = 0 plane (Figure 3) is the sum \‘i’/

of all neutrons which strike all elements
dA on the wall of the cylinder and are Figure 3

directed toward do. Now the nuxber wbich strike dA per second and reach 4o is
B(x,£)1) cosy cos® aa %2‘1

where §(x,{L) is the total flux per unit solid angle in the direction (i

i:% cos6 is the solld angle subtended by do at dA, and 1,0 is the angle between

the direction of motion of the neutron and the outward normal n to the element

‘dA. The total flux §(x,Q) 1s 51; times the flux §(x,u) of Eq. (1.118):

%— . x§! . M cose
| b n bx

Q(I,Q) =



5% I-5%

(The cogd term has & + sign here because 6 1s the supplement of the angle

which the neutron direction makes with the x-axis.) If we denote the element

of the bounding contour of the cylinder by dc, then dA = dcdx. Hence the

total number of neutrons which cross, from above, the x = O plane inside the

cylinder is

® 00 ,
do 1 \ ' do -
/M(x:ﬂ) cosl) cos® =F dedx = 7 //{{:o + x@;)@c', cos(% cos¥ cos6 = dedx, -
g ¢ \J‘ r AV -

(1.119)

and from below 1t is

r/// +xp! + )@' cosé‘ cos)// cose J dcdx.

The total net flow is the difference between the upward and downward flow:

-Q ﬁ/(x + Accse) cosl/’ cose =2 d° dedx . (1.120)

In taking the diffefence, the term involving Qo, belng odd in x cancels while -

the terms in @5, being even in x, add. To simplify the integral for Ji, we

use the geometric relations |
cos?’V = 8in6 cos

P ' x
8ing = m B co80 = (x2 . })2)‘4'

and

cos?dc =Pdco - Figure 4
vhere P(P) is the distance from the element d¢ to the gap perimeter in the - X

direction which makes angle P with the normal to dc, and des is the element

Ly " (59
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‘ " of angle subtended by dc at do (Figure 4). Making these substitutions, and

~using the integrals

a
x* .S x2 2
—_—_——dx =, —r L ax=-= ,
‘.((F«e ~2F /<;>2+x2>% e

- we cutaln

| . Iy = =B [% A+ i//f:(?)dmdc} i -A§; [?3:.+ 27,'0,']

where A is 2x channel area/chanrel perimeter, ([ 1s sometimes called the

hydraulic radius of fhe channel), anl y = l_ f P((p)dm do. The quantity
v is a numerical factor which depends on ttlzgzsﬁape of the channel. Fram the
. integral (1.119) it is easy to prove the remark made before -- namely, that
. ‘
. .2 § increases exponentially in x, then the integrals will not converge. For,
- when x is very large, cos} is of order 1/x, and the whole integrand is ;hf_-_-,SS(G da'j
. order ~ §/x3. Hence the integral does not converge if ¢~ exx. Lo ;‘ N3I330 N?
In order to calculate Jex’ the difference between the number of neutrons
which cross the x = 0 plane before and after the channel has been introduced,
we consider the number of neutrons which cross

an element of cylinder wall, dA at a height x o

in a direction between {) and {) + all (Figu:‘e 5). dat

N

Evidently the uumber wilech croas dA must have

origiﬁa.ted from en element dA' at heignt x, on

the opposite wall of the csylinder. The projected

P

area dA' normel to the directior of neutron action
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must be the same as the projected area of dA in order for all the neutrons - ‘

in the proper solid angle to striks dA and dA'; both projected areas must
be equal to cos ¥ dA where } is the angle between () and the outward normal
to dA. The number which cross dA per second in the direction Q, and survive

without further collision until they reach the x = 0 plane is

B(xp,00) e:oswe-r/ AiQaa

where =|xl/cosel, and 0 is the angle between fl and the x direction. Now
in the absence of the channel, the number of neutrons which pass through dA

and cross the x = 0 plane per second is

8(x),0) cos;ae-r/'\dQ_dA.

The extra number of neutrons which cross from above because of the presence
13 --

of the channels is therefore ‘

Tt // (5002 - 80, Q] ooy ™/ “agan. “
Jie!

Since we have assumed the no capture asymptotic distribution for ;Q(x,p) , we

have, according to (1.118),

I(xg:&) = Q(XI:&) = %
L

where ; = X» - X3+ The integral for Jey, the difference between what strikes

from below and abovs, can be written

© F-F .
, -2 - -lxy/ Aeosol
Jex = Ty (-P) cot® cosd sind e sipededpdxldc .
8 —% 2o '

-y ’61

S0 -
T .
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' ‘- where P == tan® is the chord length between two points on the circumference
- of the channel in the x = 0 plane, dA = dcdx,, df) = sinededq. The factor -2

comes fram teking the difference between the + and - flows. The integration

over Xy and @ can be performed easily; the result is

. 2%
* Jox = % E;/ﬁocos?dtf dc =-%‘- bea

where A is the cross-sectional area of the channel.

In the presence of & channel of area A the net longitudinal neutron current

per negative unit flux gradient, over and above what the current would

ve outside the channel (if the channel were absent) is

. ‘?“'Je}::A %)l+27£-
. £

'ﬁ or the longitudinal diffusion coefficient, Dyjj per channel, which is the

average current per om® of channel per negative unit flux gradient, 1is
’ D11 = 3% +2vL | . (1.121)

If a medium is traversed by many parallel similar channels whose volume

*
is the fraction £ of the total volume, then the total current per unit grad-
ient of flux which crogses a normal plane of area Ag, A5 being so large that

mawy channels traverse 1t, is

J = A + FA{ ]

end the averags longitudinal diffusion coefficient of the medium with its

*
It is assumed that f « 1; that is, the chamnels do not interact.

. | RN V.
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g

channels is

B, '4§§%§ - §. [1.+ £(1 + é%?{] x ' (1.122) ;

The presence of the channels increases the dlffusion coefficient in the
parallel direction by a fraction A E

£(1 + 67.8/N). "
If the fadius J[ of the channele is very smell compared to )\, but £ is constant ~- -
this would correspond to uniform decrease in density -- the fractional increase
in D is just f, the fractional density decrease.

The quantity 671! has‘been calculated for a circular cylinder and for a
circular cylindrical annulus. The result for a circular cylinder is 67}[ = 2a,
where & is the radius of the cylinder. For an annulus, the value of 67K /b is
given for annuli with various ratios of a/b, where b is the outer radius and

a the inner. These results were obtained by Soodak (CP-2019).

Form factor 6y.£ /b for annular channels.

b 0 1 21 3] .4 s |6 |7 1.8 |.9 1.0 -

§%§% 2 1.8311.68|1.52{1.31 1.5 | .96 | .76 | .53 | .29 0

~ Solution of Boltzmenn Equation Near & Source

The exact solution of the Boltzmann equation near a source of neutrons can
be found rather easily. Since the agymptotic part of this golution is very
fundamental for the applicetion of the elementary diffusion theory when sources
are present, we shall show here how this solution is obtained. This problem; ..
hag bsen tregted by Bothe, by Placzek, and by Wigner. We follow the method -

of Wigner (CP-1120 . | .
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e

- We seek a solution of the Boltzmann equation for a localized, isotropic
‘ _ unit source at the origin; We represent the source by 5(x); such a source
emits i du neutrons hetween p and p + 5u. The Boltzmann equation is, for iso-
tropic scattering,
1
aF Nog,
W (x,1,7) + NoF(x,u,v) = —3— [ F(x,n,v)au + § 8(x). (1.123)

-

To solve this equation we expand 8(x) and F(x,u,v) as Fourier integrals:

®
1
8(x) = L T

2n
-~
«© iwx

1 Agaze

F(x,u,v) = on No + ieop dew .

-0

. Substituting these integrals into (1.123) we find that Alw) is Just

1 1
Aw) =3 Nog, No + 1w

1w in’No - iw

The complete solution of (1.123) can therefore be expressed as the integral

o
1 ' iwx a
. e @w
F(X’M,V) = H Ngs No + iw“ . (l.lah)
1 - © ¢n No + ilw »
e No - iw
-®
The total flux is
.- o )
.. lwx
1 I%,e (No + i)
o Folx,v) = % o — Ao g dw - (1.125)
] _ 1- 80 o o+ i
. -0 2w No - i

t
3
- d
R
%ip]
[
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In order to see more clearly the significance of this solution, it is - '

useful te calculate this integral by the method of residues. The integrand

of (1.125) has s simple pole where

-

Nog, Ro + ies P
2w An Ro - 1o -1

i.e., Tor iw = ¢} vhere Y 1is the reciprocal diffusion length, and it has
an eseensial singularity at 1w = #No. The contribution r°as to the irntegral
from the residue at the pole is

2.2
b (x) - A WM oAt ée (1.126)
Oqg\*/ = 2Ng, ~© T T T % Y2 - Foogo

while the contribution, Fol(x,), from the esgentlal singularity is expressible

‘a8 a real integrala

m -
( \ -(l+)I)Nax .
1+ l & dv, .
= N2 . ]
FO'Q(X) - e [20(1 +n) - Nog dn(1 + 2/ ‘]2 + T°NeoS (1321
0 1 % T % .
The total flux 1s | ‘ ‘ -
Folx) = £y (%) + Fop(x) . (1.128)

It can be shown ‘phat F, l(x } falls off from the source plane very much
guicker than Foas(x),- after a few meen free paths it 1s entirely negligible
compared to Foae' Thus the a.symptotic‘ solution from an isotropic unit source
ralls ot 1ike o U

In the next section we show that the solution due to a unit source according

to elementary diffusion theory is Just
W - Kixj -
2oy, © :
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. " Hence the correct asymptotic solution is the same as the elementary theory

~“golution except that the effective source gtrength is smaller by an amount

. 20, oo - .\{2

-
o X - ¥ o,0,

(¢
=  if gg/0 K 1.

&zl -

Un &

Physically the reason for this reduction in apparent source intensity at
distances far from the source is that, because of the extra term F, Y the
neutron density, and thersfcre the absorption, is greater than it would be
if only the asymptotic solution were used. The initial absorption correction
is unimportant in any material, such as HyO or graphite, which is suitable
for slowing dowvn neutrons in a chain reaction. In H,O0, for example, the

correction is about 0.8%; in graphite it is about 1/10 of this.

- Solution of the Diffusion Equation in Various Geometries: The Green's
Function or Diffusion Kernel

‘ - The steady state elementary diffusion equation for monoenergetic neutrons
in & uniform medium, or for polyenergetic neutrons with energy independent

- crogs~-gection, or finally, for thermal neutrons in a weak absorber, is

DAY, - Nogd, + 8(z) = 0 (1.129)

where S(r) is the "effective" number of neutrons produced per second per c¢.c.,
and o5 is the absorption cross-section at the average velocity. The effective
source strength S is smaller than the actual source strength by the factor
Il - -1-5"- i:-‘ s which ari‘ses because of the breakdown of elementary theory
near the source.
. v The sclution of (1.129) cen be represcnted most conveniently by means of a
* - Green's function, GP(_I_‘,_I_"). We define the Green's function as the neutron

flux Qo at r due to a point source at r', which emits one neutron per second. -

]
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The form of the Green's function, of course, depends on the geometry of

the medium in which the neutrons diffuse. However, from the Green's
function in an infinite medium it isvusually possible to oonsfruct the | .
Green's function in a finite medium by a judicious superposition of images. -
We therefore proceed to compute the Green's function for an infinite medium.

The Green's function must be spherically symmetric about the source point
r'. We can therefore, without loss of generality, put the origin at the
gource point. The Green's function is then the solution of the spherically N
symmetric diffusion equation

d°G ac
242 RP|.NogG =0, (1.130)

where p = r - r' is the distance from field point (at r) to source point

(at r') which is taken as the origin. As boundary condition we require that .
the number of neutrons leaving the source point per second is Jjust 1. This ~ ‘
condition can be written
aG - )
lim lmpzp —£_ . (1.131) -

The solution of (1.130) which satisfies the boundary condition (1.131) is

-®iz-r'|
e

; (1.132)
kDo lz - I"

Go(p) = Gp(z,z') =

it is important to observe that G(r,r') is a function only of the difference
Iz -zl

'The Green's function gives the flux Qo at r due to a unit source at r'.
Since the diffusion equation is linear, the flux at r due to a distributed

source S(r') is a superposition of fluxes due to point sources, -
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. i 3, (z) =/*:(;') ii{l-z-—z—‘-dz ) | (1.133)

hero\z-_z_'_' '

[

" and this is the solution of (1.129) in an infirite medium.
Equation (1.133) expresses the total flux Qo(_x_‘) at & point r as the sum
of the individual fluxes from a distribution of sources S(_I:). Conversely,
it can be viewed as an integral equation for the source density S(r'), if

the flux §o(r) is known. The kernel of this integral eguation,
- Klz-z'l
e

lnrDoL:;-_z_"\

is called the point diffusion kernel, as well as the Green's function for
the elementary diffusion eqguation.
As an example of a physicael situation in which an integral equation of

. - the form (1.133) arises, we consider a medium in which neutrons are produced
as the result, say, of fission, the number of fissions, and therefore the
-production rate, being proportional to the neutron flux Qo' We suppose thsat
.the neutrons, when they are produced, are already thermal; this 1s not correct
in & uranium chain reaction but will serve to illustrate the point. Then, if

k is the number of neutrons produced per thermal neutron absorbed,

S(x) = KNogdo(r),

and, if we suppose the system consists of two regions, Rl and R, which have
identical nuclear properties except that production occurs only in region Rl,

then k # O in the region R,, k = O in R,, (Figure 5e). Substituting for

o Cn
Figure 5a R Gos o B8



bS 16

S(zr) into (1.133) we find that the integral equation for the neutron flux - ‘
18 (cf. 1.133) ]
2 -¥z-x| -
$o(x) = il [ Oo(z')ar' . (1.133a)
I x| ,_
Rl -

This is a characteristic valﬁe problem vhich has a non-zero solution Qo(g)

only for particuler values of k. Equation (1.133a) is an example of a character- .

istic equation for a chainwreacting system. The quantity k is the "multiplice- -

tion factor". .
Another exasmple of a case in which the source strength is directly pro-

portional to the neutron density is that of a foil in an infinite medium in

which q thermal neutrons are produced per second. In the sbsence of the

foil, the neutron distribution is & constant,

Suppose the foil has a volume V and an absorption cross-section (Nca&. If
the foil is very thin, then the number of neutrons absorbed per second per c.c.
of foil is (Noakdk. Hence the neutron distribution when the foil is in place
must satisfy the equation
2 [-Wlz-z
(Naa)fx e x

hﬂNO’a ‘ .x_--:_[_'"
Vv

Qo(zt)dr'

P (x) = ﬁ%;

where the integration is over V alone. If the foil is small it is satisfactory
to solve this equation by replacing J,(r') under the integral with its undis-

turbed value, g/No,. The distribution is then

1Y r,g' ! Rg
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2 -)L';-;d
f(r) =2 |1 _%L 2 ar'] .
No,
v

Thies is only an spproximate result since we have assumed here the validity
cf diffusion theory. Also we have ignored the fact that the foil consti-
tutes & gzoond medium and therefore the diffusion kernel for a single medium
is not quite appropriate. The error introduced thereby is small if the foll
does not absorb too strongly.

I the sourcss of neutrons are distributed uniformly over infinite planes
parallsl o the y-z plane, the resulting meutron flux §_(x) can depend only
on the ome coordimate x. The flux can then be expressed in terms of the
source strength S(x), where S(x)dx is the number of neutrons emitted per cme
per second by & thickness dx of source.

Evidently in this case §,(x) is the solution of the differential equation

2
D, % (x) - Nogd,(x) + 5(x) =0 . (1.13%)
The solution of this equation can be expreséed, as in the spherical case,

in terms of a one-dimensional Green's function, or plane diffusion kernel,

Gpl(x,x'), which is the flux at x due to a source of strength omne neutron

per cm2 per second at x':

§°(x) =fs(x')GP£(x,x')dx'. (1.135)

In an exactly amalogous manner, if the sources are distributed over con-

centric spherical shells of strength S (r)(4nr Ss(r)dr is the number of
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neutrons emitted per second by a shell of radius r and thickness dr), the -

flux §,(r) is expressible in terms of the spherical diffusion kermel, G (r,r') _

Po(x) = hnﬁis(r') Gg(r,r!)r'2 ar (1.136)

where (’}8(_1_',3')‘ is the flux at r due to a shell of radius r and of total
strength one neutron per second. Evidently §o(r) is the solution of
2
Do & [‘fo (1‘)]
T I - Naaoﬁo(r) + 84(r) =0 . (1.137)
Finally if the sources are distributed uniformly along infinitely long

concentric cylindrical shells, the flux is expressible in terms of the

strength of the source and the cylindrical diffusion kernel, G,(r,r'):

Po(r) = Q%C(r')Gc(r,r')rdr'

where 21S,(r')r'dr' is the number of neutrons emitted per second per cm

length of shell of thickness dr, and Gc(r,r') is the flux at r due to a
uniform cylindrical source of radius, r!', and total strength one neutron
per second per cm. The flux §,(r) is the solution of the diffusion equa- -

tion in cylindrical coordinates

2
o 18| _ Fo§(r) + Se(x) = 0. (1.139)

D,
0o 61'2 r dr

It 1s a rather easy matter to compute the diffusion kernels in the various
geometries by solving the diffusion equation in the appropriate geometry and
applying boundary conditions like (1.131) at the source. However, we will
compute the diffusion kernels directly by integrating (1.132) over the proper

source distribution. The advantage of this method is that it illustrates - -

71 h

i 4
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certain general relations between point, plane, sphere, and cylinder kernels
which hold even when the kernels are not the solutions of simple gecond order
_differential equations, provided only that the point kernel depends on \}‘_-}'_"
only. In particular, these relations hold for the so-called “"transport"
kernels which are the Green's functions for the isotropic transport equa.tion;
and are therefore not the solution of any differential eguation.

To compute the plane diffusion kernel, we integrate the point kernel
_ over a plane. Thus, if a plane source of unit strength is placed at x',

then the flux at x, which is just the plane diffusion kernel, is
o .

GPL(Ix-x‘I) =2x [ y'Gp(lz-r'l)ay’ .

Now, from Figure 6,

-y

Figure 6

y2 + |x_x'|2 = ‘£_£r|2

and, putting |x-x'l = ;, |z-r!| =~ p, we obtain

)
Gp{(g) = 2% PGP(P)d’) , . (1.1k0)
or, conversely, g
l 1
Gp(f’) = - -é-;f; GPI(P)., ‘(l.lhl)

The relations (1.140) and (1.141) are general relations between point and

plane kernels -- they hold whenever the kernmel Gp( r,r') depends only on
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the distance between r and r'. This is always true in a homogeneous,
1sotrop:l.¢, infinite system regardless of whether diffusion theory 1s
applicable. | |

The plane diffusion kermel can be evaluated by substituting the formmlea
(1.132) for GP(P) into (1.140) and integrating: the result is

1 e-)-Ux-x'l
51D, .

(§) =G, |x-x'|) =

| To compute the spherical kernel from the point kernel we integrate

(1.142) over a sphere of radius r' (Figure 7). Since the kernel is normalized
to one neutron per total shell, we take for the source strength l/lut.'t"2
neutrons per cm2 per second. The case r > r' (field point outside sphere)
and the case r ¢ r' (field point inside sphere) must be treated separately.

We consider the case r > r! From the figure

p2 = :r'2 +1° - 2rr'coso; r' gin ©
pip = rr'einods.
Figure 7
Hence, for r » r!',
| n r+r!
Gg(r,r*) =h 2n /JP(P)r' 3in6de = E%—rrr Gp(f)),:sdf . (1.1&3)
] . r-r'

In case r £ r' the formula remains the same except that r' - r replaces
T - r'. On comparing the right-hand integral in (1.143) with the relation
(1.140) tetween plane and point kernels, we see that
_ 1
Gg(r,r') = p=vs Gplﬂr-r'l) - GP,Q(lr+r" )], (1.1h4%)

Gz T3
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——

“which is a general relation. For the diffusion kernels, we have
@

1 e-)er-r'\ ) e-M |r+r'|J

G (r,r') =
o(rs7") Su)eDorr‘
(1.145)
- ginh¥ r’ e')er rS !
K LD, r
_xr“
" = e BLBQKI r < r' .
hnDyr! Xr

We observe that Gs(r,r') is not a function of |r-r'| alone. It is, howerer;
still symmetric in r and r°'.

It is interesting to observe (1.145) that the effect at exterior points
of a unit spherical shell of radius r' is the same as though the shell were

all concentrated at its center and its strength increased by the factor

"‘ p_i_n}_l(l_;{'g_f_ . In the interior of the shell, r' > r, the effect of the shell
cannot be replaced by a single point. These results are generalizations
of the well known fact in electrostatic potential theory that a uniform sphere
" attracts like a point charge of the same strength at its center. This is not
surprising since the diffusion egquation reduces to the potential equation
when M = 0; all the diffusion kernels become potential functions when M=o.

In particular the sphere kernels reduce to the familiar potentials in a medium

with dielectric constant D l_ and L ' ' .
o? m Fﬁ);}_'- for r > r' and r ¢ r' respectively

The cylindrical diffusion kernel is obtained by integra;ting the point
M-zl ‘
& == _ over the surface of a circular ¢ylinder of radius »r'.

Lo kernel,
. s lz-z'|
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“Since the generators of the cylinder are vertical straight lines (Figure 8) -

it is convenient to integrate first along one generator; this will yield
the "line" diffusion kernel, i.e., the flux at (r,?) due to a line source
at (r',g") o° strength one neutron per second per centimeter. The line i .

kernel, Gﬁ(r,?,r',9'), is

m < o
( ) o Riz-z| (1.246) S
G (r ') = dx 1.L -0 -
£ ’9 ) ? hj'[D°|£-£n‘ ? gﬁ:' - r .
. ° %) - _
S b
Figure 8

“here | r-r " is the distance between the element dx and the field point.

Now (Figure 8)

[z-z" = NP2 + =2, p= W2 + re2 - 2rr'cos(9'-p),

and so

® e_')( P2 + 5 . .
Cjz(r,?ir ,9 ) =/de = -é?t-l_); Ko()‘f)) (1.147) | .
) -w

where Ko()-? }:) is the second Bessel function of imaginary argument which has
a logarithmic singularity at the origin. The function in (1.146) is the gen-
era.lizé,tion of the loga:ithmic potential, to which it reduces when M =no.

In order to obtain G (r,r'), the cylindrical diffusion kermel, it is
necessary to integrate Clﬂ around a circle of radius r'. Since, from sym-
metry G, must be independent of Q s We may put @ = O without loss of generality.

Also, since Gc is normalized to one neutron per unit length of cylinder, we -

o F
Gy
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-must divide GL by 2xr' before integrating. Then
‘ 2n
) G(r,r?) = 5= G, (r,9,27,9")r'a" . (1.148)
0
This integral can be evaeluated by using the addition theorem (Jahnke-Emde,

R p. 144

®
K, ()(,1/r2 + 2 o 2rr'cos?'>= Z Ky(Xr) In(Mr) cos m ¢ r>r'
-00

0 (1.1k49)
st 1
= —ﬁ, E (Mr) Im()(r) cos m rir' .
If (1.149) is substituted into (1.148) then only the m = 0 term survives
~ the integration, and the result is
.“ Ge(r,r') = Q:Do E(Mr) I,(Xx') r>r'
(1.150)
= 1 '
" D, E(Mr') I ) o orgr.

If r' = 0, then G, = Gy , as it should. If we compare (1.150) with (1.147)
we gee that a cylindrical shell can be replaced by a line of strength Io()( rt)
at its center as far as its effect on exterior points is concernmed.

We summarize the results in the following table:

(over)
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73 .
Diffusion Kermels -
Source Normalization .
Geometry Notation (per second) G = flux (nv) at r
- Wr-r'l |
Point Gno(zr-rt) 1 neutron e -
== kxD, r-r' .
- ¥ix-x1
Plane Gpi(x,x') 1 neut. per cm® d___
2 323, ,
Spherical ' 1 neut. per shell of _ I .
ghell Ga(r,r') radius r' S e Alz-r |— e )er+r\
Bm'){‘ D,
Line G(r,0 ,»'0% | 1 neut. per unit length 1
. § 7§ 2D, Ko(Xp)
pPar®ir'@ orricog(0'-6)
Cylindrical|G,(r,r") 1 neut. per shell of BA ) MHr) >
shell redius r' and unit 1 i
lengbh 2“Do : Ko()‘t.r')Io(M I‘) T < 1"
-

o ‘
7”'35>b b m“b‘fb(o ‘“g

r/"‘A"J!he Tra&:% Eernels

It is poseible to write the Boltzmann equation as an integral equation

vhenever the scattering and the source are isotropic. To do this we return

%o Eq. (1.50) in which F(x,v,u) is expressed as an integral over F, and S, the
So(x,v)

2

source distribution. Since we assume S is isotropic, we may put S(x,v,u) =
where Sy, 1s the total number of neutrons produced per c.c. and second. As it
stands (1.50) is not quite an integral equation because the total flux F(x,v,m)
appears outside, and both functions are unknown. If, however, we integrate

over u, then we obtain an integral equation in F,(x,v): .
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2
- G -

P No(. . No o - m}r(x'--x)
0 - -1 oo
) -x N, 1)

+ -;:./fso(x',‘r) em TR d—":-'- du,

-1 o

No - 2 x-x1)
. FO(X,V) =/F(x;v)l")dﬂ = BO/fFO(X',V) e u( d_.'x;:‘_d.ﬁ +

and, by interchanging order of integration,

(s o] @®
Ncs
O

Bhe \ e (1.151)

where

1 on
E () i/:a-y/“ A =/e"’ & (1.152)
v y

is the exponential integral (demoted by - E;{-x) in Jahnke-Emde). The total
number of neutrons which start fresh flights per second in each cubic centimeter
is choro(x,v) + So(k,v); this quantity, which we shall call Q(x,v), may be
viewed as the source which furnishes neutrons for the remainder of the medium.

Hence the integral equation (1.151) may be written:
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Fo(x,v) =% (z',v) Ey(Nolx-x'l)ax',

-0
Q(x"V) = Naso(x',V) + So(x',V)-

In this form the integral equation of isotropic transport theory resembles
very much he integral equation (1.135) of diffusion theory. However, the
transport kernel [which ve denote by K, (x,x‘)] is % E,(No|x-x'[), vhile the

- S
plane diffusion kernel is 1 e )(lx x l . The two are related by the formula

2AD,
O
KPL(X’X') = Do\ﬁpe()(;x:x')d)c . (1.154)
No

The transport kernel gives the flux in a unit volume at r due to a
unit source at r'. The transport kernels in the other geometries can be
obtained similarly from the diffusion kernels by integrating with respect:
to M from No to o and multiplying by D,. The results are tabulated in the

following table:

Transport Kernels

Source
Geometry Notation Normelization K
Point Kp(g,g') 1 neut. per sec. 1 e'NU'E“Z.'I
El.'(- lr_r rl 2
Plane (x,x*) 1 neut. per cme 1 .
Kpl per sec. 2 Ey(No |x-x'])

cont'd . . . . v ¢ v o e .

fye
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76
- Transport Kernels (cont'd)
Source
Geometry Notation Normalization K
[Spherical Ks(r,r') 1 neut. per shell
. Shell per sec. 1 -
Barr’ E?-l(m"r-r'” El(Na|r+r"£|
o
Line (r,0,r',0')] 1 neut. per cm. per E_g_/
K'e ? 9 sec. 2xn lKO(NaPy)dy,
p= 4/;2 + 12 . 2rr'cos(9'-9)
oo
" [Cylindrical (r,r?t) 1 neut. per cm. per
Shell o sec. g% K (Nory)Iy(Nor'y)dy r>r!
1
00
%/Q(Ncr'y)lo(lim)dv r !
] 4 ‘

The equivalence between a spherical shell and & point, or a cylindrical

shell and & line, which holdsfor the diffusion and the potential kernels does

;mt hold for the transport kernels.

- As an example of the use of a transport kernel we calculate, according

to transport theory, the depression in neutron demnsity caused by a thin foll

which is introduced into an infinite medium in which monoenergetic neutrons

are being produced everywhere at the constant rate q. This problem was

treated by diffusion theory in a preceding paragraph, and here we use the same

notation. The discussion which follows 1s in part due to Skyrme.

The integral equatiomn for Fo(g_,v) in the absence of the foil, is

/ -No|z-z'l
e
F.,(r,v) = No_, F (»*,v dr!' +
o(_) ) 80 O(-- 3 ) lm'r-r'iz N
all all
space space

/ -Hal;—gq
e 1
q 1z dr (1.155)

bx Jr-r

)
.
2

Y

80

Eraat
o
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and this has the solution _ -

Folz,v) = ﬁ%; ’ (1.156)

as can be verified by substitution into (1.155). If the foil is present,

then it absorbs (Nda)FFo neutrons per c.c. per second; this acts as a negative
source. Further if we assume that the neutron makes no collisions in traversing
the foil, except absorptions, so that the one medium transport kernel is appli-

cable, then the integral equation for F, must be .

e-Nol r-r' o No ll‘.{"
Fo(z,v) = dog Folr,v) + q - &' - (Noa)p Fo(z,¥) ‘2 art .
| v lm'_z;-;'

all b -z
space (1.157)

Again, if the foll is so small that it hardly absorbs any neutrons, we can ! . .

solve this equation by successive approximations, the first approximation

being to put Fqy = =% . The result is

Nog
(NUa)F e-Na l?-—i' ' ( 8")
= 9 - dr' 1.1
Fo(g,v) Fog 1 . E".I:'lg | > ]

v - .
vhile the diffusion theory result (we replace §, of Eq. 1.133b by F,) is

(¥Ne,,) - H|z-z|
Nog kD lz-z7|
[o] v -

If the foil is a small sphere of radius r,, center at r = O, these integrals
are easily evaluated. The results for the density at the center of the sphere - .

are

 CRRS



' q (Noa)p
- Folo,v) = No - N: (1 -e Nur°] by transport theory (1.159)
& L

by diffusion theory.
(1.160)

Evidently, since the kernels used in this and in the diffusion calcula-
tion applied only to a single medium, the equations (1.159) and (1.160) will
not give the depression in the interior of the 'foil correctly.. This correction
may be comparable to the depression outside the foil, especially if the foil
absorbs neutrons heavily. We will calculate it later.

If the foil ie so small that Nor << 1, then the depressions at the center

are
FO
=1 - (N"a)Fro by transport theory.
q/Nca
¥
q/;a = 1 - $(No,)y(No)r2 by diffusion theory.
- a

-The difference between the two results is by no means negligible.

Solution of the Steady State Diffusion Equation in Various Geometries;
Measurement of Diffusion length

In this section we give a few examples of the calculation of the thermal
neutron distribution in systems of particular shape and with certain source
distributions.

A. Rectangular parallelopiped of size x =&, y = b, z = 0. Source

in z = O plane distributed like f(x,y).



'7? ; 1-78 B

The neutron flﬁx in this case is the solution of - .
> B
by - A, =0 (1.161)
with the initial condition
%, .
-1
Do —| =-3 =), (1.162)
8z |,=0
and the boundary conditions : -
§o =0 x=i-g-' yzig (1.163) _

vhere a and b are the geometric sides, a, b, augmented by twice the extra-
polation distance (.71 '\tr in a weakly absorbing medium). The solution of
(1.161) which satisfies all boundery and initial conditions is

§o(x,702) = —25 T S Zanlygncos @3:%)3.5 cos _(_2_!1111))_151 o-%/Lun
n n

D‘._,a,ab2
where
1 2 (2mel)x®  (2n+1)2s° _
—é-— = x + 2 b 2 ( 1 . 165)
L . ¥
and -

fmn= ab

\.f\)ld‘

B v [ o]

f(x,y)cos(2n§-l) -“:- cos(2n+l) be - dxdy.

]
mlm\.\)m

The neutron flux falls off from the source as a sum of exponentials with
relaxation lengths L, given by (1.165). The relaxation length of each har-
monic decreases as the order m, n of the harmonic increases. Far from the

source only the (o, o) harmonic remains. -

.- 3
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The measurement of the diffusion length of a substance is usually done

»

‘ _.by measuring the distribution along the z d:l;ection of thermal neutrons in a
block of the material in which a source of thermal neutrons has been placed.
“Since the actual distribution in the z direction is a sum of many harmonics,
in order to deduce therelaxation length from the observed neutron distribution,
it is necessary to teke measurements far from the source, if intensity permits,
or else to correct the observed relexation length to the (0,0) relaxation length

by subtracting the effect of the higher harmonics. The diffusion length is ob-

B

tained from the observed Lfo by equation (1.165); i.e.,

Xe=1.2 2 _ £ (1.267)
12 12 & ?

If the absorver is weak the diffusion length is long. Hence, unless the

2 2
L, E K -1—), the reciprocal diffusicn
a.2 b2 I?

‘~ length aprears as the small difference of two reggtively large numbers. In

»

sides of the block are very large(x.e

ordér to obtain results which are meaningful it is therefore necessary to
“measure Ibo s &, and b with extrqme acecuracy.

The technigue which has generally been used on the Plutonium Project for
reducing the data in a diffusion length measurement has been the following: |

1) From a knowledge of the source dispoei'l';ion the strength of the higher
harmonics is estimated. These are subtracted from the observed neutron distri-
bution to give the (o0,0) harmonic. By a Jjudicious choice of x,y coordinates for
the neutron detectors, it is possible to eliminate a few of the important har-
monics. For example, in a square block, the (1l,n) and (m,1) harmonic vanish
at x = a/6, y = a/6.

[P

‘“‘ : SRR
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2) Since the block is always of finite length, it is necessary to - ‘

add an "end correction" to the observed intensities close to the end of the
block. Suppose the extrapolated length of the block is Zge Then the neutron
distribution vhich is zero at z = 2z, and satisfies (1.162) in the source

plane is

QO(X,Y,Z) -——2—2' Z Z

Dia L ® n 3, b

[e-z/x.m (2% )/an] (o 1) conl2BLT

on
(1.168)

The reflected "wave" e( 2-2%o)/ I"m, which can be considered to arise from a

negative image source in the plane z = 2z,, is negligible compared to the

incident wave, e-z/lmn, unless z is ciose to the extrapolated edge of the

block. The end correction is made by subtracting the reflected wave, as

estimated by the expression (1.168), from the observed distribution near the

boundary. ,.
3) After the harmonic and end corrections have been made it is customary

to make a least squares fit to the longitudinal (z) distribution. The relaxa- -

tion length of the best fitting exponential is used as L in (1.167), and from

this L is determined.
k) Since the results are very sensitive to the values of a and b, trans-

verse (x,y) neutron distributions are usually taken. If only one hé.rmonic is

present then the transverse distribution is gtrictly the product of two cosines,

the half wave length of which are the extrapolated dimensions of the block. The

strength of higher harmonics can be estimated from a harmonic analysis of the

transverse distribution, although usually it is sufficiently accurate to compute

these from a knowledge of the source distribution. : o
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The most convenient source for a diffusion length measurement is a
large block of graphite set on top of a chain reacting pile. Such a graphite
block is called a thermal column, since neutrons from the pile are practically
all reduced to thermal energy in the block, provided it is large emough. If
the block whose diffusion length is to be measured is placed on top of the
thermal column, then the neutrons impinging on it will all be thermal, and
the theory outlined ig immediately applicable.

Before chain reacting piles were available, thermal columns as neutron
sources were impractical because neutron intensities were never high enough.
Diffusion length measurements were performed by first measuring the thermal
neutron distribution when an uncovered Ra-Be source (of fast neutrons) was
in the source position, and then when the Ra-Be source was covered by a C&
gsheet which a.bsorbé all thermal ncutrons. The difference between the thermal
reutron distributions in the iwo cases ié Just the thermal neutron distribution
due to a source of pure thermal neutrons at the position of the Cd sheet. This
can be seen by writing down the equation for the thermal neutron density in the
two cases. Without the €d sheet the flux QL satisfies

E;-xaﬁé+§o-=0

where q(x,¥,z) is the number of neutrons which become tlxémal per second in the

block. With the Cd sheet in place the flux To satisfies the equation

no_ " g _
oo - PP + B, = O
but with the boundary condition ¥ = 0 at z = 0, the extrapolated position of

the Cd sheet. The difference Eo = Q(') - § satisfies

% - 8 =0,
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with the boundary condition
QO(X,Y,O) = Qé(x’Y;o):
where Qc',(x,y,o) is the measured distribution at z = 0 with the Cd sheet.

The Time-Dependent Diffusion Equation

The diffusion problems considered in the previous section have all been
stationary problems. The neutron density was considered to be independent
of time, and only the stationary spatial and angular distributions ‘were -
gought. In this section we consider the non-stationary neutron diffusion
problem from the elementary standpoint.

We consider an infinite plane system in which mono-energetic neutrons
diffuse. According to elementary diffusion theory, the equation satisfied
by n,, the neutron density of speed v, is

vdano

n .
D —d_.;?— (x,v,t) - Nogmy(x,v,t) + S,(x,v,t) = -af (x,v,t), (1.169)

0

where So(x,v,t) is the number of neutrons of speed v produced per c.c. and
second at (x,t). Equation (1.169) is the same as the heat equation with
leakage. Its solution for an instantaneous unit source at the origim, which
emits one neutron per cme, So(x,v,t) = 8(x) 8(t), is fouﬁd by the usual Fourier

transform method. Thus, putting

o0 0 0)
v
5(x) 8(t) = L f f Ot Xm0y, ) - .~ f f Mes, Do e amay
4x? hx
-0 -0




‘ -and substituting into (1.169) we obtain

1
A= 2 2 i, ’
+ i0
) DV + A"+ 5
o No,v
. vhere, as usual D = D,v, M =—D—-;hence
- / it 1Y x
. n°=_}_ﬂ 92 e ddy .
WS P ® e, 12
- -m D

This integral can be evaluated readily by integrating first over o and
then over P. The integrand has a simple pole at w = i.D(‘k‘2 + )22), and
D(P2 + X3¢

its residue there is % e . Hence the integral over ¥ has the

2 2
- +
value 2xe (P " + ¥ 5)t. The integral over P is Jjust the Fourier transform

_‘_ of a Gaussian function, and this is another Gaussian. Hence
2
X _ -
- ¥pE )(2Dt

iz (1.170)

n,(x,v,t) _e
(4=Dt)

vhich is the well known one-dimensional non-steady diffusion kermel. The
properties of this function are very familiar since it also represents the
temperature distribution from an instantaneous unit heat source. At any given
time, the neutron distribution is Gaussian with a range lyﬁ , and an ampli-

D)%t -D2t
tude W » The attenuation factor e DX » of course, arises from the
Dt

‘ . abgorption by the medium. At any given point the neutron intensity waxes and

- - c c -
wvanes, reaching a maximum at time Mh; ’eﬂ;];l 1 . If there is no absorption,

the maximum is reached at time t = x2/2D. For thermal neutrons diffusing in
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graphite, A =2.7 em, v = 2.2 x 10° cm/sec., 2D = 39.6 x 10* cn? [sec., and
the time for the neutron intemsity to reach its maximum at a distance of 100
cm is about 25 milliseconds. Such a time lag is easily observable with standard
electronic equipment.

According to (1.170), the effect of an instantaneous meutron source is felt
everyvhere immediately, although (except at the source) with amall intensity.
Evidently this cannot be quite correct since a neutron burst requires at least
the time x/v to travel the distance x from the source. During this "retarded
time", no neutrons can appear at x. It will be shown later that the correct
elementary theory time dependent neutron diffusion equation is really the equa-
tion of telegraphy, (whose solutions are in fact retarded) rather than equation
(1.169) of heat conduction.

The retardation time 1s t.gy = x/v, while the time tgy;pmigion FOT & neutron

burst to reach a maximm at x is x°/2D. The ratio of the two times is

At distances from the source large compared with a diffusion mean free path
the retarded time is negligible compared to the diffusion time. Since most
experingnts involve the neutron distribution far from the source, it is per-
miggible to ighore the retardation and to describe time dependent diffusion by
means of the heat equation instead of the telegrapher's equation.

It is convenient at this point to give the non-stationary diffusion kernels ’
G(r,t ,r',t) in various geometries. The method of deriving these kernels from
the corresponding plane kernel is exactly the same as that used in a previous

gection for the steady state diffusion kernels.
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4
- Time-Dependent Diffusion EKermels
. - Source
. Geometry Notation Normalization
) 12
Plane G l(x,t,x',t') 1 neu‘l;/cm2 at - |x_(£'_| - J(zp(t_tc)
. P (x*,4") e BD(t-t")
) |l+un(t-t'ﬂ 172
’ _ c'2 2 .
Point Gp(z,t,g_',t') 1 neut. at (r',t') e- %&-‘t’)’ - ){ D(t-t*)
- - /2
. [lmD(t-t')
Line (.‘z(r,?,t,r',?',t') 1 neut/cm at - )°2 - sz(t-tv)
(rt,ql,tl) o EDlt-t')’
2
[hnﬂ)(t-t ' )] 3/
_p2=r?47'2 _ orricos(9-9')
Spherical G (rst,rt,tt) 1 neut. per shell .
| shenn of radius r! o HD(6-t")
. - at time t!? x
. byrr?
®
e—ir-r'l /uD(t-t*)
fxn(t-s1 /2
2
- |r+ry) /HD(t-t")
e
]_—l_a-:tD(tnt'jll/ 2
Cylindrical | G.(r,t,z',t") 1 neut/cm of mlr-r’lf - An(t-t1)
IV~ 2 - t-
Shell ¢ shell r' at e D ) X
¢
time baD( -t )
rr'
Iof———
(2]3(1;-1;'))
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It is useful to observe that the point, line and plane kernels differ -

only by powers of 1 , and that the power of this quantity which
[b(t-2)) 1/2 .

appears in the kernel is just equal to the number of dimensions involved; e.g.,

the point kernel (3 dimensions) has the factor [l&n:D(t-t')] 3/2 in the denominator.

Propagation of Neutron Waves

Suppose that instead of an instantaneous source of monoenergetic neutrons )

at x = 0, there is a localized source whose intensity oscillates with angular i
frequency w:

iwt
So(x,v,t) = 8(x)e »

vhere it is understood here and in the following that only the real part of
a complex function is to be used. The neutron intensity at (x,t) is found,

exactly as In the previous paragraph to be

T
iwt iMx
n (x,v,t) =2 = g’) - .
2x VS + M+ 22
- D

The integrand has a pole above the real axis at Y=+ 1’)’)(2 + iw/D ,

~-X /1/)(-2 + ie /D
and its residue there is just e / /(2Di Y2 + ia’/D) . Hence

. jwst
e
the value of n,, which is 2xi times the residue times S is

2 .
- ly + i®/D
n,(x,v,t) = eiwt £ =X / ’
2p 02 + 1a/D

i.e., the distribution at time t is the same as from a stationary source of

strength e t, but the relaxation distance is the complex number 'V)(E + iw /D .

(1.171)
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In order to understand the physical significance of the complex relaxa-

tion distance we write .

Ao - 1/32 S ST 11/_-)6 +{x‘; s w2

Substituting into (1.171),

2 2 2
i(ﬁ) t - '){. + E x) - L’é—& X
e
no(x,v,t) = 2 . (1.172)
2D4/),€2 + i /D -
where
2
§2 = At v ()2
According to (1.172) the neutron demnsity from an oscillating source is pro-
pagated as a damped wave; the velocity v, of the wave is
= 2 ; (1.173)
Voo = K]
w - I
i P -M |
its wave length 'éw is
4 =L oy 2 (1.174)
w @ 2 2 *
p - X

and its attenuation distance o, which is the distance over which its intensity

falls by a factor e, is

= ————— (1'175)
; )(2 +P2
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The propagation velocity depends on the frequency, becoming larger as

the frequency increases. Thus the medium in which the neutron waves travel
is dispersive. The amplitude and the wave length of the wave fall off with -
increasing e (cf. Eq. 1.172).

In the extreme cases, /D >>M2 and <o/D 44}{2, the formulas for velocity,

etc., become quite simple. We tabulate them below:

@/D > M2 /D & WP B
/)l 2 374 1 w 2
vy A2 /(1 - HEfw) . “"8(5325)
2
2D (42 AD/ev )| 1 + % _“’__>
Ly ’ o - M2 /e 8 (D)(Q
2
o //2(1)/»)/(1 + Y°D/ew) )i( 1 - %(;“;—(-g) .

The complete analogy between the propagation of neutron waves and the
propagation of heat waves is evident from the foregoing discussion. The analogy -
was first pointed out by E. P. Wigner who proposed that such basic constants
as the thermal diffusion length, 1/{ , and diffusion constant, D, could be
determined by measuring the wave length and attenuation constant of neutron
waves in a weakly abgorbing medium. Such experiments would be completely
enalogous to the famous Angstr;m method for measuring thermal conductivity.

With the high neutron intensities available from a chain reacting pile, such

experiments should now be feasible.

23
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‘ We list below representative values of v, Iw, and a for thermal
" neutrons in graphite (D, = 0.9 cm, v = 2.2 x 109 cm/sec, )€ = .02 an'l) 1
2
7 @ = 10 sec ; & = 1000 sect X
.9 L
. v, 7.9 x 107 cm/sec 2.1 x 10" cm/sec /,‘[\
z : fw 5.0 x 103 cm 132 cm gb
o _ 53‘«
A a 50cm 19 cm. / M"
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9/ .
Drawing # 11265 B .

FIG. |-

MAXWELLIAN NEUTRONS DIFFUSING IN A URANIUM SLAB
(TOTAL FLUX & FLUX FOR AVERAGE VELOCITY)
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- CHAPTER II

SECOND ORDER DIFFUSION THECRY

The diffusion theory described in the previous chapter is called "first-
order” diffusion theory since it is based on the assumption that the angular
distribution of the neutrom flux could be represented adequately by the simplest
possible coﬁbimtian of spherical harmonics, namely Po(u) and P;(u). Under con-
ditions where this assumption is valid -- e.g., in weakly absorbing media far
from sources or boundaries -- it was seen that Fick's lLaw was valid and the
diffusion process could be represented adequately by a second-order differ-
éntial equation.

A very natural extension of first-order diffusion theory is obtained by

- cutting off the series in spherical harmonics which represents the distribu-
tion not at the first two terms, as in first-order theory, but at a higher
number of terms. The coefficients in the expansion are then determined so
that the Boltzmann equation is satisfied approximately by the assumed distri—v
bution. Such "second-order" diffusion theory would be expected to predict
neutron distributions which are more accurate than those of simple diffusion
theory, the neutron distribution approaching more and more closely the exact
disgtribution as more terms are kept. ‘

The method of "second-order" diffusion theory (also called the spherical
harmonics method) was first suggested by Jeans in comnection with certain prob-
lenms of transfer of radiation in stars. It was prdposed and used on the Plu-

tonium Project essentially independently by both the Chicago and Montreal groups;

681 906
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its great power as a computational technique was recognized only after the system- )

atic work of Placzek and his co-workers in Montreal.

The main features of the spherical harmonics method can be illustrated by

considering the one-dimensional, monoenergetic transport equation with isotropic .o
scattering: 1
_udP(x,u) 4 NoF(x,u) = Vs /F(XQu)d n+ S(x,u) (2.1) -
dx 2 - -
-1

We expand the source distribution amnd the neutron angular distribution in

Legendre polynomials:

stou) = 3 2L (05 ) (2.2)
F(x,u) = 2, & ;1 E ()5 () (2.3)

where, as usual, 1 1 "
§ (x) =/ 8(x,u) B (u)du, F, =fF(x,u) Ry (u)an (2.4)

- -1 -
The coefficients %are known, since the source distribution S(x,u) is known;

on the other hand, the coefficients F} are to be determined so that (2.3) satis- -

fies the Boltzmann equation. We now substitute (2.3) and (2.2) into (2.1):

i
Y 2rlug g ()T ney ey, Moo [5 850y (py(uan

(2.5)

*Eg%-l 8 (x) B, (w
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I
‘ ) wimre ! denotes %x . We multiply (2.5) by L) (/u) and integrate over p. Then,
) upon making use of the identities (Jghnke-Emde , Pe 114),
1 ~ 1 1
v ey e B &: (P B (plapt ﬁ%f By (P i
Py -1 - =1
= . 2 -
T (2+1) 20+ 1)+1 ir L= P2
(2.6)
» -
'29+1‘z(p-21)+‘1' i f=9-1
=0 if 4F P+1 or P -1
- and |
. 1 1
‘ XPS'(;u)d/u =5-‘-,3-ﬁ, g B (p) B (p)ap =0, V#L (2.7)
- =1 =1
we obtain the followings
i 1 |
24 = 1 s
{ Ry iy 5 (ep =B o Pom (2.8)
1
No- f 13 (P)ZQA{.;L } F (p)ap = FoFy (2.9)
-1

1 1
Nog '
TI (R dﬂ'f Sy gy, 2P0 (@)
-1 -l |

‘ | =0 u))#o

G4 98
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[ nipsabes s s mapesy
-1

The Boltzmann equation thus reduces to the following infinite set of linear ~

differential equationss -

P41 ! B ' }
951 D1t oI Bpat Y =% %o &+ 8y (2.12)

t
Fy+ BoF, = Nog Fo+ S, (2.13)

[ '
F, + Ne'F, + % F, =8

w i

3! 2p -
5F -I'NG‘F2+5F1 82

£F, + No'FB-t-%Fé = 8,

The essence of the spherical harmonics method is to cut equations (2.13) -
off at a finite number and to solve the remaining equations for FT)(X)’ The
larger the number of equations kept, the more accurate is the resulting distri-
bution; however, the effort required to solve the equations (2.13) increases
rapidly as the number of terms goes up.

The great power and versatility of the spherical harmonics method lies in
the fact that by means of it an integro-differential equation is replaced by a
set of ordinary differential equations. This reduction is possible even if the

scattering is non-isotropic or if the cross sections are functions of position.




b

AW, ]

Hence, in principle, by the spherical harmonics method it is possible to solve
any energy independent transport problem to any required degree of accuracy.
Solution of the linear equatjons

Because there is a source of neutrons, equs-ions (2.13) are non-homogeneous.
The general solution is therefore obtained by adding to any narticular solution of

the inhomogeneous equations, the general solutions of the homogeneous set,
F. + No- F_ =
1+ Nog F =0

2 o 1

u
o

(2.14)

gF;.pNo*Fz-i-%Fi =0

e

"
o

4F 4 NooF, 4+ 3 F.

The infinite set (2.14) will be solved by successive approximations,
The +-th approximation corresponds to the assumption that the coefficieats
of all By ( ,1) higher than the 7)-th vanish, and will therefore be referred to
as the %) approximation,

Suppose that the successive approximations are begun with the Ii approximation.
(The P, approximation, F, = constant, ) £ 0 leads only to the trivial
5 r000
golution F, & 0.) Then Fy.3,,.. %0, and the equations (2.14) reduce to

'
F1+NO:F°=0

1o (2.15)
NO"FI‘P -3-17‘0 =0



i.e.,

. | i

1 (2.16)

%F;-lo'al‘o=0

-

which is just the first order diffusion equation in an absorbing medium whose
1/2
1
ion length is f-— e .
diffusion 1 8 ( o lf‘o’a)

The next approximation might be taken to Include Py terms but no P3 b
’ ,0‘0
terms. The P, approximation is

F] + NoFp = 0 (2.17)

2 pe 1

N0F2 +.§_Fi=o

vhich, upon elimination of F; and Fp leads to the second order differemtial

equation

1 k g
3% (2 2)m - Ho, 7, -0 (2.18)

This again has the same form as the first order diffusion equation; howevor,
the reciprocal diffusion length is given this time by
2  3No Ko,
= . (2‘19)
A 1+ -!5; oa/o

If 0y/c is small, this can be writtem

. |
W =~ W No, (1- i;. 0a/a)

. £
L, iR
O
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Qs
. which, on comparison with (1.71b) is seem to be a closer approximation to the

asymptotic valus for M2 than is (2.16). Tms the P, approximation represents

- an improvement over the P, approximatiom; however, since both P, and P, approxi-

S
-

} . mations lead to second order equatioms for F,, the solutions for F, are in both
cases Just the asymptotic solution with o2 given by 3NoNog or 3Nofo,/(1+ _‘5’. ‘_;g )
. Trespectively. In this semse the Pé approximation is no more gemeral than the
. P, approximation.

The P3 approximation leads to a fourth oxder squation. F, in this approxi-
mation therefore involves, in addition to an asymptotic solution, anather solution
:llllig’e:;ﬁien presently, is nom-agymptotic. The P} approximation again leads to
a fourth order equation and the::ﬁfore is no more gemeral than the P3 epproximation.

. - More gemerally, the mmber of non-agymptotic solutions remains unchanged in
‘ going from the P,y to the Ponsp aPProximations; i.e., the successive approximation
proceede in gteps of two spherical harmomices. The approximation sclleme can there-
- fore proceed according to either of two sequemcos, the evem approximations, Pl,P3,P5“
_or the odd approximations Py, Py, Pg eee.

The next approximation, after Pj, ig P3; i.e., = 0.

o,1,2,3% 0 Fy 5., F
The equation for F, in this case is of the fouwrth order; however, it is more con-

venient to solve directly the original set of b first order equations (2.14).

Ve set
F) (x) = % Ay, exdx (2.21)
. and substitute imbo (2.14). The resulting lineer algehwale equations for each
- A?J are
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Hon Aoy + My Ay =0 . ‘

)Y 4
?‘IAOJ*’“‘la*%*‘J“?J =0
(2.22)

.52.),£3A1‘1+K0A23+%){4A33 =0
%‘){JAQJ+MA3J =0 .

The consistemnsy eondition for this seot is that the determinant of the coefficients
vanishes. This leads to the following equation for )(J:

of vhich the four roots are

. 0

M, =+ 84355, (1 - % i (2.24) .
. 1 2% )

Xe =+34V35 Ne (1 +5 3") ° (2.25

The neutron distribution is therefore

v aa, oz, -ml\x U EE L

01 A°3 Ob' (2‘26)

where the Aoj are arbitrary. The expressions for the other ]!‘.') are easily
found from the equations (2.22). Thus
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x oo
e (Rt L Y -
| IETL AW BV
o (5 28 ) (P ).
s, I::;) (Ammgx_M tds)
@ oo ooy o et i e i X,

is of the order of the reciproca.l.of the total mean free path. Consequemtly

"D € e , and therefore the expamential in - || fa11s otr srower
-'Mllx
1

_than the exponential in -l)-eg . In this sense the solution e 8

. - )—(e' x
asymptotic while the solution e ' is non-asymptotic.
The asymptotic solution has already beem encoumtered as the exact solution
of the transport equation far from sources or boundaries, provided ¢ 1 18 glven by

- -1 A
= N tanh y
Ml %80 Yo (1.71b)

. -~ The expression (2.24) for )-(1 is of course an approximation to the solution
of (1.71b) when the absorption is weak.
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Close to sources or boundaries there are excited the nom-agymptotic solutions .
e'lu?lx. These fall off roughly as the meen free path, and are therefore ) .
negligible a few mean free paths away fram the boundary. ' - -
As the order of the spherical barmonics approximation increases, the number LI
of .)-LJ, and therefore the mmber of nom-asymptotic solutiomns, increases. The
values of )«QJ for the first few approximations on the assumption oy/0 < 1, are
gliven below:

Even approximations:

Py
M, =+ N300,
3
My =205, (1 -2 op/o)
u2=_t%ﬁ5_ No (1+.§.o'a/a) z
P5
Ry =2 9935 (-2 a9 (2.28)
Ho = + 1.225 Fo(1 + .1123 0y/0)
H3 = + 3.203 No(1 + 2877 0g/0)
P7

R, = + B35, (1-%@,/0)

R, =+ 1.1032 Ro(1l + 0448 ga/a)

oy = + 1,592 Ho(1 + 1400 g,/c)

Ky = + L.458 No(1 + .2153 0,/0)

131
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; ‘ 0dd approximations:
- P,

| ) N V3¢a
] X =t = (2.29)
1+ E 0a/o
A 5
Py
) H =t ¥4/305, (1 - % c,,/cb
W, =+ ‘152'3 No(1l + .201;2 a,/o)
Fe
){1 = + N /300, (1 - % ag/a)
H, = + 1.106(1 + .0685 o,/0) No
‘ A3 =+ 1.9825 (1 + .1994 o,/c) No
- The angular distribution in, say, the P3 approximation is
- F(x,u) = -"21- Fo(x) + -231?1(:) Py(n) + g Fo(x) Py(m) + % F3(x) P3(u) | (2.30)
where Fo,l,2,3 are given by (2.26) and (2.27). The total neutron flux is,
according to (2.26),
){Jx
F (x) = %AOJ e (2.31)
Now from the neutron flux it is supposedly possible to determine the angular
- distribution by the "last collision” techniqus; this leads to Eq. (2.32) :
No
' N - ={x-x') _ |
. F(x,u) = —8°2 ( F(x')e * dax' u> o (2.32)
. 2 _° L ‘
No_ - B9y xt)
‘ =—-59§Fo(x')° H ax' o
2 H
) o ST K
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which, upon substituting (2.31) boecnal(for n20) '
X.Jx x-x') -
F(x,n) = 2:° ZAQ‘ K ax' (2.33)

Formally, the integrations can be performed yielding

B
F(x,u) = --'-"2 S ye (2.34)
J u)( + No

The contribution to the engular distribution from the asymptotic solution in

case d,/0K 1 is

-yl x

2 (o - um - /a)]

which has no singularity. However, the non-asymptotic solutions give angular

distributions which, according to (2.34), are singular at'p = - Na/}(d, i.e.,

at u = —4’% (___2-_2_3:!_) in Py approximations. In other words, the angular
o

t-5
distribution computed from a P3 or higher approximation neutron distribution -
according to the last collision method is singular. This of course is a reflectiom
on the approximate nature of the sphe:_rical harmonices solution. Since the spherical
harmonics distribution does not really satisfy Boltzmamm's equation, there is no
Justification for computing the angular distribution from the space distribution
by the last collision method which, after all, is a consequesnce of the Boltzmann
equation. It is therefore consistemt to use the finite expansion in spherical - '_
harmonics (2.3) for the angular distribution, but it is incorrect to express the

angular distribution by (2.34), at least near u = - ..3{2 .
d

Lot
Sy Lo
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, . Exsmples of Problems Solved by the Spherical Harmonics Method

- In this section we solve a number of standard diffusion problems in second
order approximation. The calculations are straightforward applicatioms of the
\ general thoory described in the previous section.

1) Neutron distribution from a unit planeisotropic source at x = 0 in an

- infinite medium.

This problem was solved rigorously in Chapter I; it will be instructive to
- compare this rigorous soclution with the spherical harmonics solutiom.

The Beltzmann equatiom in thig case is

1
No
u gg—:&‘l + No F(x,u) = —53'2 g F(x,u) ap + % 8(x). (2.35)
-1

- The corresponding linear equations for the componemts of the angular distribution are

_‘ Fi'+ ]aaFO = 8(x)

—23-ré + No¥y + 5‘3- Fl =0 (2.36)
- §r§+lo!'2+%l‘i-0
L .
RN +mnr3+f;!r2=o
Inpl approximation, .
lgn _g ’
35 ¥o - FouFo + 8(x) = 0 (2.37)
o t- the solution of which is Il '
A - b 4
_ P oahe a (2.38)



Jo5
vhere )(,21=3ldea. To determine 4;, wo equate the total absorption rate to
o)

the total production rate:

1=2£l¢aro(x)dxs2_%:tll, | W
Koy (2.39)
Tl | .
Tous VIREY .
p = Yo 7 (2.80)

is the required distribution. In terms of the albedo, 8, which according to (1.113)

is

!-'--—j——% .
81{3__&_, -~

<l (2.51) .
- Xy .
=2 R :

o 1-8

In ordexr to solve this problem in P3 approximation, we first solve the problem H
in which the source, orstrangkhSneutm/mE/aee., extends from -b to +b; we -
then pass to the limit in which b approachss zero but 25b remains finite (and equal
to unity). We demote quantities in the source region by superscript I, in the outer
region by superseript II. In the source region the weutron distrihtrbim gatifies
(2.36) with 8(x) replaced by S; outaide +b, S = 0. The solutions of (2.36) with

5(x) replaced by S are, in the sourse region

I -
Fg(x) ‘ﬁ%;‘Al cosh M x - Ay cosh K x L
I NG | Nd ‘w ‘ e r
Fi(x) = 4y T“ s ¢, x +A, 2 sinh x (2.42)

11 e Klg 12

cwt do...'...
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i No Nﬂa 1 - No ¥
.Fafx) = 4 (— g ){il + 5) cosh ) S A, (- % __‘f_)_(;& + %) cosh ){lzx

e =A1(2,;__-3_ et ) sm!xu, w‘,(z,m_ 3 };ia),ml){mxl

Outside the source regim,

| F:I(x) _ Ble—)(n(lxl b B 12("! -b)
_ No, -Ai.(lx] -p) No, - Izl -» '
F;[_I(x) = Bl —)Z-ﬁ e 1t + By —R‘t:_a- e K12( x ) (2.43)
, Nop No -W,,(1x) v No, N Iz| -b
; M P

T }e x' -b No - x| v
F3(x)=31<2!; T 35 Ay 1l ) éﬂfi_% ;\fm)e&(l | -v)

. Im these equatiomns,

=NV3o‘c (--——)
1 29
393 %o (“53‘&)

At the interfaces +b, the neutron angular distribution is continuous. The .

(2.44)

_ four constants, Ay, Ay, By and By, are therefore to be determined from the linear
_equa.tions

- Fg(ib) N FgI(ib)’ F;:.(-"-'b) = FiI(ib): Fé(."_'b) = F21(+'b), F3(+b) =P I(i.'b). (2.45)

.-
i
‘ T 110
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' In the limit of emall b (cosh b <1, sinh J8b —»}€b), these linsar equations ave .

! + B +h + by " ¥, ]
lca Haa

T]J_Bl ?;2-32 -bla&Al -hlo‘aAz =0

(2.46)
3lzcac ) ¥Po,0 o0 N2o0 i
__]_.. + 3 a -!'.32 + 3 a_1l1 + 3.___29'--1 Ap =0
2@1 4 ke 2 xiz ) 2 )(il 2] M t (2 ez, 2 ‘

We ghall be interested primarily in the asymptotic neutron demsity, Foasy( x),

far from the source. This is given by -

I "“11('” -b)

Foagy(x) & By (2.47)

the )«(12 solution falling off faster than this because A 12 > ){ll. The
computation of B, from the linear equations (2.46) is straightforward but 1engthy}

the result is .

- Sb -
B, = _)_.(!‘_1.‘ 1 ue P
1 v a— ?» (20 )
oy 3N2g0g 1) / 3200, ) . N
i} . B )
K3y 1, -
If we subgtitute the expressicms (2.hk) for }(11 and )(12 in the denominator ‘

of (2.48) there results, correct to terms of order da/c, -

Lo 11l

Pl I
By
Q‘,« EN



—
o
OQ‘
]
—
L]
fat

| u
31=Eb-;1—1<1-i."£ . (2.49)

The asymptotic neutron density from a wnit isotropic plane source is found from

(2.49) and (2.47) by putting 1im Sb = Z; hence
0

)'Qll 4o - )Qulxl ,
v Rugam), .
Og.s; 2Ng 5 G (2.50)
provided oa/c is small.
Comparing the P3 approximation for FOMy with the P; approximation,
\_./ ’
we see that the P3 approximation and the Py approximation differ in two respects:

a) The reciprocal diffusion length )R, 18 somewhat smaller than )(ol.
- J b) The source strength in P3 approximation is reduced by the factor
‘ (1 - 4/5 05/0). This is exactly the "initial absorption” correction which was
) found in the rigorous solution, Chap. I, (Eq. 1.26, -7,-8).

The equations (2.46) can also be solved for B

09 the result being, in the

limit b0,

B, = }012 1 (2.51)

B3R
}(12 Xll

Hence the total neutrom flux from a wmit souree in P3 approximation is

W. -)’(ll\xl
Fofx) = e EN x Ty e o (2.52)
R 1l - )(2 -1 ._):é?; -1
- 11
+ -)-l:-l-g 1 e~){12|x'

e

- 2Fa, 2, A '
® G )CE

g 112

A
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The exact distribution wus found in Chap. I to be

o
22 - u?2 _ -(1 + n)Nox
Fo(x) = Nt'( 02 5 e x'x' + ﬂzdz (l +',)° dg é
B AN -X 0af. 9 [2!0(1 +7)) - losln(l + %‘-)] +1(21!208
(2.53)

wvhere M = Kll and x> O.
In Figure (2.I) the exact,P; and P3 distributions are compared.

2) Extrapolation distance in a non-absorbing isotropically scattering medium. -

This problem can be restated as the determination of the neutron distribution
in a semi-infinite non-absorbting medium, close to the 'bolmdary; it is usually
called Milne's problem. In P; approximation the extrapolation distance was ‘
found to be

A = extrapolation distance = _3%6 9

while the exact extrapolation distance can be shown to be

A - -JLOUN609 *
No

It will be instructive to see how successive spherical harmonics approximations B
give progressively better values for the extrapolation distance.

The plane Boltzmann equation in a non-absorbing medium is

1
M E_l";é_:_sg)_ + NoF(x,u) = g—g- K F(x,u) au . (2.54)
-1

The neutron distribution in the semi-infinite medium x > 0 must satisfy the

boundary condition

F(Osn) 2 0 Oguel (2.55) -

* @. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947)




. » Actually, since the inward angular distribution must vanish over a continucus
“range while the spherical harmonics approximation involves only a finite mmber

_ of arbitrary constants, it will be impossible to satisfy (2.55) rigorously.

The harmonics equations equivalent to (2.5%) are

+HoFp + £F, =0 (2.56)

|
) =

Qi+ Nk
w.

+NOF3+$-Fé=0

O
bf
N =

+Ndl?h+g.1?,:=0

. 2 &4 o e 6 © e © o

In P, approximation, the solution of (2.56) is

Fo = Aox + By
- 1 1_"Ao
F1° 3 Fo = Mo

F(x,n) =% [on + By - .;z_‘f] .

To determine the ratio A,/Bp, it is customary to require, as a simple approxi-
mation to the much more stringent (2.55), that the net inward flow at x = O,
-7 ,j_._(O), vanish. Now

- 3,(0) = s n P(O,n) dn
0

Bo o) o, Gor 11
2 3No

el
%
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/1/ .
or
2o _ HMa . f ‘
Bo 2 ° .
Thus -
Fo(x) = Aj(x + 3_3.5) (2.57)

which extrapolates to zero at x = -~ 9.'%%.6:;'. .

In Pg approximation, if we normalize so that F; = - 1, we find -

-R
¥, = 3NOx + By + Cqe 12

F,=-1 -
! 3Ry (2.58)
1'2 =/ - -2- Cle -
N -’elex
F3 L] 62 T;E Cl e

| 1
where }{12 =»-3- 35 No. At the boundary, x = 0,

R(o,) = 3 (3, + €3) - 3 P - 2 Coral) - 435 cypy(w) (2.5%9)

In order to determine the camstants By and C; it is necessary to impose
conditions on F(O,u) which, wkhile not idemtical with the rigorous (2.55), are
at least consistent with it. Ore such condition was used in P; approximstionm,

namely
1l

{2,000 20 as = o (2.60)
0

this condition insures no net inward flow at x = 0, although it allows inward
currents at certain angles if they are balanced by outward currents at other -
angles.

A further comdition, suggested by Marshak, is that the next odd "moment"
vanish, i.e.,

N !!,5 -
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1l
{ 730 2o a0 = 0 (2.61)
0

This condition is consistent with the requirement

F(O,p) = 0 0Lpll (2.55)

but of course it does not imply (2.55).
The conditions (2.60) and (2.61) lead to the pair of equatioms

.375001+Bl=2
6.8802014'3180

C, = - .307h, B, = 2.1153. (2.62)

The total flux distribution, according to (2.62) and (2.58), is therefore

- 435 /3 Fox '
Fo(x) = 3Nox + 2.1153 - 0.307h o 135 / (2.63)
and the angular distribution at x = 0 is
F(O,1) = 0.9039 - 1.5 Py(m) + 0.3843 Py(n) + 0.B5H7 Py(p) . (2.64)

The extrapolation distance is the reciprocal slope of the asymptotic part of

F,(x). According to {2.63) this

£ =253 _ 0,705 .
38o No

The method outlined here is readily extended to higher approximations, the

boundary conditioms at the VP-th stage being the vanishing of the odd momemts,
1
S Py(n) ¥(0yu) au = o. J = 1,3,5.....7
0

6L 118
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Thus in P5 approximation, it is found that

-1.225N0ox -3.2030N0ox

Fo(x) = Wox + 2.1246 - 0.077T e - 0.2T145 e

¥(0,u) = .8877 - 1.5 Py(u) + .B365 P,(n) + 4322 P3(u) - .07583 By (1)
~ 3641 P5(ll)

and the corresponding extrapolatiom distance is

- 2.1286 .708
£ /e = Ko

The angular distributions F(O,u) and the spatial distributions F,(x)

near the boundary as given in the various approximations are plotted in Fig. (2.2)

and (2.3). The exact distributions as computed by Placzek (Phys. BRev. 72, 556, 1947,

and C. Mark, Phys. Rev. 72, 558, 194T), are given there also for comparison.

The odd moment boundary condition is one of many possible conditioms con-
sistent with, but not implying, the rigorous bmmda:ry condition

F(o,pu) = 0 ogLusl.

Another approximate boundary condition consistent with (2.55) is to require that,
in Pp approximation (¥ odd), F(O,u) vanish at the -1’.2.2 positive roots of
B, 41(#) = 0. This condition is very reasomable on the following grounds: the
rigorous boundary condition (2.55) is equivalent to the requirement

1

[ 720 au = . ' (2.65)
0

¥ow according to Gauss®s approximate integration formula (Hobson: Spherical and

Ellipsoidal Harmonics, p. TT)
1

f (o) & ¥ S BI(0,0) (2.66)

0
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“where p, are the positive rootz of
- By afnd =0
and the H. are uriversal constants whose exact values are unimportant. According
V£o (2.66), a choice of arbitrary comstants in F(O,u) which make F(O,u,.) vanish at
values of . which are roots of P P +1(l’~r) = 0 will imply that the rigorous boumdary
condition is satisfied to the extemt that Gauss's integration formula is exact.
In Py approximation, F{x,u) = %E\ox + By - %gﬁ] , and F(O,u) must vanish at

the positive root of Pp(p) = O. This root lies at p = = . Hence, to determine

Y3
Ao /By we have
| B
F(o AY=1al2-__1 120
’ '1/§) 2 °° /3 Ne ’
Po__a
o ﬁ No
°-
. F(x,u) = .':_‘2 [x + 7’% — - %-5] 5 (2‘_»67)
F(x) = Agfx + —= (2.68)

The extrapolation distance in this approximation is

4 =_1 _ _ 51T
ﬁno NU'

It is remarkable that the very simple angular distributior given by (2.67) at
X = 0, never differs from the exact distribution by more than 7.2%.
In P3 approximation, F(O,pn) must vanish at the positive roots of Ph(u) = 0,

i.e., at 0 = 0.861 and u = 0.340. According to (2.59),

F(O,u) = 2By + C1) - 3 Pa() - 2 CrBp(n) - A Cppa(u);




NS

the requirements ’

F(0,04340) = ¥(0,0.861) = O

give -
By = 2.0848, €3 = - 0.3509.
Thus
- 435/3 Rox
Fo(x) = 3Mox + 2.0848 - 0.3509 e 35/ (2.69)
F(0,u) = 0.8670 - 1.5 Py(n) + 0.4386 Pp(n) + 0.5189 P3(u), (2.70)

-

and the extrapolation distance is

£ - 2.0848 _ 0.695
3No No

VWick's Method

An ingemnious variant of the spherical harmonics method based on the Gauss
integration formmla has been proposed by G. C. Wick (Zeit. fur Physik, 121, 702,

19%3) and has been applied to many astrophysical transport problems by Chan-
drasekhar (Astro. Phys. J. 101, 348, 1945). The idea of Wick's Method is to
approximate the integral in the transport equation (2.1) by Gauss's integration ”
formula. As will be recalled, in Gauss's formula, the interval -1 Zu &1 is |

divided into ¥ + 1 (# odd) intervals spaced at the zeros of I;) +1( u) = 0. Thus

1 +1
S F(x,n) du‘éé Hy F(x,ny) (2.71)

vhere the universal constants H, and the roots i, have the following values:
= = = 1
Y=1 approximation, H._L’2 = 1, k1,2 + -—; + 577135

)) = 3 approximation, Hl’2 =

!
o
o
0N
\o}
=
-
=:]
w
=
I
e
L
=
-
O
-a
o
i}
+
e
(&)
3
-

V= 5 approximation, H) p = 0.4679, Hy ) = 0.3608, Hy ¢ = 0.1713;

p‘l,2 =+ ‘2386.9 p'3’)+ =+ 006612, " =+ 0.9325 _
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‘ " If Gausa'’s approximation is subsiituted into the integral equatiom (2.1),
and if the angular distribution is specified at the points By which are the roots

of PP+1(“) = 0, then (2.1) can be replaced, approximately, by the set of equatioms
) Y+1 ( : X
No X,lip) e 2.72
& F(x,u.) + NoF .} = .80 -Z- H, Fx,
pi ax yrll) N (x,ul) __..__2 : |

The solutions of (2.72) are a

linear combination, with arbitrary constants, A, of the form
+1.

Nog, Ap W, x
2

F(x,uy) =

r—— ——— @

r=l No+ X, uy (2.73)

where each )( satisfics the characteristic equation

P+l
' = Lo 1 (2.74)
. If the mmerical values for H, and u, are substituted into {2.7h) and the

resulting algebraic equatiomns are solved, it is found that the roots )lr of
(2.7%) are ideatical with the roots listed in (2.28) for the even approximation
spherical harmonice scheme. Thus {2.73) is idemtical in form with (2.34); i.e. R
" the angular distribution predicted in 7) ~th spproximation by Wiek's Method is
. 1dentical, at the points g, With the angular distribution computed by last col-
lisions from the P.') gpproximstion tobtal flux,

The total flux, F _{x), is fourd frem (2,73) by integrating over u.. Since

: 1
Folx) = gF(X;M) du
=1

and, in this approximation
. | 1 Vi

._ X F(xn) du = &= Bp Fx,u,), 20

-1 o S

AT

[
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| 7 .
we have 1 ‘})+l D41 )’&rx 7)+.1
.Fo(x) = X F(x,p) du, - N@go Z Z Hi. Ar e _ Z % . }erx B ‘
=1 r=l (No+ M_ uy) r=1 .
- : (2.75)

-

by virtue of (2.7h4). Since the )'(r are the same as were found in the spherical
hanﬁonics approximation methods, (2.75), is identical in form with the flux distri-
bution (2.21).

Equation (2.73) defines the angular distribution only for value of u; which
are roots of P (ui) = 0. In Wick's Method it is assumed that the actual angular

Y +1
distribution, in directions for which

uy # - A5
.xr
is the analytic continuation of (2.73), namely
P+l -
Nc Z Ar Hex

F(x,u) = 22 _—x e . (2.76)
9 2 r=1 Ng + )4%0 I ‘.

Evidently at p, = - N2 the distribution is sin .
i Kr

The constants Ay are determined from the boundary conditions. For example, in
the extrapolation distance problem;, the boundary condition is
F(O,uy) =0 Oty £1

and this set of r—;-}- equations is sufficient to determine, except for a normal-
e . Y+l
ization factor’ (_2_;_1_ + 1) of the constants Ar’ the remaining (......fé... - 1) Ay
are zero because only the decreasing exponential non-asymptotic solutions are phys-
icaelly significent.
As an example of the usefulness of Wick’s Method, we solve the extrapolation o,

distance problem. Since Y41 _ -

F(Osu) = Mao 7 A )

2 =l N+ H.ow ’ .

gy r "21 =
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“the constants A, are to be determined so that
A

- : 7)+1
r

- =o 1‘1,2’0000 7)+1 (2‘77)
. r=1 No+ >€rni

it being umderstood that the A, corresponding to the non-asymptotic, positive
)(r are zero. The set (2.77) are linear equations and can be solved in a straight-
Fforward mammer. ‘
If there is no capture in the medium, the angular distribution F(x,un) contains
» a term linear in p as well as terms of the form (2.76). For, in this case, the

equations (2.72) are

V1
ny % F(x,n;) + B F(x,uy) = 5 ; Hy F(X,1p).

_,We put

‘ F(x,n) = A + k + cu ; (2.78)
h according to Gauss's approximation formmla, which is exact if F(x,u) is a poly-

nomial in p of degree 29 -1

Y+l 1
z nr"r’S wdn =0,
r=1

-1

Hemce, on substituting (2.78) into (2.72) we £ind that (2.78) satisfies the

— “Boltzmann equation provided

..— c=-

B o
o,

‘ | 6ol 122
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In a non-capturing medium, therefore, the complete solution of (2.72) is

» = - -L_ Eg Ar e 2-
F(x,u) = A + B( N"so) + 28 &= o T (2.79) ‘

In V=1 approximation, the ratio B/A is determined by requiring F(O,#) = 0.
3
This is exactly the condition which led to the P, approximation summarized in
(2.67) and (2.68). -

In 1) = 3 approximation, A3 and B/A are to be determined from the requirements

F(0,.861) = F(0,.340) = 0.

This leads to
-1.9720 Nox
F(x;1) = A |1+ 1.4409 (Nox - u) - 216808 e , (2.80)
l-1.9720
-694 :
The value Wo for the extrapolation distance is very mear the value computed in
P3 approximation with vanishing odd moments. "
In ~)= 5 approximation .
-1.2252 Nox -3.2030 Nox .
Mx,u) = A [1 + 142065 (Nox - p) - ~035% e _ .14387 e
1l-1.2252 u 1l1-3.2030
(2.81)- °

here the extrapolation distance is -ﬂ—g? .

In Teble I the angular distributions for F(O,u) approximationsare compared
with the exact value. It will be noted that these give better values for F(O,u)
than do the approximations with vanishing odd moments.

In Fig. 2-IV, Fo(x)b in Py, P3 and P5 approximations are compared with the

‘emct value.
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Table 2-1

¥(0,u) Arproximatioms ({Wick's Method)

v 1} Exact P, Approx. P3 Approx. P5 Approx. (Ps - Exact)
Y 5000 <5359 5111 5057 -0057
-.1 6237 6287 6167 6189 =-.0048
-.2 .T252 .T215 JTLTh -T199 -.0053
-.3 .8213 8144 8151 .8180 -.0033
- 9146 .9072 .9108 .9133 -.0013
- 1.0064 1.0000 1.0050 1.0068 +.000k
-.6 |1.00m1 1.0928 1.0983 1.0991 +,0020
-. 1.1870 1.1856 1.1907 1.1905 +,0035
-.8 | 1.2764 1.2785 1.2826 1.2813 +.0049
- 1.3653 1.3713 1.3739 1.3716 +.0063
=1.0 | 1.%539 1.4641 1.4649 1.4616 +.007T

3) Neutron distribution nsar a dblack sphere.*
# A black sphere of radius a is surrounded by & non-absorbing, isotropically
scattering infinite homogeneous medium. Because of the spherical symmetry the
monoenergetic neutron flux will depend only upon r, the distance fram the center
of the .black sphere and p, the cosine of the angle between the direction of the
neutron's’ velocity and the radius vector.

Thus if Q is a unit wvector im the direction of the neutron’s welocity, the

non-absorbing, sourceless Boltzmann transport equation becomes

F(r,n) dp (2.82)

1
0 ° VF(r;un) + NeF(r,p) = ;jég 3
-1

* R. E. Marshak and W. Sgidel, M'-%9; and G. N. Plass, “P-2453G.

. ¢ £
o F R4 <
i
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spherical coordinates and Eq. (2.82) will depend on r and © but not ¥ . ) .

N
) _cosoF-sino0o

GF(rp) 4 138 5 _OF(r,p) £, 13dr %)
V F(zr,u) 7 £+r8 [ antt Sl ol 2]
2
(L - UF(rp) = cos 0 F(r,u) sin 83 u _  W(rp) 1-m ar

and Bg. (2.82) becomes

1
" aFg)ﬂ) 1l - - }1 ?l; + NGF(I‘,IJ.) - !22 g F(r’u) du =0 . (2.83)

For convenience let the unit of length equal No. Then Eg. (2.83) becomes
‘ +1

o W)y Lo o) 4 pr -1 g P(ro) du = 0. (2.84)

3 @

Expand F_(r,p) in Legendre polynomials as in Eq.,(2.3),

Hrw) = 5 2L 215 () B(w). (2.85)

Upon substituting (2.85) into (2.84), multiply by P?, (u) and integrating over u,

in addition to the resmlt givem im Eq. (2.12) there will be terms arising from the

second term in Eq. (2.84). In this manipulation, use is made of the idemtity

dty - L(L+ 1 1) (. -p )
a  (2+ V(2 - 1) L+l T A-1

1l

o -
Xl;_l-l 2222132(1.) ér%_fx_u.?.p;)(p) dp
=1

H |-

1
g ﬂ-l;—l B (r) B)(w) bl } dp
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. - . ! [‘;L')) +l)(1)+2) F;)+1( r) - ')‘1)2- 1) Fv-l (r) 133"‘
- -1

1 2 - 7)%2--1}
= Qrza—v)(:)l; ) Fz) +1 r(2 F')-l

- In obtaining the avove Eq. (2.7) was used. The Boltzmann equation thus reduces

to the following infinite set of differemtial equations

? L P (D +2) _ﬂg%-n
2 +1 7’+ 27)+1 -1t r2.2'9+1) 9 a r(2 +1)F7)-1+F7)

= (2.86)
= F, 8,,)
The corresponding harmcnics equations are
2F
. F'+_L=0
) 1 r
2o 31 2 =
) 3F2+3Fc')+rF2+Fl-O (2.87)
3F + 271 4 -2 P, +Fr=0
5°3 51 5r3 5r1 2=
)3 20 6 =
7’Fh+3Fé+";Fh -6 P+ F3=0
In K approximation the solution of Eq (2.87) is
F =32,
- ° T 88)
20
F, =3 ( .
1 5
3 and
i F(r,u) =238 + B _ 3Au (2.89)
. Br '3 o2
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By requiring the first odd moments to vanish for F(a,n), i.e.

- IT-32

, @
X p Fe,u) dp =0 (2.90) .
) }
Eq. (2.89) becomes _
—al- 2 .
F(r,u) = A [Er; + % (1+ %) - 21-2J (2.91) |

When Fy(r,) = 0 we find from Eq. (2.91)

ro =8

1+2_

3a
and the extrapolation distance is a - r,.

& =Ty =

3+2
a

Note that as &a —po0, & - r, —»
in the Pl apprdximtion for the plane case.

In P3 approximation the solution of Eg. (2.87) is

.45 r
Fo=z3A+B-2 3
r r
F, = - A
1 2
- 435 r (2.92)
F2=-§-A—+.C;e 3 l+ 9 +27
5r3 T /35 r 352
_ r
F3=‘L8At +-&7 € e -’Bé__é+ 18,20, 8
: T r VBr T 435 r3

.§. which is the extrapolation distance obtained . )

-
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. corresponding terms in e 3 are excluded because of their behavior as r-—500.

By requiring the first two odd moments to vanish, 1i.e., Eq. (2.90) and

1

S P3(un) F(a,u) ap = 0

0

" the constants B and C can be expressed in terms of A:

+.@3.§

C=Aae

-—-A[ﬂ“% ) 262 )
- o 8B

. LA ), 18 /. 175) ,,27(“ 3 \,_8
. 32435) AFBe &44/35] a2 324/35/ TAH o3

the extrapolation distance a - T, becomes

(bChd
8 -1, = 2& ﬁﬂ- 73
1+ ) E( ‘)‘a. 78.)

and as a—»co0 ; & - Ty —F .T051,

By using an alternate boundary comdition vhich requires that, in the PT) approxi-~
mations, F{a,u) vanish at the i%l positive roots of ?ﬂ-c-l(") = 0, BEg. (2.89) |

- - 1 -
F(r,u) A[Ba}'-""é 4g+3) .;B'_a]

and the extrapolation distance is

® i
) A3+ 3

becomes
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By applying these conditions to Eq. (2.92) B and C can be solved for in terms . .
of A thusly: -

c=sAﬁe+_@_E )

B=a |3, 1.0199% _ 1.95972 _ 7. hll];lh ( 06893 , 2&2 10.65516 k. 76!»31) .

a a a3 a a3 ah ‘

where

= 1.55555 (1 + .%3683a + ,1212332)
1 + 2.40886a + 2.417008% + 1.07753a3

the extrapolation distance is obtained from

a-r,= a IBBAA- .

-

In Teble 2-II the extrapolation distances are given for various black sphere

radii in both P, and P3 approximations. For the same approximatiomns the total .
neutron distribution is givem for & black sphere of unit radius (a = No) in

Fig. 2-V. . B
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Table 2-I1

Extrapolation Distances as a Function of Black Sphere Radius

a-ro ‘

0dd Moments Gauss Roots
- a Py Py Py Py
) .1 . 08696 .08837 .08524 .08795
o2 .1539 -1609 1485 1597
- .5 |.2857 .3228 2680 3184
1 5000 4801 .3660 AT07
2 5000 .6081 4480 5937
3 -5556 .6526 A48h2 .6370
5 .5882 .6823 5176 6668
) 0o .6667 | .T051 STTh 6940

g .

The Time-Dependent Boltzmamm Byuatiom

The time-dependent Boltzmamm asquation with plaxe symmetry is

, 1
w B(xuet) & §ow(x,u,t) = B080 | P(xu,t)dn - 1 F(xp,t) (2.93)
ox 2 v ot
-1
In P, approximation,
F(x,u,t) = % Fo(x,t) + g Py (x,t) u s (2.9%)
- _pai/"
., we substitute (2.94%) into (2.93) and obtain the followinngf equations:
aFq(x,t) _
, ""‘]"‘{fz—"— + No Fo(xst) = Nogo ro(x}t) -1 M (2.95) comt'd..se.
- ox : v 3

o
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127 ‘
1 Fo(x,t 1 dF(x,t )
ney(x,t) + 3 Halmt) 13(ne) (2.55 c@t'.

By differentiating the first of these equatioms with respect to time and the

second with respect to space, and subtracting, we obtain the following secomd order

equation for F c>(x,i;) 3

v a%o(x,t) 0, aFO(x,t) 1 aaFo(x,t) | )
- NopWFo(x,t) = (1 + -2) (2.96)
Mo 5° aol%s ( g 8t " Nov  3t2 :

It is a remarkable fact, which is not usually appreciated, that the correct
first order approximation to the time-depemdent Boltzmamm equation is mot the simple

diffusion equation (which is first order in t), but is the telegrapher's equatiom

which is second order in both t and x. The general solution of the telegrapher's )
equation shows the phemomenon of retardation -- i.e., the solution has a well-defined

wave front, in addition to a residual disturbance which persists, at all points .*
traversed by the wave front. The telegrapher's equation thus lies betwaem the
simple wave equation whose solutions have a wave front but no residual disturbance,
and the diffusion equation whose solutions have a residual disturbance but no wave
front. That a solution of the time dependent Boltzmann equation must have a wave
front -~ i.e.; a region beyond which there are no neutrons -- is obvious physicaily,
since a neutron travelling with welocity v requires at least a "retardation time",
x/v to reach a distance x from a source. Beyond the point x there can be no neutrons
until time x/vo As the mean free path of the neutron decreases, the probability of
the neutron reaching any finite distance without a 'colli-ion becomes smaller and -

smaller. Finally in the limit of zero mean free path and zero absorption cross-

section but infinite wvelocity so that the diffusion coefficient L

D =

Wik
<

21 : (2.97)
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and the neutron lifetime, T = 1/No,v are finite, the telegrapher type equatiomn
reduces to the diffusion equation

Fro(x,t) _Po(z,t) _ Wolx,t)

% . (2.98)

- D

It is a well-known property of the solution of the diffusion equation that an
instantaneous source immediately produces a disturbance at all points in space, --
) i.e., there is no retardation in the solutiom.
- Diffusion equatioms vhich arise in mathematical physics -- e.g., the heat
equation -- usually are approximatioms to the Boltzmanm equation in which the mean
free path is assumed vanishingly small but the diffusion coefficient is finite.
-For heat conduction or molecular diffusion the assumption of zero mean free path
is a good approximation and the existence of a retardation time is generally over-
B looked; in neutron diffusion on the other hand the mean free path is usually so
’ large (~ several centimeters) that the existence of the wave front in the time-
dependent diffusion equation cannot be 1gnored.
In order to make these qualitative remarks more exact, we write down the
golution of (2.96) and of (2.98) from an initial distribution which 1s zero outside

the region'x1< X <x,5; 1.e.,

F ({x,0) = F(x) 5, <x4x,
= 0 elsewhere
-?9- (x,0) = 0 everyvhere
™ ‘

" For simplicity, we assume no absorption. Then, for (2.96) the solution is

- _ (cf. Webster, Partial Differential Equations of Mathematical FPhysics [G. E. Stechert,

193], p. 179)

@ ' i

- LI AN I

Lo
(3]
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- Hov o, ) |
Folx,t) = & 3:(x+_._) +;1< .
2.99
x+vt/ 93
[ () G/?u_ #E o) }
=-v5/ 13

I, being the Bessel function of imaginary argument. The first and second terms repre- -
sent waves travelling to the left and right with velocity v/4/3 . Since F(x)

vanishes outside Xj < x £ x5, the neutron flux is strictly zero, at a point x, until
time t =4/3 /v (x - xp), on the right, or t =43 /v (x; - x) on the left. Once

t exceeds either of these times ~- i.e., once the disturbance has reached x, ¥ ()

in the integrand is non-zero and the integral comtributes a "tail" which persists

indefinitely. The neutron flux, at such times, is given by

?(a)<y;£+§1>% /3-(%9& (fgf-(x-a)e) i . '

- Novt

Fo(x,t) = e

For the diffusion equation, the solution is simply -

- ﬂg{x - x'la

(3136 )lr ;

i.e., the neutron flux appears instantaneously at all points in space -~ and persists

x2
Po(x,t) = S F (x

indefinitely ~- there is no retardation and no wave front. _o
The P; approximation time depemdent equation is an improvement over the simple
diffusion equation since the solution does exhibit the phemomemon of retardation --

however, the propagation velocity is only v/4/3 . instead of v. This short-coming ‘

of course arises from the approximete character of the gppumed angular distribition. .

o 133

o
O
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. ' Evidently those meutroms wirich reach the point x first mst have suffered mo

<

.

collisicns -- their angular distribution must be very strongly forward, and could

- really be represented omly by a large mumber of spherical harmonics. It is therefore

not surprising that a Py approximation does not treat the first arrival meutrons
quite correctly.

The fact that the undeflected neutrons have a strongly forward angular distri-
bution and therefore camnot be represented in P; approximation is very important in
the discussion of slowing down of neutrons. In computing the spatial distributiom
of neutrons from a monoemergetic source, the neutrons which have lost little or no
energy are amalogous to the "first arrivals”" in the time dependent problem. The
difficulty of representing the angular distribution of these neutrons makes calcu-
lation of accurate slowing down distributions at large distances from a high emergy

gsource difficult; an asymptotic solution has been givem by Wick.*

¥ G.C.Wick, Phys. Rev. 15, 738, (19%9).

A

Lo
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‘ CHAPTER TII Im-1

SLOWING DOWN OF REUTRORS

> Since the average emergy of a neutrom produced in fission is several Mev,

while the neutrons most effective in producing further fission have only ther-
ml velocities, it is necessary in a slow neutron chain reaction to reduce the
energy of the fission neutrona. This is accomplished by mixing the uranium
with a low atomic weight material, such as graphite. The neutrons suffer
elastic collisions with the light nuclei and lose some energy at each encounter.
In this way their velocity is "moderated" by elastic collisions -- hence the
word "moderator" for the low atcnic woight material.

- - In this chapter we shall study the manner in which neutrons lose their

. energy by elastic collisions, Dur:l.ng the process of slowing down, the neutrons
diffuse away from the point at which they originated. Thus after having lost a
certain amount of energy the neutrons will be distributed in space, in emergy,
and in direction of motion. In order to calculate this distribution, it is

necessary to solve the Boltzmsnn equation in which account is taken of the de-

tails of the energy and momentum balance at each collision. Unfortunately, the
asymptotic solutions for the energy dependent Boltzmenn equation are much harder
to obtain than were the asymptotic solutions for the energy independent eguation.
For this reason we shall be obliged to deal largely with approximate solutions
of the energy depsendent equation.

oo - It has been customary to assume on the Plutonium Project that the scatter-
ing of fission neutrons by moderator nuclei is isotropic in the center of gravity
system, This assumption is valid only for hydrogen., The maximum value of the

‘ ~ isotropic scattering cross section is, on very general grounds, Just huxz, where

- 2 1)5\ is the deBroglie wave length of the neutron in the center of gravity of

ot L 140
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the system neutrontnucleus. In terms of the neutron energy; I,

A= .}-4.2%]; .d&‘j/ﬁx 10" cn., where E is the neutron energy in l(ev-A Hence

the maximum isotropic scattering cross-section 1is (yﬁl)h x (2.54/E) x 10'21* cm®.

A perusal of H. H Goldsmith's and H. I. Ibser's collection of the neutron
cross~gection shows that, among the light elements, only hydrogen has a -
crogs-section which is less than the isotropic maximum at energy below 1.3

Mev. This means that the occurrence of non-isotropic scattering (corresponding
to higher angular momenta) must be & very widespread phenomenon éven at neutron
energies of only about 1 Mev. Under these circumstances it is rather risky to

place too much reliance on any slowing down calculation in which isotropic

gcattering is assumed.
It has also been custamary to ignore any inelastic scattering which may
occur in collisions with moderator nuclei. This is probably a good assumption - -

since the level spacing in light nuclei is so large (-~ 0.1 Mev), that excita-

tion of a nucleus is unlikely by inelastic scattering. However, there is no
real experimental evidence to prove that the ilnelastic scattering in graphite,
e.g., is negligible. The main Justification is that range calculations based

on the assumption of elastic scattering are in fair agreement with experimentally

meagured ranges.

The theory of slowing down which we develop here is applicable only to
neutrons whose energy is well above thermal energy. A neutron which slows
down to thermal energy remains almost in thermal equilibrium with the atoms
of the moderator until it is captured or until it escapes from the boundary
of the system. Thus by the time the neutron reaches thermal energies on the

average it neither loses nor gains cnergy. As the neutron approaches thermal

* See, e.g., H Bethse, Rev. Mod. Phys. 9, 103 (1937), eq. 376a.

»*
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energy the effectivenesa of the moderator in slowing it down tends to become
smaller and smaller; firally at thermal energies its effectiveness is null.
The mammer in which the moderator starts to lose its effectiveness depends
on its molecular state. Thus, if the moderator is crystalline (as, e.g.,
graphite) at low energies the neutron loses energy only by exc_iting lattice
vibrations. Agé.in, if the moderator is a proton bound in a molecule, then,
if the energy of the neutron is small compared to the binding energy of the
molecule, the molecule acts as a whole in an elastic collisioﬁ and thérefore
the loss in energy per collision is less than if the proton were free. At
somewhat higher energies, the neutron can excite molecular vibrations --
such collisions are essentially inelastic.

A éa.lculat,ion of how the moderating power of graphite decreases at
energies close to thermal was made by Metropolis and Teller (CP-387). Their
results were used by P. Morrison (CP-500) to calculate the slowing down dis-

tance in graphite .

The Mechanics of Neutron Collisions

We consider a neutron of velocity v which strikes a moderator nucleus
of mass M, velocity zero, and is scattered elastically through an angle ©
as meagsured in the center of gravity system (Figure 1). The assumption that

the moderator nucleus is at rest is Justified since, except for neutrons close

Moo Y_
M+l M+l
-

Figure 1

b
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to thermal energy, the neutron velocity is mmch larger than the velocity
of thermal agitation of the moderator nucleus. To calculate the slowing .
down of neutrons near thermal energy is very complicated and will not be
attempted here. The center of gravity (c. of g.) of the system neutron+
v
gcatterer travels in the direction of v with a velocity v = —_— .
- ~c.g. M+l
Hence the velocities of neutron and of the scatterer in the c¢. of g. system
M v
are respectively .— v and - — .
M+l —

After the impact the lengths of the velocity vectors of the neutron
and the scatterer in the c. of g. system must be the same as before impact,
and they must still lie along a étraight. line -- otherwise energy and mom-
entum would not be conserved. However, the common line of motion is now .
rotated through the angle 6. We shall denote the cosine of © by n-

" In the laboratory system the velocity after impact is obtained by

’ v

adding vectorially the wvelocity of the c. of g., ﬁ » to the velocity of
the scattered neutron in the c. of g. system. In this manner it is easy
to see (Figure 2) that E, the kinetic energy after impact is related to v

and E', the kinetic energy before impact by the formula

AEERAL

(3.1)




] A0 11I-5

—
It 1s important to note the ratio of final to initial energy depends only

on @, che scattering angle in the c. of g. system. If the scattering is
isotropic in the center of gravity system, then any final energy between
E = E' (for a glancing collision, W= 1) and E=a2E*', where 02 = %\2’
(for a head-on collision, Y) = -1) is equally probable. Furthermore,

the average logarithmic energy loss per collision, ; s defined by

l .
ﬁn%j-dyl
M+ 1+ 2M o2 ‘
! 1 " = .
é- 2o =1/ tn e an =1+ An o? (3.2)
an -1
=
~ ﬁ—% for M > 1.

If the scattering is non-isotropic in the c. of g. system -- that is,
if the probability of a scattering event resulting in an angular deflection
between n and n + dn is some function f(E',q)dV\*, of the initial energy
and the angle of scattering -- then the'average logarithmic energy loss per
collision is

1

;(E-)=-//zn“2+“2”ﬂ £(z',n)ay . (3.3)

( 1+M)2

-

-4

Evidently the average logarithmic energy loss will not be independent of energy
if the scattering probability f£(E! ,\-l ) depends on the initial energy, E'.
The average logarithmic energy loss per collision, { » &8 given by

(3.2) is tabulated in Table I for several elements assuming isotroplc scattering.

¥ Throughout this chapter "f" means the probability of a neutron scattering
event and is therefore not always the same function of its arguments.

¢

nCL 44
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Since the number of collisions suffered per second by neutrons of a givexi
energy is proportional to N“so, where %80 is the total scattering cross-
section, the product Nﬁsof is a measure of the rate at which neutrons of
a given energy will be moderated. It is this product, rather than ; itsels,
which determines the efficiency of a moderator in slowing down neutrons. The
quantity O‘SO§ is called the microscopic slowing down power of tﬁe moderator.
Its value in the energy region of 1 to 10,000 volts for several important
substances is also given in the table. In computing og,§ for this region
it has been assumed that the scattering cross-section is constant throughout
this range.

Table I

Average Logarithmic Energy Loss per Collision, f , and Microscopic
Slowing Down I'ower 0805 in the Energy Region 1 to 10,000 ev

Element | 5 %, f
H 1 19
D .125 2.39
He 425 0.637
Be .206 . 1.26
c .158 _ 0.76
0 .120 0.50
F .101 0.1}1
U .00838 0.068
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“  The Boltzmann Equation for Neutrons Undergoing Elastic Collisions

- In order to write down the Boltzmann equation, including emergy loss
by elastis collision, it is necessary first to determine the number of reutrons
in a vnit volume vhich will be thrown into unit energy and solid angle range
around (E,{l) as a result of elastic scattering in that vclume. Since the
scattering argle in the center of gravity system is uniquely correlated with
- the energy loss according to (3.1), it is appropriate first to compute the
number of neutrons thrown simultaneously into a particular element of solid
angle in the c. of g. system, dw, and solid angle in the laboratory system,
d{l, and then, by the usual formulas for transformation of integrals, to cal-
culats the nﬁmber thrown into an element of energy range and solid angle in
the laboratory system. |
- Let
No(31, )0 = & 5 BEEL g (pmog, (s, e ay (3:1)
£
be the macroscopic differential sca'ttering crogs-gsection for deflection of
& nsutron of initial energy E' into the element of solid angle* de = dY’ dsl}
in the ¢. of g. system. The total number of collisions occurring at r involving

neutrons whose original energy and direction are E' ,Q' s is

//&OS(E',—%) F(_I_'_:E':_-Q_—')d'] d(b = NGBO(E') F(I’E':ﬂ'); (3.5)
¥

gso that the probability, f(E',Q_ )dw, that a given collision will deflect a

neutron into the element of solid angle (measured in the c¢. of g. system)

*Since solid angle elements in both laboratory and c¢. of g. systems will be

used, it is necessary to introduce two different notations to keep them sep-

arate. In the c¢. of g. system, the solid angle element is de = dyl d%; in
- the laboratory system, the solid angle is d{) = dp.odf. ‘

AERNAN A
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an ay¢ 1is /43 , )
8 e0)e0 Nog(Bj@)dan dy (3.6).
NO’SO(E')_

If the scattering is isotropic in the c. of g. system, then Nog(E',w) =

1

Nog (E )
L

azimuthally symmetric, it is permissible to integrate over y‘ ; then the prob-

and £(E', @ ) = EJ;; » & constant. Since, the scattering is always

ability that a neutron will be deflected into an element dq is £(E', Y] )dvl = -
¥
2nf(E', & )dv} .
The cosine of the scattering angle in the laboratory system, which

we denote by puy = L' * N ()* and Q) are the directions of the neutron

velccity before and after impact) is just

1+ MY\
bo(m) = . (3.7)
1 (L+M + 2Mv1)1/2 -
This follows from Figure 2. Moreover, the probability of a particular ‘

direction after collision can depend only on pg = _(__l . _D__' , not on .D__ and
__(l' geparately. Any collision in which the cosine of the c¢. of g. scatter-
ing angle is n will have the cosine of its scattering angle measured in the

laboratory system given by (3.7). Consequently the probability that a scat-

tered neutron of initial energy E' and direction Q' is thrown into an element
dn (measured in the c¢c. of g. system) and simultaneously into an element du,

in the laboratory system is

BB, 1) o) o = 22578 [k, - ol N2 (3.8)

vhere Po("]) is the function (3.7) and & is the Dirac delta function. If
(3.8) is integrated over all directions in the c. of g. system -- that is,

with respect to n from -1 to +1, the result is the probability that a neutron -
1 )

TR, s r -
. e
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is scattered into the element du in the laboratory system:
1
f(E':ﬂo)d#O = d&-lo /f(E', YI) 5[10 - l‘-o('))] d'] . » (3.9)
-1
To evaluate the integral it is neceasary to transform to “o("() as a new

variable. Then

1 Ho(2)

./f(E',rl)ﬁ[go-po(V';]i‘ll= / f[E',"l(l»lo)]5E1°-Po(*])J ‘gl?- du, = f[E'JYI(“o)] g—‘no 5

uo\ 'l)
(3.10)
that is, the probability f(E* ,uo)duo of scattering into the element du,
in the laboratory system is, in terms of the probability f£ EE:' ,Yl(uo)] dy) of
scattering into the element dyl in the ¢. of g. system,
a"l (1o)
T TR
o

As an example of the significance of this result consider the case of iso-

tropic proton scatterirng (M=1). Then by (3.7)
ko (1) =,/—§— (@2, (ko) = 245 - 1, 5 bug 5 (3.12)
and therefore, since £(E',7) = 1/2,
2(E* 1)y = 2nodp s (3.13)

i.e., the scattering In the laboratory system obeys a cosine law if the

scattering in the c¢. of g. system is isotropic.
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The foregoing discussion was given because it illustrated the use of the ) '
& function in transforming scatter.ing probabilities from one variable ()2) to - .
another (p,). Suppose now we wish to calculate the probability f£(E',E,(',))dEa()
that a scatiered neutron originally having energy E' and direction _.Q_.' will be

thrown into dEdg_. This iz related to f(E',)] :Po)d”l LTI the probabilj.ty that .

a neutron with energy E' is scattered into d)l (in the c. of g. system) and

dp, in the laboratory system, by the transformation formula ‘ - -

f(E"E!_-(L'IQ_)d-M_Q. = '2_}_,( f(E':E)Po)dEd#on = -
21_’: f[E','](E',E),po] % aEdy a9, (3.14)

the factor -2%; entering because the scatiering probability is independent of ‘

azimuth.

Now from (3.1)

(10)2 B/B' - (MP41)

n(E',E) = (3.15)
M

so that

o . (aw® ‘

88 aME!
and therefore

, 2
£(E',E,Q1,{))azaf) = ﬁfm@'— f[E',q(E',E)’uo] aea). (3.16)

Substituting for £(E', n,u,) from (3.8) into (3.16) we obtain

2 L
f(E',E,&',_Q._)dEd_az-;—f(E',E,uo)dFd_il. = % r[z',v) (E',E)] 8 p.o-p.o(E',E)] aeal).
(3.17)

For p
LE 5! ‘
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vhere pu (E',E), which is found by substituting for n in (3.1) its value

‘ found in (3.7), is

wo(E',E) = 5 q (m1)(B/ENE - (u-1)(E'/E) ) . (3.18)
. For isotropic scattering f(E',Y]) = , and therefore
2
£(E',E,2,0)amfl = %ﬁ.ﬂ)— 5 [“o—“‘o(E':Eﬂ daedfl . (3.19)

We are finally in a position to calculate the total number of neutrons
in a volume‘ element which are thrown into d.Ed_Q._ from all initial energies and
directions E', and Q_' » 88 4 result of scattering collisions in that volumei
element. This number is found by integrating the product of the total colli-~

_ sion 'density NaSO(E') F (r,E',{1') and the probability £(e',E,[0,QQ) over all
energies and directions which can lead to the energy E. Evidently a collision
‘ cen result in a neutron of energy between E and E+dE only if the neutron energy

before collision fell between E and E/a°. Hence we have:

totel number of neutrons thrown into dEd_ﬂ_. per second per c.c. by
elastic collisions

E/a?
d.Edﬂ. Sl+M2 NOB (&) F(z,E', Ql) f["’*](E"E)] [}J'o—p, (E',E):\ dﬂ

E
(3.20)

which is, for isotropic scattering, (f = 1/2),
E/a?

il_ﬂ‘.lél_ /;oa (E') F(z,E',Q') 8 [p.o-p.o(E ,E] a_g__ aQl:. (3.21)

‘ ~  We are now able to write down the Boltzmenn equation for the elastic scattering

of neutrons. We suppose neutrons are produced with energy E, at t;;e ra.te
. S e

51‘0
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S'(_I_-,E,Q_) per second per c.c. per unit solid angle. The source strength ‘
“can therefore be represented as S'(E:E:Sl) = S(gjgl) 5(E-E;). Our usual -

meterial balance yields immediately

V' Kz,- Q) + NGF(I.:E:Q "ljy')_/ Nog (b ) F(x,E', 1) x >

5

[J',Y)(E ,E)l [uo-uo(E',E)l LELaQ + s(x,Q) 8(E-E,). (3.22)

If the scattering is isotropic in the c. of g. system, the Boltzmann equation

reads

V F(r,E,m + NoF(z,E,)) = ML// Nog (E') P(r,E,0") x d
i o

[uo-po(E E)J dE' _' + 5(r,{)) &(E-E,)- (3.23)

In the more general case of non-isotropic scattering the scattering

probability f[E',Y)(E',E}] is expressible as a sum of lLegendre functions:

i‘[ﬁ',Y\(E',E):l Z i— £, (') § [n(E',E):I (3.24)

where I, = l. For example, if two harmonics are sufficient to represent f,

then

2wy L B
(1+1) (L/EM) (°+1) . (3.25)

SIS

f[E',Y\(E',E)] = +§f1(E')

£
-

¢ . .
kA .
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- The Boltzmann equation with anisotropic scattering is therefore

L 7 Flt,E (., + FoF(z,EQ) = g.(_]_-"_'l!)_f/21+l Nog (E') x

E N (3.26)
F(F_:E".S_l_') i(E') 1:2 [y}(E!,E)] S[HO‘PO(E',E)] 'q%-:_ L' + S (I:&) G(E'Eb).

At this point it is convenient to change fram the energy to the logarithm

= of the energy as variable. We put

= tn B /E (3-27)

vhere E, is the source energy. The value of u corresponding to E, evidently

is zero. Then if ?(g_,u,f__\_.) is the flux density per unit u and (), we have
¥(z,u,Q)) aua) = F(x,E,[))amaQ (3.28)

or, by the transformation formula for integrals

Fr,u,0) - F[ JB(u) L % _ g o 5[r,5u),R] . (3.29)

Upon substituting the new variable u, into the isotropic Boltzmann equation

(3.23), and simplifying, we obtain

u+fnoP
\V 7 (r,u,g.) + No'f(r:u:ﬂ) = :'('l_')- //NGB (u') ?(r:u':ﬂ ) x
4L
o ™ b ug-aur-w)] aQraw + 5(z,Q) 8(u) (3.30)




u'-u u'-u

where
g{u'-u) = uo[E’(u),E(u)] =-;: [(H-l-l)e—z_ - (M-1)e” Tz ] . (3.31) - ‘

In the anisotropic case we define

2 u'-u
h(u'-u) = q[a'(u),m(u')] - e (1) (3-32)
and therefore we can write (3.26) thus:
uefno®
v 3‘(.{:“:&) + No ?(z,u;_-Q-) = = 2;& %ﬁ"ﬁ ‘2'!;2—-‘;]:' Nﬁso(u') X —
w A (3-33)

*(z,u',Q') f)(u') ?Q[h(u'-u)]ﬁ uo-g(u'-u)l et aQ.'au’ + s(r,L)) 8(u)

where ;E’Q(u') = flﬁs'(u');\ is the MB coefficient in the expansion (3.2%) ‘
of the scattering function considered as a function. of u'.
Equation (3.30) involves p, which is the scalar product of the initial
and final directions, _D__' and K_l. It is therefore unsuitable for further
analysis until the 8-function is reduced to an explicit function of (L and .
This is done by applying the addition theorem for Legendre polynomials to the
expanded form of the d-function. The procedure is essentia.ll& the one used
iﬁ deriving (1.28) from (1.18), and so we shall not dwell on it at great

length. We have

6[Jo-s(u'-u)] = Z& 2’L2+l Ij@[g(u'-u)] £ (uo) - (3.34)

By the addition theorem for Legendre polynomials we can express E’Z(po) as

a series involving By(u) and 1(;1') [cf. Eq. (1.26)] . Hence
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' Bluo-g(u'-u)] = Z} g_)(%ﬂ Ij([g(u'-u)] Bp(n) B (p') + terms in ¢ and 9' ;
I (3.35)
the terms in 9 and 9' are unimportant if the angular distribution has a
gymmetry axis, since they disappear on integration over ? If we substitute
(3.35) into (3.30), and integrate over ?’ we have, on the assumption that

the x axis is a symmetry axis for the angular distribution, and that the

neutron intensity does not depend on y or z,

- wtfo? 41
p a3z oy - - Q2 D) 280 Nogo(u') ¥(x,utsm') x
u -1
o S T g feww] s g wneua + s s (3.36)

. where, as usual
2%

F(x,u,p) = /?(x,u;_gl_)w = 2x ?(x,u,f_l) v

-0
_ . 2n : (3.37)

5(xu) = f 5(x,SL)ag -

J

The assumption that the flux angular distribution is axially symmetric is
correct only if the source S(x,_&l) emits neutrons with axial symmetry; this
we suppose to be the case.

In case the scattering is anisotropic in the center of gravity system,

the Boltzmann equation reads
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utboc® +1 o

-

" d}__(%‘hl:‘l + No Hx,u,u) = :-2-(1%:1—93 g %(2g+1)(2‘¢;+1) /‘/;Icso(u‘) x ‘
: - u -1 .

ut-u

F(x,u',ut)e Tpi(u’) lie.[h(u' -u)] ljz[g(u'-n)] B (w) lz(u')du'du' + -

(3-38)
S(x,u) 8(u). '
Equations (3.36) and (3.38) are strictly applicable only to neutrons B
whose energy is less than 1/02 times the energy, E,, of the most energetic
neutron emitted by the source. Evidently there are no neutrons with energy
greater than E,. Consequently it is necessary to add, in addition to (3.36)

and (3.38), the requirement

Hx,un) =0 ifu=_InE[ELO. (3.39)

An alternative way of gtating this condition is that the upper limit,

u + Zm2, in the integi'al €quation must be replaced by O for all neutrons
whose energy lies between E, and Eo/a2 ; i.e., for all neutrons whose energy
can be reached from the maximum source energy in a single collision. In the
cagse of hydrogen, assuming that the proton and neutron masses are identical,
all energies below the source energy can be reached in a single collision.
The wpper limit of integration in the case of hydrogen is therefore O for all

energies.

The Boltzmann Eyuation for Mixtures

In case the scattering medium contains several different nuclel having

different atomic weights, the Boltzmann equation must be modified to take
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account of the fact that the cross-sections and the maximum energy loases

per collision of the constituents will in general be different. The deri-

vation of the Boltzmann equation proceeds very much as in the case of a single
gcatterer, and we simply quote the result. If we denote quantities referring

to the i-th constituent with a superscript (1) (e.g., Niogo is the total macro-
scopic scattering cross-section of the i-th constituent), then the one-dimensional

isotropic Boltzmann equation is
utbh(al)? 1

M _Md gxu + No }(X;uﬂ") = z z (1+Mi)2 222-’-1 f /cinoso(u') x
-1
u

¢l
i g M
(3.40)
' u'-u i \
Fxutwe g ot @-w] 5w B @arar + st o)
vhere ci, the weighted "concentration" of the i-th comstituent, is
i i
. N*o
el = —Ffo (3.k1)
NOSO
and
Nog = 2 Nlo% s, No = Z et . (3.42)
i ° i
In the first slowing down interval for each constituent the upper limit
u + ,en(ai)a must be replaced, as before, by zero.

Many moderators for nuclear chain reactions -~ HoO, DoO, BeO, to mention
& few examples ~- have more than one constituent atom. The Boltzmann equation

for mixtures is therefore of considerable practical importance.
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The anisotropic Boltzmann eguation for mixtures is easily seen to be -
wt In(ot)? 1

B af 'cxixu" )\ No Hxyu,m) = - Z Z Z (a)® 284 2l x

A

ciNo‘z' .’}’(x,u',u')eu'“u fj(u') 12, [hi(u'—u)J IZLi(u'-u)] ljz(p.) E’e(p')du'du' +

5(x,u) 8(u). (3.3)

Reduction to Age Theory

There are two directions in which gimplifying approximations in the
Boltzmann equation can be made. On the one hand, the angular distribution
can be expanded in spherical harmonics, and the resulting infinite series
can be cut off after a finite number of terms. On the other hand, the colli-
sion density, Ncso}(x,u,p.) can be expanded in a Taylor's series in (u'-u) | '
under the integral, and only the first few terms kept. This is valid if ‘ !
Nog 03" changes very little in a single slowing down interval, (1 - aQ)E.

An expansion in spherical harmonics evidently is valid only for neutrons
which have suffered many collisions -- that is, neutrons which have lost a
large amount of energy. This can be seen by considering the energy and angu-
lar digtribution of neutrons which are far from a monoenergetic, isotropic point
gource. If the energy of the neutron is close to the source energy, either the
neutron has suffered few collisions, or it has suffered many small angle colli-
sions. In either case the angular distribution of such high energy neutrons
will exhibit a strong forward bias which is poorly represented by a finite . -

number of spherical harmonics.

-3
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At very great distances from the source there will be few neutrons
which have neither reached thermal equilibrium nor have been captured. Those
which still have energies appreciably greater than thermal energy must have
travelled predominantly in a straight line from the source -- otherwise, had
they suffered large angle collisions, their energy would bave been low, and
they would not have progressed very far from thae source. Consequently non-
thermal neutrons found far from a point source will have a predominantly for-
ward bias, which, as we have noted, can be represented only by many spherical
harmonics. For this reason we cannot expect a spherical harmonic expansion to
be very good either for very high energy neutrons, or for any non-thermal
neﬁtrons at very large distances from the source.

A very similar situation was met in Chapter II in comnection with the
time dependent diffusion problem without energy loss. It was pointed out
there that the neutron distribution at very short times after an instantaneous
burst of neutrons could not be represented by a few spherical harmonics, for
the neutrons which reach a given point first have suffered no collisions and
are therefore travelling forward; their angular distribution tends to be singu-
lar in the forward direction. The use of only two épherica.l harmonics led in
that case to a retardation time which was too long by a factor 4/3

With these limitations in mind we proceed to simplify the Boltzmann
equation. We suppose that 5(x,u,u) can be represented by a sum of just the

first two Legendre polynomials:

F(mum) =z F(xw) +2 7 (xu) Py(w), (3.44)

and that the source is isotropic: S(x,u) = -:éL- S,(x).
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Upon substituting (3.4%) into the isotropic Boltzmann equation (3.36)

and equating coefficients of Legendre polynomials of the same order, we obtain

ut Inc®
d ? PR 2 LIS
_]3.‘._._23(;1}_) + No jl(x,u) = - L]%-Ml-g— NOSO}l(x,u')eu u g(u'-—u)du'
u
u+ oo (3-45)
a 3 2 1. |
—_i(;—‘i)— + Nc:?o(x,u) = - S%%;:—)— Naso,’}o(x,ut)eu Ysur + Se(x) &(u) .
u

At this point it is customary to make the assumption that N"so 5‘0 and
Ncso .?l change very slowly over one slowing down interval. It is then per-

missible to expand in Taylor's series, and keep only two terms:

Ncso‘ Jo(x,u‘) No’so \?o(x,u) + (u'-u) ad—‘ﬁ [Hcso}o(x’u):]

Ngsoéfl(x,u') Nasofl(x,u) + (ut-u) 4 [I-Io‘so 31(}:,1):)]

The integral equations (3.45) can be converted into differential equations
by substituting (3.,1&6) into (3.45) and integrating. The resulting equation
for Ncsojo is the basis of the so-called "age" theory first introduced by
Fermi. .

Before giving the remaining details of this reduction to age theory we
cxamine the conditions under vwhich an expansion in Taylor's series is satis-
factory. The functions Nasojo and Noso ‘71 are gupposed fo change slowly in

one slowing down intervel; this spparently will be the case the smaller is




. the slowing down interval -- that is, the heavier is the atomic weight of the

scatterer. If there is no absorption, this is true. However, if there is

absorption then the Taylor's series expansion is not valid. For the heavier

the nucleus, the more collisions a neutron will make In any particular energy
~ interval. If the moderator absorbs neutrons in this énergy interval, theﬁ the
.. longer the neutron spends in the inﬁerval, the greater is the likelihood of
abgorption. But heavy absorption in an interval means that the neutron density
changes rapidly, and therefore an expansion in Taylor's series is not justified.
This fact -~ that the Taylor's is not appropriate if absorption is present --
wag first pointed out by E. P. Wigner.

For the reason given in the preceding paragraph, the remaining discussion

will be confined to the case of a non-capturing moderator (No = Nog,) of high
atomic weight. In this case alone is the Teylor's series expansion Jjustified.

. Substitution of (3.46) into (3.45) yields the two equations:

u+ InoP
3 ¥ (x, .
%_ Z}(:; u) + Naso.a’fl(x,u) = - (lltﬁ}a NUsogl(x,u) /g(u'-u)eu LT
i u
‘ u+ 4o
5% I\Tc"i'o‘ézl(x’u) /(“"u)s(u'-u)e“"udu'
u
Mo
3F (x,u) ut o
y ’ _——g-—_—— + NUBOJO(X,U.) = - .&;;%2_2_ Nasoyo(x’u) /eu gyt 4
- < /
wt Ao

‘ ‘ -8-3:1- Nog %(x,u) /(u'-u)eu"udu' .+ So(x) 8(u). (3.%7)

u A 160
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Of the four integrals on the right hand side, the simplest is

ut fng?
_ ()2 o au' = 1.
}'M u

It is of order (1/M)°.
The next simplest integrals are respectively the average logarithmic

energy loss per collision, and the average cosine of the scattering angle:

(1.94)2 u+lm2 2
t u'-uy , _ - ~o
7] (u'-u)e du = f_ 1+ T [m?,\_iﬁ_% (3.48)
2 .
u-u?na2
- -(——-l—lm 2 g(u'-u)eu'-udu' = '-‘-o = % : | (3'h9)

u .

Both quantities are of order 1/M.

Finally, by integration by parts, it 1s easy to see that

ut_fncP
'&;ﬁﬁ (u'-u) g(u'-u) e au:
u

is of order 1/M2.
To show that the average logarithmic energy loss, f s and the average cosine

of the scattering angle, Ho» &re given by (3.48) and (3.49), we proceed thus:

EI E'
= t t 1 _ (1+ 2 ' ' T
;'-f ﬁ(z JE) £2(E',E,{1'S))aEa ) = %/ /Zn(E /E) f[E » (E ,n)]
a?E

] Q— aaE'-ﬂ—
(3.50)
El
) p.o-uo(E',E)] dEd_S):= %—;E‘QE Io(E' /E) f[E',v] (E',E)]dE.
QcE'

o, ¢ 61

"*'i LRI
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‘ " Upon changing to u = fn Ey/E as variable, this becomes

u'-_fno®

= _(_lg_}l%a_ / (u-u') fl}ﬁ'(u), h(u'-u)] u'-udu'

P |
(8

for general scattering law
’ - u'- fno” u 'b&ﬂe

UM by

~

- ut u

for isotropic scattering.

In a similar manner, the average cosine of the scattering anéle is

G e 0 ot

ITI-23

(3-51a)

(3.51p)

/ /O(E',E) £(2',E,Q 1,0 )araf = L—L/ o(E'SE) 2[E", 7 (& E)]dE -

‘ oPE' Q) 2

13)2 g(u'-u) f[E'(u), h(u'-u)] eu'-udu

ul

for general scattering law

u+ Inc?

='.(l_;M.).?. / (u‘-u eu u u!
M

for isotropic scattering.

Since
u'-u -u'-y
g(u'-u) =% (Mtl) e 2 - (M-1) e 2 |,
o

u+ fno@

t
u'-u u'-y

-

- / ) -
— 1+M 1l 2 2 u’'-u v o _2_
H, = - '(Tu_a)— y 5[‘M+1)e - (M-1) e } et Tawr = 5

(3.52a)

(3.52b)

(3.53)

>
ts
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provided the scattering is isotropic in the c. of g. system.
Upon substituting for the integrals their values in terms of ; and Hg,

and neglecting the term of order 1/M2, we obtain

a7,
% r. + Noso 31 = Ho Ncso }1
(3.54)
3
8xl + Naso 3—0 = Noso.'}o - { 'é% (Nog,, Jo) + 55(x) 8(u).

If the first of these equations is differentiated with respect to x and

is then substituted into the second, there results a partial differential equa-

tion which a.pproxima.'tely describes the slowing down and diffusion of the neutrons:

3 F(x,
%_ag_ 1 ofZ%) | o () 8(u) = ;‘ 2 Nog, o (x,u) . (3.55)

x Nog (1-5,)  9x

This equation is the fundamental equation of the so-called "age" theory.

It Noso and i, are independent of position, the equation can be written

2
F ‘
L 3 [Noso o(x,u)] 4 So(x) 8(u) _ 5a_ Nog, Jo(x,u)] ;

- 2 u -
Nog ;NGSO( 1-it,) 9x ; (3.56)

i.e., the collision density (number of collisions per c¢.c. per logarithmic
energy interval) satisfies an equation like the time dependent heat conduction

“equation with u replacing t, and 1 — replacing the thermal dif-
3N°'so chSo(l-“o)

fusivity (thermal conductivity 4+ specific heat x density). The name "age

theory" is suggested by this analogy between logarithmic energy loss u, and

time, t. -




o}

If the scattering is isotropic in the c. of g. system, ff is constant,
and it can be put under the differential operator in Eq. (3.56). Thus the
one-dimensional slowing down equation for isotropic scattering can also be

written

- 62 i 5 >
= - [ - og_%:: u)l + So(x) 8(u) = §- NUSO;‘%(X’u) (3.56a)
3Wog,, ;Nuso(l-uo) =x u

The quantity

is calléd the "slowing down density". As will be shown later, g(x,u) is the
number éf neutrons which, in the course of slowing down and diffusing, cross
energy E per c.c. per second.

In the case of a mixture, the procedure which led to (3.56) must be
modified slightly. We now expand each of the functions ciNos 7 l(x,u)

o O,
in Taylor's series and insert in (3.40). The result, correct to terms in

" the first derivative with respect to u, 1s

] 32y ciji Nog, &, (x,u)
3(N090)22E cffiEZCi(l-ﬁg 3x°

* 8o(x) 8(w) = 2 T, o'Fhwog, 7, 5

(3.57)

il.e., thée quantity

Nog,, Z 3i§i }O(X,u)_

in which 51 is the average logarithmic decrement of the ith substance,
satisfies a heat conduction type equation in which the average logarithmic

energy loss and the average cosine of the sgcattering angle are

GO

)

™

*
iy
s
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by .

?: % ci;i and B, = L ol (3.58) .

rovided, of course, the gcabtiering is isotropic. The slowl down densit
b 5] P) £ J!

in the mixture case can therefore be written
- il _ =
q{x,u) Nog_ Y ¢ ; Jo(x,u) = Nosof .?c"(x,u).

There is nothing in the derivation of (3.55) which involves the assumption
of isotropic scattering in the c. of g. system. It is equally valid for a
general scattering law; however, ; and i, in that case, have the values given
in (3.51a) and (3.52a), and are, in general, energy dependent. It may be
noticed that ; and Ho are energy dependent in the mixture case also; in this

respect slowing down in a mixture is analogous to slowing down in a non-

J‘A"_/ - -

isotropically scattering single element moderator.
Finally, the treatment given here has been confined to diffusion in one .

dimension. In the general three-diﬁensional case (3.55) must be written

1

tv. VE(zu) + 5o(x) 8(0) = ¥ 2 [ug, Z (r,u}], (3.59) -

Ndso(l-po) 3 .
and, for a uniform medium,

1 AW, F(z,u) + So(zx) 8(u) 3 Yoy, 7 (z,u). (5.60)
3““5071“030(1-%) ; =% 800

It is well at this point to recapitulate the assumptions which underly
a differential equation description [for example, Eg. (3. 56)] of the slowing R

down process. These agsumptions are:
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1) Heavy moderator; i.e.', average logarithmic energy loss per

collision is small. It may be noticed that the terms retained in (3.47) are
of order 1/M; in fuct, the Taylor expansion leads to a power series in 1/M;
as is suggested already by a comparison of (3.48), (3.49) and (3.50). The
importe‘mt case of moderation in a hydrogenous medium cannot be handled by
this formalism.

2) No absorption.

3) Small distance from source; i.e., neutron angular distribution is
fairly isotropic.

L) Mean free path varies slowly in an energy range comparable to -;.
If this were not so, the Taylor's expansion would not be valid. This re-

striction, like (1), renders this simple theory inapplicable for hydrogen.

Simplified Derivation of Age Theory Hquations; the Slowing Down Density

Placzek has given a very simple but instructive derivation of the age
theory equation which shows why the term "age"” is appropriate. We consider
a monoenergetic point source of neutrons which emits S neutrone per second at
energy E,. let n( _:g,t)dt represent the number of neutrons at r which have
been emitted by the source at a time between t and t+dt before the interval
dt of observation. We assume that the loss of energy by collision, instead
of being a statistical process, occurs in a continuous, non-statistical manner
go that there is a definite correlation between the time that a neutron has
diffused and the energy which it has lost. In fact, if & neutron had diffused

for a time t, it has suffered

t
/ ngo v(t)at

0

S A N
LR I o & {)
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collisions. At each collision we assume the neutron loses ; units of logarithmic ‘
energy; hence the value of u = 4n EO/E which the neutron has at time t after

leaving the source is
t

u(t) =/;1080 ;vdt. ‘ _
. .
The neutrons are assumed to diffuse according to a time dependent diffusion
equation; the diffusion coefficient D = Y _ isg a function of t because the

Otr
energy ofaneutron changes as it diffuges. Hence, provided the diffusion coeffi-

cient changes but little during the time between collisions,

on
v = ogn
__G_tr(.t)_ Nn(xr,t) = ™ (x,t). . (.3-6'2)

We now change to u as variable. In the usual manner, we have

n(z,t) = n[;r_,u(t)] % - Ncsogvn(z,u), - (3-63) ‘

where n(r,u) is the neutron density per unit u. Also,

233 g v (3.64) °

hence, substituting (3.63) and (3.64) into (3.62),

L Am%;%@m)=m%f%N%§§@m). (3.65)

O%r

In the case of isotropic scattering (; = constant), (3.65) and (3.56) are

equivalent for all u » O. T
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The neutron density n(g,t)dt camprises all those neutrons in r which

have diffused between t and t+dt seconds. During this time they have exper-

ienced a continuous degradation of energy and at time t their logarithmic

- energy is about to fall below the value of u which corresponds to the diffu-

- sion time t. Thus, n(r,t)dt is the mmber of neutrons at r which cross the

logarithmic energy u (or the energy E) in the time interval dt; i.e., n(r,t)

is the number of neutrons crossing energy E per sec. per c.c. at r. The

quantity n(r,t) is called the "slowing down density", and is denoted by q.
The slowing down density is expressible in terms of the neutron density

per logarithmic energy interval, according to (3.63) as

q = Nog ;v n(r,u) = Nog, ;}(’)(_I;,u).

The meaning of this formula is the following: Nosonv is the number of

e e —— = =

‘ collisions occurring per c.c. per second at r. On each collision a "distance"
r ; in logarithmic energy space is travelled by the neutron. Hence q = number
of neutrons crossing E per second per c.c. = collision density x distance in
logarithmic energy travelled per second = Ncso ; v n(g,u) .

Equation (3+65) can be further simplified by a change of variable. We set

t(u) u
_ vdt  _ du
T(w) = /3N°tr —_/31"’tr N“so; ) (3-66)
0

The quantity 2°(u) is called the "age" of the neutron; it is the chronological

age, t, of the neutron since its birth, weighted with 5, thetaverage of the

- . diffusion coefficient dQuring the time of diffusion: D= % f 3NZ dt:
» 5 tr
_ Tlu) = D (w). Gooo 168
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The age has units a?, not seconds. *
In terms of 7
n(r,u) = n[g_, T(u) 37 n(z,7)
‘ du  3Nog,. Naso';

3 _29 3, 1 K]

du 3T du 3Noy, Noaog at
and therefore (3.65) becomes

(r
S % =_a_ _?o(_l_'.,T) ) (3.67)

3N dtr at 3NUtr

where F(r,% is the flux per unit 7.

The slowing down density in terms of the neutron density per unit 7 is

F D)
I 4 _ Y0
Uz, T) = g 0z, 7) = “H— (3.68) ‘
and therefore the age equation can be written !
dq(zr, 7) - .
o, T) = —— - (3.69)
A 3T )

The analogy between (3.69) and the heat conduction equation is apparent.

The Space Independent Boltzmann Equation; Energy Distribution of Neutrons

If the production of neutrons throughout all space is uniform, then the
neutron density cannot depend on x. The general Boltzmann equation (3.38)

reduces to

e,
L3R . & e
P ihYy
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i 7(u,u) = M % 2'“1 2"+1 /1;"8 (u') FHu',u')et' 8

(3.70)

£5(01) B Jatwr )] o [atwrw)] 7 () 5 (wdawrant + () s(amug) -

The total neutron flux per logarithmic energy interval, Jo(u) , and the total

number of neutrons produced per c.c. per second, S,, are

1

EAY =/3(u,u)du
-1
1

8, =fs(u)du-

-1

Thus, upon integrating (3.70) over u and p', there results
u+ _Ino?

No fo(u) = - -(-]-‘—2*'%23 ‘ I'Ic:so}o(u')eu'“u f u',h(u'-u)] du* + S, 8(u-up)- (3.71)

u

In the isotropic scattering case, £ = 1/2, this reduces to

u+ LnoP

No -"Fo(u) = - -(%%E / Nog,, fo(u')eu'-udu' + 8, 8(u-u).
: u
It is to be understood, as before, that fo(u) =0 1f u <u,.
The distribution X (u) for large values of u (i.e., at energies far from
the source energy) is easy to calculate provided there is no absorption (No = N"e ).

In this case the distribution equation (3.71) is
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ut fno?

Nog ?o(u) = - _(k;%ﬁ /Nuso ‘?‘o(u')eu"u f[u',h(u'—u)] du' . (3.72) ‘

u

Now, since f(E' ,E,.Q__' ,Q) is the probability that a collision by a neutron of

energy E' and direction {1' results in an energy E, and a direction 0, -
oPE!
/ff(E',E,S}',Q)dEdQ -1 (3.73)
n = -
hence, on transforming to the variable u, and integrating over angle, we find
, w+ fno
- Q’éﬁ-ﬁ /eu'-u f[.(',h(u'-u)! du' = 1. (3.74)
u

Ccnsequently ‘

Ncso 70(u) = C, a consgtant,

satisfies (3.72). However, since this solution does not satisfy the initial

condition [ ‘hich is derived from (3.71)] , namely,

lim
asu No %(u) = 5, 8(u-up),

it cannot be correct close to the source energy uy,. Thus Noso}'o(u) =C
is. only the asymptotic solution of (3.71), correct at emergies u which differ
from u, by several logaritlmic slowing down intervals I,

We campute the value of the constant C in the case of isotropic scattering,

i.e., £ = 1/2. This is of most practical interest since the asymptotic solution
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- applies only to neutrons which have lost considerable energy, and therefore
‘ the scatteriné by the moderator will usually have become isotropic by thé time
the asymptotic solution becomes fa.lid. To compute C we equate the number of
neutrons which cross a given energy E per second per c.c. in the course of

slowing down, to the number of neutrons produced per second per c.c.

To calculate the mmber of neutrons which cross E per second per c.c.
we obgerve that all neutrons from logarithmic interval du' which enter a
‘logarithmic energy interval du" lying below u(E) will have crossed E. The

number of collisions per logarithmic energy interval du' per second is

du'

Nog, F(u')du’;

the probability that these collisions will

u(E)
- result in neutrons being thrown into energy

du*”

interval aE" is

.V : _(1_;2 fEﬂ',q(E',E")]J.E"

or, in the logaritlmic energy variable,

(132 u'-u”
© 1M et ¢ fE.l‘,h(u'-u“z]du".

M

Hence the total number of neutrons thrown across E per second per c.c. is

u+,¢nof’a u

140)2 f Nog_ 3 (u)e" ™ tfut,nurwn|awranr . (3.79)
o u utgnd? °° : )

Since the scatiering is assumed isotropic, £ = 1/2. Hence the number

of neutrons crossing energy E per second per c.c., i.e., the slowing down

i .
' NN 170
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m———————~—
density q(E), which is to be equated to S, is
u+ ,tna‘? u
= = 1+M 2 . / ut-u". = = bo
o(E) = s, -(—--Lm c e du"au' = C§ = Nog F(u) &
u u'- Ano?
Thus
S
C = 3?
and the energy distribution is
Sy
#(u) = :

Noeog

In terms of E, rather than u, the distribution is

(E) o
F E e
° Nog,, ; E

nv) = —%z 5
2
Nasofv

or in terms of v,

The energy distribution (3.77) can, of course, be derived from the

III-34

(3.76)

(3.77)

(3.78)

(3.79)

approximate equations (3.56a) and (3.57). In the case of isotropic scattering

in a mixture, the slowing down density in an infinite medium in which neutrons

are produced uniformly satisfies the equation

% [Na"o?}o(u)] = So 8(u)

52 A

. 1{)" ’:; {_73

(3.80)

~

v
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. Now the solution of (3.80) is

o, Z¥ u) = S u>o0
0.7 %! ° (3-81)
=0 ugo

and the neutron energy distribution implied by (3.81) is the same as that
of (3.78). |

The assumption of a single substance was not necessary to obtain (3.81) H
on the other hand the differential equation which led to (3.81) is an approxi-
mation which was valid, because it involved a Taylor series expansion, only
if ¢l (in the case of mixtures) varied slowly over one slowing down interval.
Actually the energy distribution (3.81) is a rigorous asymptotic solution of
the space-independent Boltzmann equation only for isotropic scattering in a
single substance. For mixtures or anisotropic scattering, (3.81) is only

approximately correct.

‘ Spatial Distribution of Slowed Neutrons; the Slowing Down Kernels

I3

The slowing down density satisfies

da(r, %)

” (z,2) = 3.69)
Aalr oT (
with the initial condition
lim Aa(r,Z) - %z, 7) = So(r) 8(2Z).
T—>0 T

Suppose a point source emits one fast neutron per second at r = O in an

infinite medium. The slowing down density at some lower energy corresponding

-

to age 7 will be the solution of

8a(x, 7)

Nz, T) + 8(7) 8(r) = (3.82)

() i
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This equation is identical in form with the time dependent diffusion equation

discussed in Chapter I. The golution, as was found there, is

-r° Iy

= ‘ .8
Q(_I_') T) (lu( 2")3/2 (3 3)

i.e., the slowing down density of neutrons from a point monoenergetic source
is distributed around the point according to a Gaussian function. The range
r, of the Gaussian (i.e., the distance at which the demsity falls to l/e of

its value at the source) is

ro = 2V Z. (3.84)

For many purposes it is important to know the second spatial moment of
the slowing down density. If the slowing down density is Gaussian, then the

second moment of neutrons slowed to age 7, which we denote by E( Z), is

® Ty 2pT
ﬁ(r, 7)r2 . hxrlar rh o / ar
2(7) - % - s -67.
2 o -r°WT
./l(r) T) + bnrfar /;‘ e ar
0 0

For a Gaussian distribution, the following relation holds between the age,

the gecond moment, and the range:

T =12/6 =12/

The relation between 7" and the second moment of the slowing down dis-
tribution is the same as the relation between the square of the diffusion

length, L, and the second moment of the distribution of thermal neutrons
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around a point source. For this reason 112' is often called the

slowing down length.
The age 7  is related to the logarithmic emergy according to (3.66) by

u
= du ’
' o

and is therefore a monotone increasing function of u. Thus the spatial
distribution of slowed neutrons keeps a Gaussian shape as the neutrons lobe
energy, but the neutron distribution gradually spreads out since the range
T, increases with u. The distribution of neutrons slowing dowvn from an

energetic source is in this approximation exactly the same as the distri-

- bution of heat fram an instantaneous heat source.

The energy distribution of the neutrons slowed fram a point source is,

according to (3.83)
L e-re/hz(u)
Nﬂsof [h < 'Z(u)]3/2

yo(r’u) =

2

2-(u) being the function expressed in (3.85). If all cross-sections are

congtant, then

and
1 o 3NotNog, 5 r2 /b

: (3.86)
N0307 Lu 3/2
3NogpNag, F

-?o(r)u) =

&0 176
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At a given point the flux as a function of u waxes and then wanesg; the

maximum occurs at the logarithmic energy u,., given by

Noy,Nog .? r°

2

(3.87)

The slowing down density (3.83) from a point monoenergetic neutron

source may be designated the "point slowing down kermel".

Following the

procedure used in the discussion of the time dependent diffusion equation,

we can write down the corresponding kernels in other geometries.

Slowing Down Kermels

Source
Geometry Notation Normalization P
Plane P (x,Z;x',2*) 1 neu’c/cma/sec at -|x-x'l2/1+(2'-’l.")
Pl (x',‘Z") e ,
l_im(‘z-?:')J 12
Point P (r,%5r',?") 1 neut/sec at et 2 (-
p=e? (z',2) oIzl A7)
3/2
[uate-an) [/
' 2
Line Py(r,9,2;r',0',7') | 1 neut/cm/sec at - | mee-
J2 295 29, (r',?',?:') o lP"P fair-2)
hn(e-)
pa = rP4r12 - 2rr'cos(9-9')
|ISpherical Pg(r,2yr',7") 1 neut/sec per i 2 Ji(z-7")
Shell shell of radius 1 e -
] ] ?
r' at age 2'. hayr lm('t’-‘l")l/a
- Imert 2 te) ]
lm(’L'-t')l/2 J
Cylindrical| P (r,2'r',2') 1 neut/sec/cm x| i)
Shell of shell of o T T - ort
' ’ I
o ) o)

~

(CAE B 44
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From the slowing down density arising from a monochromatic energy
source 1t is a trivial matter to campute the slowing down demsity from a
fission neutron source which is polyenergetic. If the number of neutrons
emitted per second between energy E' and E'+dE' from a point source at the
origin is
£(E*')aE’ ,

then the slowing down demnsity from such a source is evidently

°r 22plre-e)]
olere) =./ {‘: -2z |92 s (359
J

where q[g,t(E)] is the number of neutrons crossing energy E per second

per c.c. at r. Since in a chain reaction the neutrons ériginate fram a
fission spectrum, the slowing down distribution as given by (3.88) is the

one appropriate to a chain reactor in which the moderator is non-hydrogenous.

Elementary Improvements on Age Theory

The age approximation, and the Gaussian slowing down distribution which
it yields, resulted fran a spherical harmonic expansion of the angular dis-
tribution, and a Taylor's series expansion of the energy distribution. As
has already been polnted out, the Taylor's series expansion is valid only
if the mean free path varies slowly over one slowing down interval, while
the spherical harmonic expansion could be expected to be .good only fairly
near the source. Thus the age approximation is poor in hydrogenous media
(vhere the mean free path changes rapidly), or at large distances from the

source in any medium.

T R4
651 vy
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That the Gaussian cannot be correct at large distances is evident

from the following physical argument: Consider neutrons which have made no

-Nor
collisions at all. These will be distributed like Sgke s where No is the

Lor

macroscopic scattering cross-section and S, is the
source strength. Now at small distances the Gaussian slowing down distribu-

tion will exceed this exponential; at large distances, however, the ratio

~N

source neutrons .J%oe or (4n273/2

Gaussian moderated neutrons k Wor? r2/hT
e

approaches o, since the Gaussian falls off faster than the exponential. Thus
at large distances, the distribution is more expoﬁential than Gaussian.

An improvement on the age theory distribution which at least is free frém
this "first collision paradox" can be expected if the "aging” process, which
leads to the Gaussian, is assumed to begin only after the neutrons have made
their first collision. The.points at which first collisions occur act as
"sources" for the slowing down process.

The first collisions are distributed as

No(O)e_NU(O)r

har?

the O referring to u = 0, the source energy.

According to this picture the slowing down distribution should therefore be

1 - '. 2
| P No(0) O |z'-z|/4T .
.q(z,’() N hart? (hx7)3/2 =

0
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A further improvement can be made by taking into account the fact that
after a neutron has suffered a collision which throws it across energy E, it
experiences a "free ride’, without changing its emergy, until it suffers its
next collision. To take this free ride after the last collision into account,
it is plausible to include another exponential with mean free path appropriate
to the lower energy. Thus the slowing down distribution, including both

first and last collisions is

" o 2
| Fo(0)iz] -lz"-r'l AT _me(u)|r"-z -
a(z, - / / M= " awa (3.8)
0 hxr2 (xz)3/2 x| "]

vhere 0(0) and o(u) are cross-sections at the initial and final log energies
respectively. Formulas like (3.89) are of course not rigorous; they are
rather more plausible than the simple Gaussian and have been used to repre-
sent the slowing down distribution from a point monpenergetic source.

| In order to compute the second moment of the distribution (3.89) we
first state the well known result that the second moment of the distribution
from a plane source is Jjust 1/3 the second moment from a point. This follows

from the relation between a point kermel and the corresponding plane kernel,

1
Pp(r) = - 3= Pl”L(r)o
Hence

o,

/ réPy(r)r2ar [ 23 (2)az
z o >
0

_ 0
e [

NS 4 1 ((\)0
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Upon integrating by parts, and using the fact that r3PPl(r)-—>O as r—»>mo

for any kermels of interest, we obtain

2 - 3z2,
22 being the second moment of the plane distribution.
With this preliminary we compute 2 for the distribution (3.89) by com-
puting the corresponding plane second moment, and multiplying by 3. The plane

distribution corresponding to (3.89) we write as

® o .
q(z,?) =//K1(z')Pm(|Z'-2"| )Ey(l2"-z|)azaz" (3.90)
| ~w -0
vhere Kl(z) and Kz(z) are plane transport kernels and PPl is the plane Gaussian
kernel. The quantity q(z,2) is the convolution of the three kermels K_I.’Pp p> 8nd
Ey.
Now, if fl(B2) is the Fourier tramsfom of K;(z), i.e., if
©
K, (8?) = / K (2) ¢'B%gz,
-0

~ then z%l, the second moment of the distribution defined by Kl(z) is

2- 2.1
d 5(3 )
—_— 2
ZE = - ——-_—d-li—E-— . (3‘91)
1 K(B%) |z =0
Furthermore, the Fourier transform of q(z,Z) is
a(z%,m = Ey(8°) B (5%) Ky(8%), (3.92)

v b 181
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. * as follows from (390) and the definitiom of the Fourier transform. Hence

a5, 7) &%, (%) a%Fp, (5°) a%K,(3%)
ap? ___ap® a® | ap2
— =— ‘neen-an =
B, 7ls-0 B [5_, E) 5.0 BE) 5.,

that is,
i} 22 = 22 4+ 22 22
Zq = le + ZPBL+ ZK2 » | (3'93)
~and
2-FF 7,

In other words, the second moment of a distribution which is the convolution

of several kernels is the sum of the second moments of each kernel.

We now apply this result to the distribution (3.90). The second moment of the

transport kernsl M is
[

-2,
[Nt:(o)]2
and the second moment of the Gaussian is 6 7. Hence the second moment of the

slowving down distribution corrected for first and last collisions is

2(T) = —2

—_E 46T (3.9%)
[Fs(0) TP [mo(u)]?
or, upon using the formmla (3.66) for <7,
n
2(7) = —2—— 4 y‘ dw .2 _. (3.95)
) | [Wa(0)]2 ] N"tru“sof [o(u)] 2 |

I
<
-
bom
-

‘2
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The distribution (3.90) is unwieldy analytically, and it has therefore - ‘

been customary to replace it by a single Gaussian (for a point distribution)

e-r2/!m
(4 )3; 2

where 7', the corrected age, is chosen so as to give the same second moment

as (3.95). Thus the corrected age is

. u '
P =B-_1 .1 / 1, (3-96)
B 3[No(0)] 2 3 ; th;wsﬁ 3[0(w) ® ,

and it is this age, together with the simple Gaussian, which is usually used

to represent the slowing down density in a heavy moderator.

The Group Picture

The Gaussian slowing down distribution with the corrected age (3.96) is ‘

a fairly satisfactory representation of the slowing down process in heavy |
Ms. However, for certain problems, e.g., those involving slowing

down in compogsite media, even the elegant Gaussian age theory becomes very
unwieldy. The analytical difficulties arise because the age theory equation
is a partial differential equation. To avoid these complications a simplified
formulation of the slowing down problem which describes the process by a sequence
of ordinary differential equations has been used very widely in pile theory.

The general idea of this method, called the method of groups, is to
divide the total logarithmic ehergy interval through which the neutrons pass
into'a. finite number of energy subintervals. Neutrona in a given energy group -
are supposed to diffuse without energy loss until they have experienced a number .
of collisions equal to the average number of collisions actually redquired to

pass through theA energy interval; 'at this time they pass into the next lower
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energy intervel. Thus removal from an energy interval is treated as an
"zhsorption™ process, the "absorption” cross-section u: being determined

from the relation
Og .
- = number of collisions before removal from energy range.
a

The cross-gsection for removal of neutrons from one group is also the cross-
section for creation of neutrons in the next lower group. The slowing down
density, i.e., the number of neutrons passing from the ‘pt h energy group to

the 79+ lst group, is therefore

¥*

1p = Hog §y (3.97)
where @P is the flux of neutrons in the PR energy group. If the magnitude
of a logarithmic energy interval is denoted by uyp, and g is the logarithmic

energy decrement per collision, then the number of collisions required to
' gth

cross upy 1s uy / 5 , and the "absorption" cross-section for the group
is l
%
0: = -—-&Z
uy (3.98)

wﬁere 9%, is the average scattering cross-section in the uy energy interval.
If Dp is the average diffusion coefficient in the P8 energy group,

then the neutron flux Q_P (x) in the Pt group satisfies the diffusion equation

Dy Ny () - N33 () + Nogp_y Qy-i(_r.) + 8y(x) = 0, (3.99)

Sp(z) being the number of neutrons produced by an external source per unit

‘l)th

volume at r in the energy interval.

gL 184
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In a one group picture, P= 1, in which the external source is a -

d-function at the origin, the group equation is

%
D A\§ - N"alﬁl + 8(r) = 0; (3.100)
this has the solution .-
| * il (3.101)
1m*"lil(r) - harL¥2 3 T
where
3% - oy /v ok . (3.102)

2
The second moment of this distribution is 61; , and the slowing down length

is given by

-r_2 *2 D_]_ :

= = . -10
T=L 5% (3.103)
|
If we substitute for Nu:l and D, their expressions in terms of cross-sections, ‘
we obtain
3Natrlmasl§

This is identical with the age theory expression for one sixth of the second
moment provided the product No’trlNdsl is chosen as

uy
1
No lNo Uy - ' (3.105)
trl Sl Notrl(u)l\losl(u)
J
With this choice of average cross-sections, the one-group picture is seen to N

give a spatial distribution which is exponential instead of Gaussian, but which

has the same second moment as the age theory.

4 RSN ‘

yi. 7
LSO
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In the n-group picture the distribution from a localized source of high
energy neutrons is readily found by solving (3.99). For simplicity we deal
with the problem with plane symmetry; the solution from a point source is then

found by differentiating according to (1.141). The differential equations to

be solved are

ay. |

a]
Dy -;—x—e - No:l§1 +8(x) =0
(3.106)
e
a°g, * N
maxa -Na_‘,f’,+Noa’,_1Q¢_l=o P=2...nl

-

To solve these equations we make a Fourier transformation,

[0 o] . a
Q.,) (x) =/i_,, (@)e'®%aes,  8(x) = %feiwxda).
~® "o

The transforms satisfy

2 * \ 5 1
(])lco + Noal) Ql =3

-(Dpe® + WoX 5) §) + WeE, §,2-0 V>1.
Hence
*
.1
— l - - . ak_l =
= H = - 3
R ) Byo) = Q1 7 b
*
1l k No ay -1

2x(DyW? o ay) Z;g (DS +N°'*a>’)

'Se
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and therefore ~
v @
1 iaox
l(x) —2;{- dco
- 0

Dlaﬁ + Nca ‘.

(3.107)

i k N ¥*
1X g,
u(x) = = e T\ -1 dew
k o1t * _ 2 * ’ -
Dlw + Noal 'P =2 ( D,, + NO'a ’)

' Since.i;@») is the product of the Fourier transforms of the preceding QL» the
distribution Qk(x) in a given group must be the convolution of the distribution
of the previous groups. Physically this means that each group acts as a source
for the succeeding group.

To actually compute @p(x), it is necessary to evaluate the integrals in
(3.107). The integrands have poles in the upperlhalf plane at

’ ‘
Oay

*
w=1i Dy T 1/L , (3.108)
and we assume for simplicity that all roots are simple. Hence, according to
the residue theorem.
X ' ' -
FI o |
Pu(x) = (3.209)

Ngak =1 2LJ (l—L{g/L )(1-L;2/L )....(l-L /I

2
where the term (l-Lg /LS ) is omitted from the sum. If k = 1 (one-group

picture), (3.109) reduces to

Na:lﬁl(x) = 2—'—23:*; (30110) -
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- Since Py (x) is the convolution of all the previous yx), the total slowing
. down length for the neutrons slowed out of the kth group must be the sum of the

squares of the slowing down lengths in each group individually:

rﬁ _ *2 *2 *2
. T—Ll + Ly, +oeeeee v L (3.111)

If the number of groups becomes infinite, but each L, is reduced so that

%

6

(3.112)

~
w8
&,
"
<

1l

where 7 remains finite, then the group picture should go over into the con-
tinuoug age theory. The slowing down density in the oo-group case can be com-
puted most readily by first passing to the limit in the integrand of (3.107) |

and then evaluating the integral. From (3.107)

® .
°
. Nov*ké (x) = g deo .

(1 + 1¥202)(1 + Laae?w?)...(l + L¥AF)

-0

- Now

. Y Ll xR _ofT
| limo TV 1 9 ¥l o 7, (3.113)

ag is verified by taking logarithms of both sides. Hence

© ,
/T
lim * iz -oF e ) B
N dw= 3 (3.11%)
. ks () - " T )i
4 @

o ’ . B8 sy
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that is, the group picture and the age picture merge when the mumber of groups -

becomes infinite.
The great merit of the group method is that it involves ordinary instead ‘.
of partial differenmtial equations. By taking enough groups it is possible to
approximate the age theory slowing down function to any degree of accuracy,
and still deal only with ordinary equations. The approximate slowing down
functions which are constructed out of group picture exponentials are called -
"gynthetic" kernmels. In pile problems involving H,0 as moderator, it is
customary to use one or two fast neutron groups in addition to the thermal
neutron group; in piles moderated by heavier materials, as many as five or
six groups have been used.
In asgessing the relative accuracy of the group method and the age theory,
it must be remembered that the slowing down function from a point fission.aource,
even in, say, graphite, is not a Gaussian because of the energy spread of the
source neutrons. Thus in graphite the three group model is only slightly less ‘
accurate than the gingle Gaussian while in Hp0, because of the very long mean
free path at high energies, the slowing dowﬁ is more nearly représented by a
gingle group picture than by’a Gausgian.

Average Transport Cross-Section in Group Method

In order to obtaln a one—grouﬁ distribution which has the same second
moment as the Gaussian, it is necessary to average the product of the trans-
port and scattering cross-sections according to (3.105). In problems involving
only one medium it is only this product which determines the neutron distribu-
tion. However, in problems involving composite media, since one of the boundary :

conditions across an interface is continuity of the net current, and the current

) iRy '
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- is proportional to the transport mean free path, it is necessary to find an
appropriate average for the transport mean free path separately.

To calculate an average transport mean free path which will insure con-
tinuity of the net neutron current in a group, it is necessary to make some
assumption with regard to the actual energy distribution of the neutrons in a
given group. Evidently the energy distribution will depend on the particular
arrangement and properties of the slowing down media on each side of the
boundary. However, as a gimple approximation, it is useful to assume that

the energy distribution of the neutrons is the asymptotic distributiom

§(x,E)dE = £(x) B ' (3.115)

053
where og, is the scattering cross-section.

The total flux of neutrons in a group from energy E, to 32 is

Ep B
- = _9E .1
¥x) = / §(x,E)aE = 2(x) For, 53 (3.126)
Lal By
- and the net current 1s
¥ Ay (E)
E)de
1y a(x) ad =___ > A .
HRWE O / xtrw) (x,E)aE ey ’ (3.17)

5

where .Xtr is the correct average transport mean free path. Thus combining

(3.116) and (3.117), we obtain

7>‘tr(E) No‘B E

dE ﬁﬁf ' G
/ W, E s &

tr (3.118)
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i ; is constant; i.e., the average transport mean free path which will give -~
countinuity of flow and densify iz = gruur in which the esyatobvic energy dis- '

tribution holds is an average over 1l/fiicggEe ‘.

che snergy Yransfer Distribution of Siowed Neutrons:

It is a matter of some practical importance to calculate the manner in
which the energy transferred to & moderator by elastic collisions of fast
neucrons is distributed in space as the nesutrons slow down from a plane source. -
If the flux of neutrons of log energy u = £n E/E is F(x,u) (plane symmetrv),

then the number of elastic collisions per c.c. per second at energy E = Eoe-u is

No’so (w) Kx, u)
Since the logarithm of the ratio of the average energies E' and E after two
successive collisions is

Ao B JE = ;,

the average energy loss per collision, AZ, is

AE=E" - 5= .:E(e; - 1); (3.119) _
i.e., if the moderator is neavy,

NE= ;:. (3.120) =
Zais energy increment appears a8 kinetic energy of the moderator atom. Hence

E(xj, the energy released per c.c. zer second to the moderator by elastic

collisions, is, for heavy moderators,

oo[ o
&(x) = ! Aogo(u) }’E FHx,u)du = I, / Nog (u) ;e'“y(x,u)du. (3.121)
0 J '
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To evaluate this integral an assumption must be made with respect to the

neutron distribution F(x,u). This we take to be Gaussian:

-x2 /4
Flx,u) = axu) S0 o7F /e (v) R (3.122)
Nog, 5’ Nog, & [ux z(u)] 1/2

vwhere S, is the number of neutrons emitted per sq. tm. per second by the source.

Hence we obtain for the integral (3.121),

7 o E1+x2/1l-’Z’(u)]
é(x) = SE, -2 du. (3.123)
5 [lm Z'(u)] /2

This integral can in general be evaluated only by numerical methods. However,

if all cross-gections are constant, then, in simplest approximation,

MrA

T(u) = 3% u (3.124)
and |
o _
-[u + 3x° AN wN .
€(x) = SOEO/e L gy uldu. (3.125)

i [ % fi?_)ﬁ]l/e ,

Evaluating the integral according to Watson's Bessel Functions, p. ;83, we obtain

as R
E(x) = ZEO o= (3.126)

where .

Y2 (3.127)

i

The total energy emitted from one side of the source plane per sq. cm per second
is SgEo/2; thus, according to (3.126), the fractional energy release in each

cubic centimeter falls off exponentially with length constant 1/a.

66,
EEENTY
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A ——— a

Slowing Down Distribution in a Finite Block . -

In order to measure the siowing down distribution from a source it is
customary to place the source on the axis of a long parallelopiped and measure T
the activity of Cd covered In foils placed along the long axis of the parallelo-
piped. Since In has a deep resonance at 1.4l ev, the activity of such a foil
will in good part be proportichal to the flux of 1.4l ev neutrons. Actually,
because of higher resonances, the reading of the In foil is not quite propor-
tional to the l.ili ev flux; according to Hill and Roberts, at points close to
a source of 30 kv neutrons in graphite, almost 40% of the activation of In is
due to absorption above l.44 ev. Farther from the source the perturbation due
to higher resonances becomes less so that the mean sqaure distance to 1.4k ev
as measured by In foils is in error by much less than 40%. The theory of this

experiment is & good illustration of the usefulness of the age approximation,

and we give the details in the follqwing paragraphs. ‘
Suppose a monoenergetic unit source is placed at the point x = 0, y = 0, .
z = 0 in an infinitely longr moderating prism of sides 2a'. The slowing down

density satisfies

SQ.(x:y,z:z')
) ;7 = (3'128) :
AQ(x;r z2,7) Y
He o(x,5,2, 2) = 8(x,7,2) (3.129)

>0

where we have assumed the long direction is along z. The boundary conditions
may be taken with sufficient accuracy (provided the width of the block is much
larger than the mean free path),

q =0 on the extrapolated boundary, (3.130)

the extrapolated boundary being the geometric boundary a' augmented by the
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extrapolation distance 0.71 Xtr' We denote a' + 0.71 )\tr by a. It is con-

venient to assume Xtr independent of energy; again this is an unimportant

assumption provided the block dimension is large compared to a mean free path.

The solution of (3.88) which satisfies the boundary conditions is

= [ + ] v 2T
7% T) = 3 Ce (3.131)
ax,5,2, T) ;-gmz’ncosBmxcoanye W
(]
vhere
Bm=(2M+l)-;;g, Bn=(an+1)%. (3.132)

The sine solution is not used because of the symmetry of the asource distri-
bution.

The shape of the distribution along the z-direction is the same as from
an infinite plane. As the neutrons age (7 1ncréases) the intensity of the
-(B3 + Bﬁ)’r

distribution falls because of the exponential factor, e This

factor accounts for leakage out of the block. Its dependence on 7Z° arises

from the circumstance tbat neutrons with large 7  must have diffused for a

- relatively long time and therefore must have had a good chance to leak out of

the sides. The magnitude of the leakage is determined by the ratio 27/aZ.

The distribution (3.131) is represented as a sum of characteristic
functions. The slowing down density can, of course, also be computed by ob-
serving that the neutron distribution from a point source in a finite block ca.ﬁ
be viei(ed as the superposition of distributions from point sources and sinks
appropriately distributed in an infinite medium. The mathematical relation

between the source-wise and characteristic function representations of the

(WA 174
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distributions is established by means of thevPoisson'sunnnation formula

(Courant-Hilbert, Methoden der Mathematischen Physik, p. 65):

Z Z ¢(m,n) = y Z//?(u,v) e-2:u(>\u * 'N)dudv. (3.133)

- Q) (o o]
Upon applying this transformation to the series (3.131) with

? (myn) = —T cosBpx coaBnya(B 2 +B 2)7

we obtain

a(x,5,2,7) = W Z Z exp -[(x-2>\a)2 +Hy-2ua)? + 22] /hZ‘ .
T

~00
A # (3.134)

BEach term in (3.134) represents a source or sink of unit strength situated
at the point(2\a,2ua, 0). The source-wise representation of the slowing

down distribution converges better than the characteristic function repre-
sentation at points close to the source; at points far from the source the
characteristic function form is the better converging.

Meagurement of Slowing Down Length

The second moment of the distribution (3.131) is

a

2
/;(x,y,z, 2" )z dz

‘2_2-:: 2‘ =2’C;

‘/‘;(X:Y:Z: 2)dz

J

that is, the second moment in a finite block is the same as in an infinite

block. Hence foil measurements in a block of finite width yield the same

7 §
by 7, ,qr
: -t LT

i
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_ second moment as measurements in an infinite medium. This result is inde-
pendent of the relative importance of the various harmonics contained in
(3.131) and holds provided only that the distribution is strictly Gaussian.

Mogt neutron sources are not monoenergetic, nor is the slowing down in-
trinsically Gaussian., For both these reasons the mean square distance meas-
ured in a finite block is not strictly the same as the mean square distance
in an infinite system. For example, if the energy distribution of the source

is £(Z2')d7"', then

. “oBeslen) e
a(x,y,2,7) = v gﬂ cosBpyx coany/e' [zm(@--zc)]l/a ac .
v

The second moment of this distribution along the z axis (x =y = 0) is

-E ) I, 0

I-_lm("t' -2 ﬂ 1/2 dzd’cf ( )
pA . 3.135
L =
Z ]
o [41!(2'-’6" )J 1/2

In general this second moment will differ from the second moment Zgo » measured

in an infinite medium:

/
0 :

624 1ag
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Corrections must therefore be made to the observed finite system 22 in 2
order to obtain the true infinite system ;?o . It is possible to compute '

these corrections for a completely general kernel and this will be done in- , -,
the remainder of this section.*
The corrections will be made by observing that the neutron distribution
in a finite block can be considered as the sum total of effects from a suitable
distribution of pogitive and negative sources in an infinite medium, provided,
ag we shall assume, the extrapolation distance can be neglected compared to
the block size, or is independent of neutron energy.
Now a point sourcé at the center of the z = O plane in a long block of
gides 2a is equivalent to a sequence of positive and negative sources spaced
at intervals of 2a in the z = 0 plane. Such a sequence can be represented
as | ]
8(x) &(y) 8(z) = S(x,y) 8(z) = &(z) Z cosB_x cosByy
: : m,n
(3.137) ‘

vhere x and y are allowed to have any value from -~cto +w.

We consider the function

@ © A

Q(X:Y:z) =[/S(x',y') P[\/(x-x’)2 + (Y—Y92 + zg]d.x'dy' z ﬁos%x' cosB.y' -
m,n

-0 o N 3

(3.138)

X Pli\ﬁx—x')2 * (y-y")2 + 22] dx'dy' - Z cosByx cosBny f(lB,?1 + Bﬁ,z)

m,n

* M. E. Rose and A. M. Weinberg; MonP-297. | .
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where f(Bﬁ + Bﬁ,z) is the two-dimensional Fourier transform of the point
slowing down kermel, P(r):

P(BS + B3,2) =/f e-i[B"?J' anﬂ p["/fa + vla + z2] df ayl . (3.139)

The function q(x,y,z) can be viewed as the slowing down density in an infinite

medium in which the infinite array of positive and negative sourcea defined
by (3.137) is situated. Since, according to (3.138), q(x,¥,z) vanishes on
the boundary of the block, it can also be viewed as the slowing down density
in the finite system due to a single point source at x =y = 2z = 0, provided
the extrapolation distance is energy independent. A Tange measurement results

in the observed 2kth moment z2k:

@
/Z%(°:°:Z)& Z wak cosBpx' cosBpy' P( x'2+ 12 ) dx'dy‘'dz
Yoo

)

/;(o,o,z)dz /Z]LosB,g cosB,y" Pé/x' y'2+22>dx'dy'dz

-
(3.1%0)
We now show how the moments in an infinite system can be expressed in
terms of the observed moments in the finite system. Since P(x,y,z) is an

even function of x,y,z, we can replace cosB x' cosB,y' by cos(Bgx + Bpy) in

(3.140). Now retaining only even functions /

BT R
cos(Byx + Bpy) = DD (1) Bi(‘V-B)Bisxﬂ‘V-s)yas

& & @ 2',caﬂ (3.141)
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vt{ere o _pc2s is the binomial coefficient

Fog = ~(2¥)1 .
27" 28 2 -8)]! (2s)!

Upon substituting (3.14%1) into (3.140) we find

‘) ) v 2(?- ) 2 f({ ) h
RPN ST B )] # e E) -
m_n

£

22K - =0
(-1)” 2(? -s) 28 ppr 2(P -a) 28 .
¥y~ P(r)ixdydz .
LEZ L G fff |
The integrals which appear in (3.142) are of the form (3.142)

Az = ﬁ 221y23,2L p(r)axdydz,

and can be evaluated by shifting to polar coordinates. Thus
18] 2L (21)! (23)f (2L): (1 + § + L)! —@m

%ym 20 = (3.143)
it 3t L! (24 + 23 + 2L)!¢
Upon substituting (3.143) into (3.142) we obtain
Z Z ( )") 2(? -8)_2s (2k)! (¥ +k)! 2 2(V+k)
-1 1 1
. 2 2, at (9 -s)lk! [2('/ +x)] ! (3.14k)

2(« -8)328 9’ ;é:i
s! (v-8)! (29)!

which is an infinite system of linear equations relating the observed moments

z2k to the infinite system moments z%. The system can be solved for each

—

zg.}“in terms of the z2k by successive approximations, in which, at each atage
of the approximation only a finite mmber of equations and unknowrs are used.
Such a process will converge well if the block d.imgnaion is large ccmpared to

the slowing down range.

.




A III-61
If the source, instead of being concemtrated in a point, is distributed

over the z = O plane like cosB,x cosB,y, only the term m = n = O appears in

(3.144). The infinite second moment can then be expressed explicitly in terms

of the measured finite system moments:

s e e

22+—B§ l 4—3

25, (3.145)

e

1+B§zz+ B“t +—Bﬂ

and this expression gives the correction for converting —2-2- into 22 .

Equation (3.145) is of practical importance since measurement of fission
neutron ranges are sometimes performed by using the thermal neutrons from

a thermal columm which are distributed like cosB,x cosB,y to produce fissions:
in a flat plate of fissionable material. The fission neutrons in such an
arrangement will be distributed also as cosByx cosBgoy, and therefore the results

of this section are applicable.



