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Preface

At the Neutron Physics Conference in June 1961, four lectures 
on experiments in neutron spectrometry were given in the general 

series and a fifth in an extra session on scattering of neutrons 

by liquids. No formal manuscripts for these talks were prepared, 
and the lectures involved such a large number of slides that it was 

thought better to publish an abridged version. The following 
paper was actually prepared for delivery as the Oliver E. Buckley 
Lecture at the Baltimore Meeting of the American Physical Society 

in March 1962. The material given in it was included also in the 

lectures at the Neutron Physics Conference, except for the very 
recent results ^'Eigure 22] of Dr, H. Watanabe and myself on the spin 
wave dispersion curves in magnetite*,

A review article covering other, aspects of the subject will 
appear in the volume Materia Is Science Lectures edited by 

E„ Leonard Jossem, to be published by the Ohio State University 

Press Reference can also be m*ade to the volume of conference 

papers Inelastic Seattering of Neutrons in Solids and Liquids 

published in 1961 by the International Atomic Energy Agency, Vienna,

B, No Brockhouse



It was recognized many years ago that study of neutron in

elastic scattering would yield a variety of information not easily 

obtained in other ways. The first measurements were reported from 
Cambridge University in 1947 by Cassels and Latham^ who studied 

the total cross section of iron (and later of other materials} 

and drew inferences about the lattice waves in the form of "Debye" 

temperatures. The first crude studies of the energy distributions 
were made about 1951, using absorption methods, by Egelstaff^ 

at Harwell and by D, Hurst and myself at Chalk River-^. All 

these experiments were qualitative only; they were valuable at 
the time as tests of the neutron scattering theory but gave no 

essentially new information about the specimen itself.

In 1952 a spectromieter was set up at the NRX reactor at 
Chalk River to measure actual energy distributions. Before the 

experiments gave any definite results, the "lamp" burned out-—  

the reactor had an accident. When it was turned on again about 
eighteen months later, the spectrometer was set up once more, and 

studies^ of energy distributions have been carried on from August 

1954 till the present time, almost without interruption.

The first experiments were again qualitative. Among other' 

things, the experiments verified the existence of the quantum

of lattice vibrations the phonon-— and the quantum of spin
ves the magnon---in a striking and decisive way.

The scattered neutrons energy distributions could be interpreted.

wa



intuitively, as the result of collisions between the neutrons

and entities the phonons and magnons having definite energies
and momenta, energy and momentum being conserved in the collisions. 
This, of course, was as predicted by existing theory.

Since about 1957 the experiments have been in a new phase 
in which accurate experiments are yielding reliable information 
about the forces between the atoms in solids and in liquids. 

Although the results for liquids are highly interesting, my talk 
will be restricted to the studies of solids, and in particular 
to one class of experiments in solids ? experimtents which yield 

in a very direct way’" the dispersion relation betv'een the frequency 

and the wave length of the lattice vibrations, or of the spin 

waves, in a crystal.

Now one may ask; "Why" are neutrons so useful in the experi

ments? Why not use some other radiation, say X-ray^-s or infrared?" 
The answer lies in the relation between the energy^ and the rr.omentum 

of the neutron; that is between its energy and its wave length. 

Neutrons emerge from a reactor with an approximately Maxwellian 
spectrum at a temperature slightly higher than the teirperature 
of the moderator, which in turn is usually somewhat higher than 

room temperature. Thus, the spectrum might be som,ewhat as shown

in Figure 1. Room temperature neutrons with energies of 25
omillivolts have wave lengths of about 1.3 A; those with energies 

of one-tenth of a volt have wave lengths of about nine-tenths of 
an angstrom. Thus, neutrons have simiultaneously energies of the
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order of the characteristic energies in solids and liquids and

wave lengths of the order of interatomic spacings. On the other
ohand. X-rays with wave length 1.8 A have energies of about 7000 

volts many orders of magnitude larger than the characteristic 

energies, while room temperature infrared radiation has a wave 
length of five hundred thousand angstroms. Thus, with X-rays, 
one cannot get high enough resolution to measure energy distri

butions while with infrared, one can see only atomic motions 

in which very large numbers of atoms move together as a group.
With neutrons one is able to see disturbances of almost any wave 

length or energy likely to occur.

In the experiments, one selects from the spectrum a narrow 
substantially monoenergetic, beam of neutrons. The neutrons scatter 

from the specimen and are observed at different angles; their 

energies after scattering are measured by a spectrometer. The 

initial and final energy selections may be made either by Bragg 

reflection by a crystal or by measurement of the time of flight 

of the neutrons over a known path length.

Figure 2 shows an actual experimental set-up. White neutrons 

from the pile fall on the mionochromating crystal Neutrons of 

the desired wave length are Bragg reflected from the monochromator 
and impinge on the specimen. Scattered neutrons are observed at 
some angle 0, and their energies are measured by Bragg reflection 

from the analyzing crystal. The wave lengths are determined from 
the angles 26j4 and 28^ using the Bragg law.

- 4 -
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It is convenient to begin by discussing the Bragg law, the
5conditions on elastic coherent scattering by a crystal. The 

Bragg law may be written as shown in Figure 3. The difference 

between the incoming and outgoing neutron wave vectors is equal 
to a vector (T) of the reciprocal lattice. The vector is a
vector normal to the reflecting planes and having a length any 

integer (n) times the reciprocal of the spacing (d) between the 
planes. The scattering is elastic, so the energy transfer is zero. 
The wave vectors k have magnitudes as defined and directions in 

the direction of propagation of the neutron.

The termini of the vectors qj form the reciprocal lattice, 
and the Bragg law can be displayed graphically as the Ewald con

struction . The Bragg law is satisfied when one can draw incoming 
and outgoing vectors (of equal length) in such a way thatJ<Q 
begins on a reciprocal lattice point and ends on another.

In Bragg scattering the quantum numbers of the crystal are
unchanged in the scattering process. We now consider the one-

phonon process, in which the quantum numbers of one of the

normal modes of the crystal are increased or decreased by one.

Then if the normal mode considered has a frequency V  and wave
5vector q, the one phonon scattering is described by the inter-

/ w \ .

ference or momentum conservation condition:

k  - k' =  27TT - q
/VAO
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and the energy conservation condition:

E - E' = -hV- o

The interference condition can be displayed in the reciprocal 
lattice as a generalized Ewald construction; in this case the two 
vectors are not of equal length, their lengths are determined 

by the energy conservation conditions.

The lattice vibrations^ fall into branches. For each wave 

vector q there are 3n vibrations where n is the number of atoms 

in the primitive unit cell; the number 3 comes from the three 
possible orthogonal directions of polarization in space. The 
lattice vibrations have the syrrunetry of the reciprocal lattice: 

the frequency repeats over reciprocal space, and we need consider 
only the frequencies within a single zone about a reciprocal 

lattice point, the frequencies in other zones being identical.

Thus, along a horizontal line through a series of reciprocal 
lattice points, the frequency of a particular branch might vary 

with q as shown by the solid curve in Figure 4. Along the line 

of our vector , the frequency might vary as shown by the 

dashed curve. There is thus a three dimensional dispersion re

lation for each branch (j) ; V  - V-; (q) , where q is defined only 
over one zone of reciprocal space centered about the reciprocal 

lattice points, and the dispersion relation repeats over reciprocal 

space,
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We recognize neutrons scattered in the one phonon process by 

the fact that they occur in groups in the energy and angular 
distributions. We have four unknowns, the three components of q

.a a a

and the frequency, and we have five equations. Thus, we have 

five equations in four unknowns, and solutions can occur but 

rarely. The neutrons occur in groups corresponding to the 
solutions.

In the experiment shown graphically in Figure 4, we might 
find three groups corresponding to one phonon scattering from the 
branch shown, two in energy gain (phonon annihilation) and one in 

energy loss (phonon creation). The centers of the groups would 

give us the frequency by energy conservation, and the wave vector 
by completing to the nearest reciprocal lattice point. Thus, 

the experiment shown would yield three points on the dispersion 

relation. The experiment would then be repeated at different 
crystal orientations, angles of scattering, and perhaps incident
wave lengths, and the dispersion relation built up.

It will be observed that in these experiments the frequency 
and wave vector are deduced simply from energy and momentum con

servation, without the intervention of any very complicated theory.

By measuring the same phonon (with reduced wave vector q)
at various equivalent positions in reciprocal space, we are often

able to assign^ the character (i.e. optical or acoustical,^longi

tudinal or transverse) from the intensities of the neutron groups.

- 10 -



pFigure 5 shows our first experiments , made in early 1955 

on an aluminum crystal. At the right are plotted distributions 

showing the counting rate vs. the setting of the analyzing 
spectrometer. An auxiliary scale shows the outgoing energy; the 

incident energy was 63 millivolts. The experiments were carried 

out at a fixed angle of scattering, the five distributions corre
sponding to five orientations of the crystal with respect to the 

incident neutron beam, as shown in the reciprocal lattice diagram 

at the left in Figure 5. The positions of the centers of the 
neutron groups are plotted as shown by the code numbers.

Despite the poor resolution, it is clear that neutron groups 

are observed and that the conservation laws are obeyed. Experi
ments such as these put the phonon in almost the same category of 

reality as the experiments on the photoelectric effect and the 

Compton effect placed the photon.

Figure 6 shows dispersion curves for two symmetric directions

in the reduced zone, the cube edge and the face diagonal. The

points were obtained from experiments similar in principle to those
of Figure 5. Points were obtained by A, T. Stewart and

9myself at Chalk River , and at about the same time, by Carter,

Hughes and Palevsky^^ at Brookhaven. Results obtained somewhat
11later at the Stockholm reactor by Larsson, Dahlborg and Holmryd

are also shown. and large, the neutron results agree well

within the rather large errors. Dispersion curves deduced by Walker 
from X-ray intensity measurements,, using an entirely different

- 11 -
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though less direct method, are also shown. Again, the agreement 
is satisfying, though systematic discrepancies occur.

Dispersion curves such as these are interesting from at least 
two points of view.

1. Since they describe completely the dynamics of the crystal 

insofar as it is harmonic, they can be used to compute 
thermodynamic properties such as the specific heat or 
electronic transport properties such as the electrical 

conductivity.
2. Since the dispersion curves are determined by the inter

atomic forces in the crystal, the experimental results 

can be analyzed to determine the nature of the interatomic 

forces,

For me, it is this latter application which is the more 

interesting.

Dispersion curves computed from measured elastic constants 
using a force model of Begbie and Born^ are shown as dashed lines. 

The model assumes general (non-central) forces between first 

neighbors in the crystal„ The general resemblance is very satis
fying if one recalls that no fitting to the neutron results was 

used. Nevertheless, it is clear that a more complicated model 

is required.

nFigure 7 shows results on germanium obtained in 1957 by 
P;- K. Iyengar and myself. Germanium has two atoms per primitive

- 14-
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unit cell; there are, therefore, six branches to the dispersion 
relation. In the symmetry directions shown, along the cube edge 

and the body diagonal, these are: a longitudinal optical branch,

a doubly degenerate transverse optical branch, a longitudinal 
acoustic branch, and a doubly degenerate transverse acoustic 
branch.

Analysis of the results according to the Born-von Kirmdn
theory^ showed that a complicated force model involving long range
forces between the atoms was required to explain the results.

1Cochran showed that these long range forces probably are electro
static forces arising from the mutual polarizabilities of the ions.

These experiments had other interesting results. For one, 

they laid the basis for a small but currently flourishing field 
of physics, the interpretation of the multiple phonon bands in 

the far-infrared spectra of crystals in terms of phonon energies 

at symmetry points in the crystal.

In Figure 8 is shown the far-infrared absorption coefficient 

of germanium^^ as a function of the infrared wave length and fre

quency. There is considerable structure with a fairly intense
12peak at about 10.4 x 10 cps; (remember the logarithmic ordinate

scale). First order (one-phonon) infrared absorption is forbidden

in germanium by symmetry. Higher order (multiple-phonon) processes,

however, are allowed. There had been considerable speculation
1 0that the sharp peak at 10.4 x 10 cps was, in fact, the reststrahlen

- 16 -
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frequency, permitted by some small perturbation causing the 

breakdown of the selection rule against first order one-phonon 

absorption.

One-phonon absorption occurs for phonons with q 0„ because 

of the long wave lengths of the infrared radiation. Two-phonon 
absorption occurs for phonons having the sum of their wave vectors

therefore, for phonons with equal but opposite
/W v ^  / v w Z

wave vectors.

From the neutron results shown in Figure 7, the optical 

frequency (at q = 0) is 9.0 x 10^^ not the 10.4 of the main infra- 

red peak. However, the sum of the TA and TO frequencies near the 
zone boundaries is very close to 10.4. It will be observed that 

the branches are quite flat. Since these are symmetry directions, 

the frequencies do not change to first order as we go away from 
the direction (the first derivatives of the frequencies normal to 

these directions are zero). Therefore, there are large regions 

of q-space which have substantially the frequencies on these 

curves. Thus, the intensity and sharpness of the main infrared 
peak is explained: it arises from two phonon (sum) processes

involving the sum of these flat transverse acoustic and transverse 

optical branches.

Other features of the absorption can also be explained be

sides this main peak. The highest observed frequency in Figure 7
12IS the optical frequency at 9 x 10 cps. Thus, the maximum

- 18 -



frequency in the two-phonon process is 18, and indeed there is a 

cut-off in the spectrum of Figure 8 at this point. Similarly, 
the three-phonon cut-off occurs at 27. In fact, every major 
feature of the absorption curves can be interpreted as combinations 

of features of the dispersion curves.

Since then the infrared spectra of a considerable number 
of materials have been analyzed (by other workers) to obtain mean 

phonon energies at these symmetric regions of reciprocal space.

In the experiments up to 1959 straight forward methods were 
used. The energy distribution of initially monoenergetic neutrons 

scattered by a specimen in a fixed orientation through a fixed 

angle of scattering was studied.

Suppose we wish to measure the frequency of a phonon at the 

zone boundary in the (111) direction of the reduced zone. Referring 

to Figure 9, we could select the point B in reciprocal space, set 
up the experiment as shown, and measure the energy distribution, 

that is, the length of - k '. We have no assurance that a neutron 

group would appear at B, instead one might appear at B'. Then 
we would have to set up new experiments until the group appeared 

at B, or until the frequency at B could be obtained by interpolation.

We can improve matters by arranging things so that the vector 

- k ' lies nearly along a direction in which we are interested. Then 

any neutron group observed will probably be close enough to the 

desired direction to be interesting.

- 19-



A.E.C.L. Ref. # A-2606-G

Iro01

113113

B \
222 222

002

220
220000

222 002 222

Figure 9



These experiments are unusual in that they are parametric 

experiments. We wish to measure the dispersion function V(q) , but 
the straightforward experiments permit us to obtain only a pair of 

values, say and which are themselves functions of the actual
independent variables.

More sophisticated experiments^^ allow us to study exactly the 

regions in reciprocal space in which we are interested. Suppose 
we wish to study the line in reciprocal space F to F '. If, as we 

change the analyzing spectrometer setting (that is the length o f ^ ' )  

we simultaneously change the angle of scattering by the correct 
amount, we can arrange to stay in the desired direction. If, 
furthermore, we also change the orientation of the crystal, we 

can arrange to stay at the same point in reciprocal space and 

actually take an energy distribution at the particular wave vector 
in which we are interested.

Other variations can also be performed. Because the incoming 

and outgoing neutron energies and wave vectors enter symmetrically 
in the controlling equations, we can reverse matters and use a 

fixed analyzer and variable incoming energy. This has technical 

advantages.

To achieve these more sophisticated experiments, we use a

spectrometer in which the various angles (Figure 2) are independently

and electrically controlled. The incoming energy is set by the
angle 29 , the outgoing energy by 29 . These, as well as the M  A

- 21 -



angle of scattering 0 and the crystal orientation ')jj , are driven 

according to instructions printed by a computer on punched paper 
tape. The computer calculates the parameters needed to achieve 
the desired series of vector diagrams in a particular experiment 

using a program designed for that class of experiments.

Figure 9 shows at the bottom left (diagram OJK) the most 

generally used of the methods, the "constant^'" or constant momen

tum transfer method. The analyzer is set to detect neutrons of
a selected energy. The incoming neutron energy is changed through 

the spectrum, the angles of scattering and of crystal orientation 
being simultaneously (and non-linearly) adjusted so that we remain

at the same position in reciprocal space. Thus, we are able to
take energy distributions at a particular point Q in reciprocal 

space.

From an experimental point of view, this may seem a complicated 

procedure. From a theoretical point of view, however, the constant 

momentum transfer experiment is the natural experiment. Quite 
generally, the only quantities of much interest in neutron scattering 
from any system are the momentum and energy transfers.

Most of the remaining discussion will be on a series of 

experiments done over the last three years in collaboration with 
Dr. A. D. B. Woods and a number of scientists on the crystal 

dynamics of metals^^~^*^ .

- 22 -



At the left of Figure 10, we see a series of neutron groups 
1 7obtained with a lead crystal at 100°K using the constant Q method, 

at points along the line (1,1,1) to (2,2,2) in reciprocal space.
In this direction, the momentum transfer is in the direction of 

the reduced wave vector; thus, only longitudinal modes should be 
seen (since in transverse modes the atoms are moving normally to 
the direction of momentum transfer). At each Q, we obtain an 

energy distribution which can be plotted directly in terms of 
frequency. The center of the distribution gives the frequency.

The frequencies should be the same in all zones; in this case, 

we should be able to fold the curve about the zone boundary.

1 ftThe dispersion curves in the symmetry directions of the 

reduced zone for lead at 100°K are shown in Figure 11. This work 

was done in collaboration with Dr. Woods, T. Arase, G. Caglioti 
and K. R. Rao. Results are shown for the cube edge, the body diag

onal, the face diagonal, and a fourth symmetry direction on the 

square face of the Brillouin zone. We use this nomenclature in 

order to be able to include directions which do not pass through 

the origin of the zone.

The points (1,0,0) and (1,1,0) are equivalent, and the figure 
shows the various ways in which the different directions join 

together in reciprocal space. The zone boundary in the (3,3,0) 

direction is actually at the place indicated; the extension 

(actually on the square face of the Brillouin zone) has the same

- 23-
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symmetry properties and is continuous with it. We also show the 
(non-symmetric) boundary direction on the hexagonal face of the 

Brillouin zone.

Many unusual features exist in these dispersion curves. For 

one thing, they have minima at the zone boundary (the point (1,0,0)) 
The significance in terms of interatomic forces will now be dis

cussed .

We now discuss a very simplified version of the Born-von 
KArmin theory of lattice dynamics. Consider a symmetry direction 

in a crystal as shown in Figure 12. For each atom on one side of 
the vertical, a corresponding atom is found on the other. Then 

by symmetry, a lattice wave propagating in the vertical direction 
must be either longitudinal (as shown) or transverse. Consider 

small displaceijjient of some particular atom (4) and of its 
neighbors (J,') . Then the equation of motion of the .^-th atom 
is as shown: the force on the .£-th atom is the sum of forces

caused by the displacements ' of its neighbors (and of itself, 

the sum includes the term J/ = ^  ') . The force constant 
gives the force on atom X> in the direction considered when atom^' 

is moved a unit distance in the same direction. It is these 

force constants in which we are interested.

If we substitute in the equation of motion the expression for 

the displacement caused by a simple traveling plane wave, we ob

tain an expression for the angular frequency cu in terms of the

- 26 -



A.E.C.L. Ref. it A- 2783-A

ro

Mu =-I^ U 4 6 A
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force constants. The phase of the wave (q.R ) is constant over
planes of atoms normal to q. We can, therefore, sum over the atoms
in a given plane and arrive at the expression shown which indicates
that the quantity mass x (angular frequency) can be Fourier

analyzed, the Fourier coefficients being linear combinations
of the interatomic force constant and effectively force constants
between planes of atoms. The sum over planes must be taken to a

value N such that the force constant ^ = 0  for planes n>N.n

Thus, if we Fourier analyze the dispersion curves (in the form
2M o  ) we obtain interplanar force constants and, thus, the ranqe of 

the interatomic forces. This was first pointed out by Foreman and 

Lomer^^ in 1957.

In Figure 13, we show the Fourier composition of the longi

tudinal waves propagating along the cube edge. The experimental 

values of Mu> are shown together with least square fits involving 
five planes and twelve planes. With twelve planes, a good fit is, 

of course, obtained; with five planes, the fit is not quite so 

good and is probably outside the errors. The Fourier components 

from other planes are also shown. Clearly the forces are very 

complex.

Figure 14 shows the interplanar force constants plotted 
against the plane number and the distance between planes. It is 

clear that planes of atoms six planes away have an appreciable 

influence. The nearest atom in a plane six planes away is the
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Figure l4
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seventeenth neighbor atom. Thus, the range of forces in lead 
is very great indeed.

We now return to the dispersion curves of Figure 11. If 
we look closely at the curves, we see several small anomalies.
On the theory just discussed, these would give rise to very 

high Fourier components and, thus, would correspond to forces 

between even more distant atoms.

2 2In 1959, Kohn proposed that there should exist in the 

dispersion curves of metals small anomalies at which the dis

persion curve had a logarithmically infinite slope. The position 
of the anomaly was related to the position in reciprocal space 

of the Fermi surface of the metal.

We believe that the anomalies we observe are real, and that
they are essentially the anomalies of Kohn.

Let us now consider in detail the longitudinal branch in

the (111) direction of the reduced zone.

Using the constant Q method, we march successively through 

points along the (111) direction of reciprocal space, which is 
also the (111) direction of the reduced zone, taking energy 

distributions at each point as shown in Figure 10. The centers 

of the groups give frequencies which, when plotted, show an 

anomaly near the zone boundary. The series was continued across 

the zone boundary, and the anomaly was found at the corresponding
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position in the next zone.

Although the anomaly is small, we do not believe that it 

could arise from fluctuations in peak position due to counting 
statistics. However, there could conceivably be some unknown 
contaminant effect which shifts the position of the peaks. To 

check this, we repeated the experiments using other neutron 
energies. The results for the region of the anomaly, plotted 

on a large scale in the reduced zone, are shown in Figure 15.

The different runs at different energies are shown by 
different symbols. A and B refer to the two zones in reciprocal 

space shown in Figure 10, Every run showed the anomaly at 

roughly the same position.

In Figure 15, we show the Fermi surface of lead, in the ex

tended zone scheme based primarily on de Haas-van Alphen measure-
2 3 18ments by A. V. Gold but slightly modified to fit our results

According to Kohn, anomalies occur when the phonon wave vector

plus any reciprocal lattice vector just equals a diameter of

the Fermi surface. The phonon can then cause large numbers of
almost elastic virtual electron scatterings with a consequent

modification of the frequency of the phonon.

The Fermi surface is based on the free electron surface 
containing four electrons, shown as the circle in Figure 16.

The anomaly shown in Figure 15 can be identified with the 
Kohn anomaly produced by scattering electrons with wave vector
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transfers marked F. If this identification is made, the diameter
of the real Fermi surface is found to be no more than 1% greater

than the diameter of the free electron surface (in the (111) direc
tion in the extended zone scheme).

In the (110) direction, we also see an anomaly which can be

identified with the Kohn anomaly marked G. For this case, the 
anomaly indicates that the diameter is about 4% smaller than the 
free electron diameter. This is in excellent agreement with the 

de Haas-van Alphen effect measurements of Gold, who found that the 

closely related orbits in the third zone have the area shown, 
about 1/3 smaller than for free electrons.

The anomaly we identify with the Kohn anomaly G of Figure 16 

is indicated by the arrow in Figure 17. For free electrons, its 
position would have been as given by the dotted arrow. Again, 

the anomaly was checked by studying it along several different 

lines through reciprocal space, and again it appeared in each 
experiment.

To sum up; In lead, we have forces extending to very great 

distances; these forces seem to arise from details of the electronic 
structure and show evidence of the influence of the Fermi surface.

Lead is a substance in which there is a strong electron-phonon 

interaction. This is jargon which expresses the fact that the wave 

functions of the electrons in lead are strongly affected by the 

positions of the ions. Correspondingly, the detailed behavior of
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the conduction electrons has an important influence on the lattice 

vibrations.

19 20 • •We have also studied ' another metal sodium in which

the electron-phonon interaction is small. In sodium, the conduction

electrons are spread out almost uniformly through the crystal, and
are comparatively little affected by the positions of the ions.
Correspondingly, the influence of the details of the electronic

structure on the lattice vibrations is smaller than in lead.

18These remarks can be made more quantitatively in terms of
the electron-phonon matrix element of Bardeen and calculations of 

24Toya

Measurements were carried out^^'^*^ on a sodium crystal at 

liquid nitrogen temperature with Dr. Woods, Dr. A. T. Stewart and 

Mr. R. H. March, in collaboration with Dr. Raymond Bowers of Cornell 
University who grew the very large crystals used. The results for 

three symmetric directions are shown in Figure 18. Many other 

measurements were also made.

24The solid curves are theoretical calculations of Toya , pub

lished in 1958 in a Japanese journal The Journal of the Institute

of Catalysis of Hokkaido University. Toya solved the Hartree-Fock 

equations of the metal in the presence of lattice vibrations. His 

equations exhibit explicitly the Kohn effect, although he did not 

comment on this, and indeed the anomalies are very small in sodium. 
(We searched for the anomalies at a number of places at which they
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would occur for free electrons without result; they are, in fact, 
small) .

The agreement of T o y a 's calculations with experiment is quite 
good, considering that no fitting whatever was involved. We have 

analyzed the experiments in terms of the Born-von Kdrm^n theory 
and have determined the interatomic force constants in the metal.
In contrast to lead, the forces are of comparatively short range: 

they extend to fifth neighbors only (or perhaps a trifle farther), 
and a qualitative fit can be obtained using first and second 

neighbors only. The forces have been found to be substantially 

central, and can probably be derived from a potential with fair 

accuracy.

Up to this point, we have been considering ideal harmonic 

non-interacting normal modes. But, as evidenced by such effects 

as thermal expansion, the normal modes do interact, causing the 
phonons to have a finite lifetime. The phonon lifetime is re

flected through the uncertainty principle in an energy broadening 

of the neutron groups.

25In Figure 19, we see an example of a neutron group ; at low 

temperatures, it has probably just the resolution width; at room 

temperature, the group has broadened and shifted in frequency. At 
the right, we see the energy broadening, plotted against the re

duced wave vector, for the (110) transverse branch. This broadening 

is quite large: at the zone boundary, the corresponding lifetime
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is only slightly longer than the period of the vibration. Such 
extra-ordinarily short phonon lifetimes were previously found by 

our group^^ in lead and, independently, by Larson, Dahlborg and 

Holmryd^^ at Stockholm, in aluminum.

In the last few pages, I would like to discuss the dispersion 

relation of the spin waves in crystals. In neutron diffraction, 

the time-independent aspects of the magnetic structure of materials 
is studied. Neutron inelastic scattering gives access to the 
magnetic dynamics of the material, the behavior of the magnetic 

structure in time.

An aligned magnetic system has a set of normal modes the
spin waves which behave in scattering neutrons much like the

lattice vibrations. In particular, one-quantum scattering occurs 

in an exactly analogous way to one-phonon scattering and results 
in neutron groups which can be used to determine the dispersion 

relation for the spin waves.

The neutron groups produced by spin waves can be distinguished 
from those produced by phonons by the behavior of the intensities 

when the spin system is reoriented by application of a magnetic 

field, that is, the magnon neutron groups have a characteristic 

magnetic signature.

Experiments on magnetic inelastic spin wave scattering were 

first done by R. D. Lowde^^ (at Harwell about 1955), who studied 
the diffusely scattered intensity without performing energy analysis.
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27Experiments on magnetite carried out at Chalk River in 
1956 demonstrated the applicability of the conservation laws to 
spin wave scattering, and thus, the reality of the spin wave
quantum the magnon and gave a crude partial dispersion curve
for the acoustic magnons (Figure 20) c

In 1960, the dispersion curve of the spin waves in a metal---
28a face central cubic alloy of cobalt with 8% iron ^was determined

by R. N. Sinclair and myself as shown in Figure 21. The quadratic 

relation between the quantum energy and the wave vector, which is 

characteristic of ferromagnetic spin waves, was obtained. The 
dispersion curve could not be followed to higher energies because 

of the limited range of neutron energies available in the Maxwellian 

spectrum from the reactor. This curve is certainly among the most 
cogent evidence for the existence of spin waves in metals.

Very recently, the study of the spin wave in magnetite has

been taken up again,in collaboration with Dr. Hiroshi Watanabe
from Tohoku University. In this work so far, the complete acoustic
dispersion curve and a part of one optical spin wave branch has 

2 Qbeen measured as shown in Figure 22. Although a complete 
analysis has not been carried out, the results so far are sub

stantially in agreement with the Ndel theory of ferrites and with 

current ideas on the spin wave spectrum due to Kouvel^*^, Kaplan^^ 
and others. The results indicate a large interaction (/^2.3 x

10“^ ev) and probably much smaller values for J and A com-
plete analysis of these and other results would probably enable
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good values for these interaction constants to be obtained and 
would also provide a rigorous check on the validity of the general 

picture.

This concludes the paper. The experiments take a consider

able length of time, but we can look forward, over the next few 

years, to rather accurate measurements on the dispersion curves 
for both the lattice vibrations and the spin waves in most simple 

materials. This should lead to greatly improved understanding 

of the interactions between the atoms in crystals.
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