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ABSTRACT

The ''gauge technique" for solving field theories
introduced in an earlier paper2 is applied to scalar
and vector electrodynamics. It is shown that for scalar
electrodynamics there is no X¢*2¢2 infinity in the
theory, while with conventional subtractions vector
electrodynamics is completely finite. The essential
ideas of the gauge technique are explained in §3, and
a preliminary set of rules for finite computation in

vector electrodynamics is set out in Eqs. (7.28) - (7.34)
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§ 1. Introduction

The phenomenal success of renormalized perturbation theory
for electron-photon interactions has on balance probably been
& disaster for the development of quantum field theory as such.
The disaster lay in the somewhat fortuitous circumstance that
the magnitudes which the theory was powerless to compute
happened to be "unobservable" quantities like self-mass and
self~-charge. Even when for renormalized meson interactiouns
it became apparent that such magnitudes included measurable
quantities like the f+ - vo (self~) mass differences, theoreti-
cal interest unfortunately did not shift back to the central
problem of trying to discover 1if and under what conditions one
might expect finite solutlons of field theory integral equations
to exist.

Physically of course the most attractive possibility would
be 1if at least for some theories — and this may include some
that are currently considered non-renormalizable — finite solu-
tions did exist but only for special values1 of the coustants
of field theory. In an earlier paper2 it was suggested that

this last possibility might be the one realized for electro-

dynamics of spin-one charged mesons. The suggestion was based
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on the use of a new (non-perturbative} approximation procedure
which made consistenﬁ use of Ward's ideatity. One purpose of
the present paper 1is to exploit this spproximation technique
not ounly for the electrodynamics of soin one, but also of spin
gerc mesons, Bven though in the latter case one is dealing
with a theory with only a few infinities, 1t is instructive to
follow how at least some of these disappear at the crudest
attempt to improve the conventional percurbation approximation.

The paper is divided into four parts: Part I gives the
main theoretical ideas and the general approximational schieme;
Part II sets out the equations for the general two and three
particle Green's functions, in the two particle unitarity
appraximncion; in scalar and vector-electrodynamics; in Part
II1 these equations are solved comsistent with the requirements
of analyticity and unitarity of the theory, and in Part 1V we
give the final rules for computations of S-matrix elements.
These rules replace the Feynman rules and are guaranteed to
provide finite integrals (including those for the remormalization
constants) in the theories discussed.

The paper unfortunately is long. The reader may perhaps

n easier to go strai on ich briefly sets out

he main id 0 e calculational technique before returni

to Part



Part I

This part is an amplification of the ideas of paper 1.
In § 2A we derive a boundary condition for the high energy
behavior of (a product of) the basic two and three particle
Green's functions, If this boundary condition is satisfied,

integrals involved in all othexr Green's function would exhibit

an approximational stability for high eunergy behavior and

will essentially be finite. 1In §2B we turn to the basic Green's
function and show that for gauge theories an approximation
technique exists which makes the vertex function equation
essentially redundant, so that the general boundary condition
is equivalent in such theories to a high energy limitation on
the behavior of just the two particle propagators. This allows
us finally in § 2C to connect the finiteness of (all integrals)
in a gauge theory with the (almost kinematical) information on
high energy behavior contained in the well-known spectral

representation of the propagator.

$2. The Integral Equations of Field Theory

A field theory is defined by a set of integral relations

among its Green'’s functions. As a rule all such relatioms
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involve an infinite number of terms; thus of their nature the
integral equations need some type of approximation procedure
for their solution. Depending on the approximation procedure
to be followed, one can write down a wide variety of equivalent
sets for one and the same theory. One such set is due to
Dyson3 and Schwingerh; another is the unitarity set defined

in §ZC; still another set is due to Symanziks.

n) Dyson-Schwinger set; the fundamental criterion for the

stability of an approximation scheme and high enercy

boundary conditions on ', D and S

For a typical 3-field (eg. electron-photon) interaction

the well-known Dyson equations are

- -1 2&
S Z,S, +2 e FSPOD

-1 2
D~ = 2;D " +2Z e IFsPos

M =z +e2Jr\SPS|—\D + et

M = M, b, s]

S and D are the (renormalized) electron and photon Green's

functions; [ﬁ is the (renormalized) vertex function and e is

(2.1

(2.2

(2.3

(2.4



the physical chargeo6 The three functions [, D and S
we shall refer to as the basic Green'’s functions, M represents
any other Green's function; the important remark of the Dyson
formalism is that all M's are functionals of the three basic
Green's functions [°, S and D.?

The Feynman solution of £ield theory is recovered ar a
power series iteration of (2.1) ~ (2 .3), the iteration starting

with

-

S = ¥.p ~ m, D= pé - “2 and Z1 = 22 = 23 = ],

This assumption of course right away precludes the possibility
that the Z's might be zero., (It is worth remarking that
these zeroeth gpproximations (e.g. S-1 = y.p - m) do not
coincide witi the inhomogeneous terms of the corresponding
integral equations (e.g. 22( Yo p - mb)))a

In the sequel we wish to set up a different approximation
procedure for solving a field theory. Basically the idea is
to find non-perturbative solutions of the basic set (2.1) - (2.3)
and then to substitute for D, S and [0 inm (2.4). To estimate
the high energy hehavior of the integrals involved in M,
one knows from Dyson-Schwinger formalism that M = ZM(N) where

M(N) has the following structure:
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Here E7 and Ee are the number of external photon and electron
lines and N 1is the number of irrecducible vertices. Now it is
clear from (2.5) that the high energy behavior of the integrand
(and therefore of the integral as a function of external momenta)
is independent of the order of iteration8 N if and only if9
3 2
sMDp® = 0(1/k%) (2.6)

for large k. Equation (2.6) is the fundamental criterion for

the stability of any approximation procedure for computing M

which bases itself on the Dyson formalism. It serves as the

boundary condition to be satisfied by the (product of the)

three basic Green's functions.

This stability criterion is satisfied by the basic Green's
functions in all "renormalizable'" theories. A straightforward
iteration of (2.1) - (2.3) shows that S = So = 0(1/k),

D, = 0(1/k), T

and S =~ So = 0(1/k2). M = Po = 0(k) for electrodynamics of

D

¢4

r‘o = 0(1) for spinor electrodynamics

R

spin zero particles;lo Our contention in I was that the

boundary condition (2.6) can be satisfied by the solutions of



Eqs. (2.1) - (2.3) even for some non-renormalizable theories,
provided these equations are solved non-perturbatively, with
possibly some extra conditions on the constants occurring in
(2.1) - (2.3). The present paper is concerned with a detailed
verification of this statement for electrodynamics of spin one
particles. We have chosen electrodynamics4 as the prime example
because a proper use of Ward's identity makes the problem of
finding non-perturbative solutions much easier, and because

for such theories, condition (2.6) can be reduced (as will

be shown in § 2B) to a boundary condition on the charged particle
propagator alomne. Just to illustrate how the new technique

in any case improves the convergence properties of the integrals
in field theory, we consider all along also the conventionally

renormalizable theory of electrodynamics of spin zero particles,

(8) The Gauge Approximation and a Reformulation of the Stability

Criterion
In a gauge invariant theory as a consequence of current
conservation, the vertex function [ and the propagator S

satisfy the Ward-Takahashi identity

t Pa(p.p') - S'l(p) - S'l(p') ; p=p'+t

(2.7)



This identity makes Eq. (2.1) of the Dyson-Schwinger set redun-
dant. In fact one may define S from the relation

s'e) =t T (. 2" yop! = m

Also 2. = Z2 (=2).

1
Conversely of course the identity states that if S is known
a part of I" is determined and is no longer arbitrary. We

shall call this part [ A[S]; thus

M =M%s) + 8

where
Areq o o=l _ qo-1 B .
e I, [s] S s, e, Pa = 0

Now these identities do not in any way uniquely define the
split of r‘, but whatever the precise definition of r A[S],
since zso"1 is part of § (see Eq. (2.1)), 2l , the
inhomogeneous part of the vertex function equation which is

Tosth (p+pn,

2,2
p° - p

(usually) defined as Z(So

must form part of [ A [S] . Therefore, quite generally, ZPO
can be eliminated in Eq. (2.3) in terms of r‘A in the

following manner. Write Eq. (2.3) in the form

(2.8)

(2.9)
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ro=2zn_+x [I,s] (2.10)
Define
M Aaz +F (2.11)
a oa a '
where Fa is a linear functional of (Sm1 - zso'l) with the
property
-1 - "1 - og"'l - '-1
£ F = (S zs 77y - (8 A
=tk [ 5] (2.12)

Using (2.11),

A A
Mg N+, -F = "+x & [F‘. s] (2.13)

Eq. (2.13) differs11 from Eq. (2.3) in having as its "inhomo-
geneous" term F‘A in place of Z r;a. Eq. (2.13) together

with Eq. (2.8) viz.

-1

S " = Z(y.p - mb) + taKn [»P . S] l (2.14)

yp' =m

now replace Eqs. (2.1) and (2.3) of the Dyson-Schwinger set.
To solve (2.13) and (2.14) we use the simple iteration

scheme suggested in I. This scheme is based on taking the



inhomogeneous term f’A‘[S-] of Eq. (2.13) as the first
approximation rj(o) to ', This will be called the "zauge

approximation'" in subsequent work.

The '"'gauge approximation" has ithe merit of decoupling

(2.13) and (2.14). Explicitly define
S(n)‘l = Z(n)(y.p-m) o+ taKa [ P(n)' S(n)]‘
1 A 7 1) L {r 1
M = LAy o, ]

where r (o) = A[S(o)_]
g{o)

')"Pé = m

and is a solution of the equation

s(2 205 ) + t K [r(°). s(°{ﬂy'p,

= m

Clearly S,I" = Iwm S(n),l"(n), provided the sequences g{n)
n -y oe

and r“(n) converge to a limit.
To see the decoupling of (2.13) and (2.14), it is sufficient
to remark that [ A[?] is a functional of S alone, so that

Eq. (2.18) is an equation for just one unknown S(o). Once

S(o), and therefore Z(o) and Yj(o). have been determined,

11

(2.15)

(2.16)

(2.17)

(2.18)
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one simply writes down r‘(l) from (2.16). At each subsequent

iteration stage there is again just one equation (Eq. (2.15))

to be solved for S(n). r (1) being determined by substitu-
tions in Eq. (2.16). This makes the method fairly practical.14
In terms of r‘A and the gauge apnravimation, we can now
restate the stability criterion. It is so easy to see from
the structure of the kernel Kls in Eq. (2.13), that if
A A[S] satisfies
by

s M #s]p? = o(1/x?). (2.19)
then

M D 2 oord (st (2.20)

To see this, we remark that K 1in general has the form (see

(2.5) with E_ = 1, E_ = 2):

b j'r‘(swn%)r (dak)rlz. so that any iteration solution of
1(:.2.16) which starts with [ =~ A and with (S I"AD%)% l/k2
will always reproduce a [ satisfying " = O(FA).

Equation (2.20) therefore not only gives us a justification
for the iteration scheme set up in (2.16), it allows us also

to replace the stability criterion (2.6) by the much simpler



relation (2.19). Assuming for the moment D = D, = ST

(2.19) reduces still further to read

sn? [s] =9(1/w)

In this final form, the stability ¢ritersion ig providin:

high energy boundary comndivion for just one Green's fun

T

ot

i.e. the meson propagarvcy S alone.

- A T

rida
£

field theory in ouy ney annrosiastivn echonc

A
reduced to the Folluwing: is theve o rhoice of [''lg

" e et e o am

i

. . o1 , =L T
which one singlie equation § =~ = 2§ T+t K, R

(23

s -

a finite solutiou?

For gauge rneories one may even anticipate the am

) ] s 4 ) ] 1] A "‘".z,
Since Ward's identity "roughly" states that ' "= 8§ 7
would seem that {(2.21) is always satisfied and electrod

of charged particles (of any spin whatever) is iutrin:.

divergence free. The mistake in the past has been taki

as the starting approximation [ = [’0 rather than | =

the problem of the present is to sharpen the "roughly"

statement above,

The discussion above may appear highly complicated.

we shall see in § 3. in practice the procedures are rat.

e erae of che o

0‘}

o

.21)



transparent and simnle. Summarizing the contents of this sec-
tion, we have used Ward's identity to provide a first approxima-
tion [’ A[S] to the full vertex function [' which depends
only on the meson propagator. In spccifying [ A there is a
degree of arbitrariness; we exploit this to choose M A[S]

in such a manner (if at all possible) that S r‘A[S] = 9(1/k),
for all directions in {(p, p') plane. Here S 1is the finite

-1 - [ -
solucion of S, ( = Z8 1 + £t K i 8], é} which satisfies
(r) o) aa

rhe boundary condition S(p) [ [ S(p)] =~ 1/p for large p.

If such S amnd [ A[:Sj] do exist, the structure of the equation

for the full vertex function M already guarantees that for

high energies [ and T A behave similarly. 1In this sense

r‘A is a good approximation to [' . The entire question of
the finiteness of a theory is thus made to depend, in this
approximation scheme, on the possibility of solving just one
equation — the equation for the two-particle Green's function —

with the boundary condition stated above.

(C) The unitarity set and the equations for S and D

The end result of the discussion in § 2B is to make
the high energy behavior of the charged particle propagator

S = and possibly also of the photon propagator D 1in case

14
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r'A is chosen to be a functional of both S and DY° —

the pivotal questions for a discussion of the finiteness of a

theory. Now the Dyson-Schwinger equations for S and D

even for the simplest choice of

(o) . (P'"P')a -1

2 y, € anpA (2.22)

(s“1 - s

and even for the simplest approximation to the kermel K still
present a horribly non-linear aspect (see § 8 where the equation
for S 1is written out in full). To expect that onme can

solve these equations using the mathematical theory of integral
equations as well as guarantee that at the same time one can
preserve the physical properties of the theory— 1like unitarity
and causality - is to ask for miracles.

That these physical properties are of crucial importance
for a correct estimation of high energy behavior cannot be
stressed too strongly. It is perfectly possible to find abproxi-
mate solutions to the Dyson-Schwinger equations for S and
D which show highly convergent behavior17 but which were
obtained for example by sacrificing the positive definiteness

which comes by considering unitarity properly.
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‘ Now field theory has unfortunately not progressed to the
extent that one can write down for any Green's function a
(spectral) expression exhibiting the consequences of causality,
unitarity and crossing. But just for the case of the two-
point functions a complete spectral representation does exist
and we would like to exploit this representation to estimate
crucial high energy behavior of S and D in conjumtion with

the gauge-technique described in § 2B.

The following is a summary of the known results. By con-
sidering the momentum transform of < OI 14 §|1)> (for simplicity

of writing the foimulae assume a scalar electron):

* * *
Ims--S[SP%ﬁT +\h%%%ﬁ%;*-~ ]S (2.23)

where (1) 6+ stands for mass shell wave functions like

9(+ po)ﬁ(pz-mz)
(2) M, Mg, etc. are the contributions from<0 | v | 3D,

<O | ¥l&D,.

and (3) Re S(pz) is recovered from Im S(pz) by the stan-
dard Lehmann-Kallen dispersion relation. It is
this dispersion relation which sets a powerful
(minimal) limit to the high energy behavior of
S; for a theory with positive definite metric it

. states that S must be at least as divergent at

infinity as S,.
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The manner in which we propose to use (2.23) is as follows:
The r.h.s of (2.23) contains [  on the mass shell for two
particles, as well as the four and higher point Green's functions
ML. Mf""" For [’ (on the mass-shell of two of the external
momenta), one can likewise write the following unitarity
relation,

++ 4 L4475 2 2 2

In F(s) = Re [ (Fo,5M" + (w55 M*+..]|2
P =m’, ¢" =m

*
0 = Im [SF6+6+M4 PR ]Ipz R (2.24)

Here F(s) =F [(p+ 2] = <013 |p 0y, , 5 8T (s

(2.25)
and ReF(s) 1is related to Im F(s) by a dispersion relation.
Using (2.24), (2.23) can be reduced completely to read
s=s[mM, M, ..] (2.26)

At this stage, not having relations like (2.23), (2.24)
for M&' M5.18 we are reduced to a use of the Dyson-Schwinger
formalism to express (as before) the M's as functionals of

S, Dand ['. Our final procedure will then be the following:
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(1) Use the Ward-Takahashi identity to define F'A[S, D];

(2) Write (2.26) with Mﬁ. MS'“ expressed as known functionals
of S, Dand ". Approximate [ = T‘A[S] to write down
an integral relation (2.26) for S.

(3) 1f a solution to (2.26) exists satisfying the self
consistent boundary condition D%S PA[S] = 0(1/k2), the
theory is finite.

(4) Also, as discussed in § 2B, the full [, computed from
(2.24) by a straightforward iteration, will behave
similarly to r‘A at high energies. To see the force
of this last remark, note that the arguments of § 2B
regarding the behavior of the integrals concerned apply
equally to (2.24). This is because the dependence on
external momenta (p) of unitarity integrals like
SF(p, k) ... Q+(k2-m2)d4k is (in genzral) similar to

d k

that of integrals like SF(P. k) 5 5 .
-m <+ ic

Summarizing: whereas the stability criterion derived by con-
sidering Green's functions other than S, D and [, gives
a general boundary condition on a product of S, D and [,

the spectral representations of S and D give additional
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information about the minimal (possible) high energy behavior
of S and D themselves. This information combined with the
stability criterion sharpens the requirements on the initial
choice of PA[S. p].

In part II we shall write down in detail Eqs. (2.23),
(2.24) and (2.26) for scalar and vector electrodynamics,19
in a two-particle unitarity approximation. In part III of the
paper these equations will be solved and the general statements
(3) and (4) will be explicitly verified. In part IV we shall
indicate how one might set up a practical calculational scheme,
consider gauge co~variance of the scheme and indicate how the
scheme may improve in successive stages to include higher

particle states and go beyond the approximation of [ ﬂ‘“A.

Part Il
This part forms the calculational heart of the paper. In
§ 3, we rapidly illustrate the main ideas of the new approxima-
tion technique which incorporates Ward's identity. In & &
the general spectral representation of A and D, and the
form factor decomposition of [', are written down and the

two particle contributions to Im A and Im D are evaluated.
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. In§5 the same is done for Im [ both for scalar and vector
electrodynamics. We also consider in § 5 representations for

C-parts (two meson, two photon graphs).

§3. The Approximation Scheme
In this section we illustrate the approximation scheme

in its barest QSSentials by computing 4, the charged meson

propagator for spin zero and spin one 2lectrodynamics. We
wish to show in particular how the use of Ward's identity

improves the convergence of the integrals in the theory and
start by solving for A aud [' by using the following two

exact equations for the basic Green's functions

In A(p) = - = |<0 | 9(0) | n)]| 2 (3.1)
n

ta Pa (pr 2" =8 1p) - a7 ") p' +t = p (3.2)

(Ward-Takahashi identity)

Equation (3.2) determines the A dependent part r A of .

In this lowest approximation other Green's functions are computed
by drawing "irreducible diagrams' for these and then by inserting
A and f‘A for the meson lines and the vertices. The result

is a theory which is more convergent than conventional per-

turbation theory.



(A) Scalar electrodynamics

If m is the meson mass, one can introduce a spectral

representation for A-l(p) in the form
-1 2 2
A7) = (- 0 z (D)

r 2.2
2p2) =1 - S‘ (pon’) 6G) 4,
g P - X% + ie

pefine Z=% z(pY) =1- [ 6(x) ax

P

Provided that all integrals converge,

22y = Z - S‘L-m) G(x) dx

- x4+ i€

Since

2,2
8 M) - 871" = (p2-p'D) [z 4| Lmm) G‘X’gx]
(x-p%) (x-p'%)

Ward's identity gives the exact relation
ca[Pa Pz

where

A= (p+p" [ Gen)” 6(x) dx]
@ a (x-p>) (x-p'?)

21

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)
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Note that [ % o (p'%-n’) = (p+o"), 2(p'D) 6, (p'%-a’) (3.10)
20
Quite generally [ has the form™ :

Mg = FaA = d_p () (pip'), Bp?, p*?, %) (3.11)

2 2

From PT invariance, B(pz, p'”, tz) is symmetric in p~ and

p'2 but is otherwise arbitrary.
Now assuming two-particle unitarity, one can write the

following equation for Im A :

* %
ImA = -A \:6+ (pz-mz) +§\"a+5+\" ] 4 or more precisely

-

L Im A (p) 2 (w)sgr (1 )8, 0"0) [ 4 8) - @t WIS I (¥ 44 (3.12)

Here [dab(t) - aeab(t)-] 6+(t2) is the absorptive part of
the free photon propagator ih an arbitrary gauge specified

by the constant a. Let us now make the first approximation
of our theory and take [ = [ A (Eq. (3.9)) on the right side
of (3.12). Using (3.3) and (3.6). and evaluating the integral,

we get

;‘-‘ Im Z(pz) = - af(a-3) 522 +2m22 IZ(pz)' 2 O(pz--m2 (3.13)
2
p
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with a = e2/81rz. Dividing by ‘Z(pz)‘ 2 we obtain equivalently

?‘.'\. Im Z'l(x) = a(3-a) (s -;smzz 0 (s - mz); s = p2 (3.14)
From the well-known analyticity21 properties of the propa-
gator and using Z-l(mz) = ], we can write the dispersion
'I.ntegx_'al22
oo
Z"l(f-:) « 14 a(3-a) (s-mg) g dx (3.15)
2 2 x(x - s + ie)
Hu
afa-3) m:Z | 8 s
m ] o+ (1 - —) 1og\---1‘-11r9(---1)
2 8 2 2
m m
(3.16)
Clearly,
Ak -1
z = 2(s) = [108 (--)] -0 (3.17)
Ba® g X
for all a > O and a ¢ 3
Asymptotically,
8
ace) . 34a3) 10g( ) | gee = Inz(s) [2.‘.9._32._ Jog? (_.i]
2s x{(5~m") (3.18)

To obtain ["A. one may substitute (3.18) in (3.9). Now note

that the factor [1og (%)-l in the expression for G(s)
m
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acts as a built-in convergence factor for the theory. To see
this, consider for example the lowest order irreducible diagram
for meson-meson scattering as shown in Figure 3.

Let the mesons Pys Py p3. pa lie on their mass shells.
If meson self energy Insertious corresponding to A and vertex
insertion r‘A are made in this diagram, the contribution
to the Dyson integrand from the (p1, pz) line in Figure 3,
equals ["(p). w) ACw) [' (u p,). Since (Eq. (3.10)),

Pa(pl. u) = (p; + u) z(u?) \ 9 2
P =m

the net contribution from the (pl, p?) line is
(p1 + u)a (p2 + u)b Z(uz)/(u2 - m2)° Thus Figure 3 with

all its insertions gives
4 2
1= § d u X(u) [’Z(uz)]

where X(u) 1is the normal perturbation theory expression which

2
behaves like 1/u4 for large u. Since [Z(&{}zz 0 [iog-z (Eii},
m

integral 1 1is no longer divergent. Even with this simplest

of modifications, apparently the need for a new subtraction

23

constant to cancel the meson-meson scattering infinity ™ has

2
disappeared and no ¢+ mz type of counter term is necessary.
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It is perhaps instructive to compare our expressions for

A and " with those obtained from perturbation theory. The
perturbation A may be obtained by substituting

[ - (p + p‘)a and A = (p2 - m2)°1 on the r.h.s of (3.12).
The resulting expression happens to coincide exactly with the
one obtained in (3.16). This however is not the case for P :
whereas in our expression for r A the coupling constant o
occurs in the combinations [1 + a log Qgii]-l and
E 4+ a log CE%)]-l, standard perturbation ﬁheory expands these
same combin:tions in the form 1 - a log Cgi) and

1 - a log (gé) thereby visibly sacrificinz the high energy

m

convergence properties of in order to achieve consistency in

the power series sense?ﬁ

(B) Vector electrodynamics

The procedure is completely analogous to the spin zero
case., Here we set down the barest essentials leaving to § 7
the fuller details., With the notation of I, the general
propagator Apv depends on two spectral functions (associated
with the transverse and longitudinal projections d”v and

epv) Write

éfl

= 46 - o) 2,00%) + ¢ 0? 2,(0%) (3.19)



where

G, (x)dx

2 2
z2.(p%) =1 - (p I e L
p -xtie

G, (x)dx G,(x)dx

2 2
z2<p2>=1-m5-—-—--—g P e A
' p -xtie

The wave function renormalization constant Z and the bare

mass constant are given by the relations:

z= At z,(p%) = 1 - g G, (=) dx
2
p %™
mozz e 9 9 Gl(x)dx
= = zz(p )=1-m g - - SGz(x)dx
m pTa
Defining

l% (%) = (x-m2)2 Gl(x)/x + m2 Gz(x)

and

%(pz) -2 _X‘zz(x)dx

- %+ ie

one may rewrite (3.19) as

Ay () = - g, 0" - w) 2,07 + p,p, 7007)

26

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Since,

e @ -8 ) = - g, J@Ra)) 26D - (7d) 2,001

+ oo [300-%0 %] + P e J0 M 2y 0o %) (3.27)

one can satlsfy Ward's identity in the form:

ta [r apv rava]u 0 (3.8)

where

2.2
[ ﬁw - (P"‘P')a[gw{z +S\ (X'“‘z) Gl(";d"}_ o p! _,__iez,zgx)dx 2]
(x=p~) (x-p**) MY (x=p?) (x-p*?)

+9.8,, 700 + ple, 0D (3.28)

To evaluate A-l use as before the equation

*
-1 2 A A
InA~ =¢e SP 5+5+|" (3.12)
Noting that

2 22, _ 1 -1, 22, _1 -1
(p“-m") G1 v Tr(d Im A ), msz TTr(g ImA ") (3.29)
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we obtain

Im.z (S) = OL(S'H\'\)Q(S m [3&(51-?“ ~2(s - Mx)z. (5"+l0m"s+m+):]

and
2.
% Im Zz(s) s a(:-zs;9(°—m ) 3am§(s+m2)‘22(s)\2 -3(9-3m2)‘F1(s)'
-2(s-n") 25+’ )Re ¥, ¥(s) F,(s)
“2(s-n2)?(stu) | F ()| 2 (3.31)
L A
where
Fl(s) - -(s-mz) Zl(s) - mZZZ(s), Fz(s) - 2z1(s) (3.32)
The equation for Z1 is immediately soluble., For large s,
-1
Z1 (s) = 0(s). Thus
Zl(s) - 0 [‘s log s)‘f] (and Z =90, a5 0) (3.33)

From (3.31) and (3.32)

Imz,7M(s) = 0 (L4 Re [ 2,"%(s) (108 &)"1))
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and the solution has the form
— -1 2
Zz(s) = 0 ((log s) 7) (and Zmo = 0) (3.34)

We shall return to the full discussion of (3.33) and (3.3%)
in §7. Here we simply remark that high energy behavior of
type (3.33) and (3.34) is precisely what was stipulated for
Zl(pz) and Zz(pz) in I, in oxder that a "stable"
approximation scheme for a fimite vector eclectrodynamics can
be set up,

We have not considered in this section the computation of
the full [', Ing6,§7 and § 8 we make this computation and
explicitly verify the ascertion of §ZB and §ZC that P and

PA behave similarly for infinite energies.

¢ 4. Form Factor Decomposition of [ _and Two Particle Contri-

butions to A and D

In §3 we set down the spectral representations for A
and those parts of " which depend directly on D through
Ward's identity. 1In §4, we write down the general spectral
representation of D, the photon propagator, decompose M
into form factors and compute the two-particle contributions

toImA and Im D. In the next section §5 are written the
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two-particle contribution to Im['. We also rectify in§ 5

the omission so far in not considering C-parts (2-meson,

2-photon graphs) which for spin zero and spin one electrodynamics
play as crucial a role as the vertex function M itself and

are in any case necessary for ensuring gauge-invariance.

(1) Neutral vector meson propagator D (massive photon in

an arbitrarv gauge)

Following Feldman and Matthew525 we write the photon

propagator in the foxm

Pl = o) (FDz (D) - a0z HePad)nl (6.1)
where
2ytD) =1- § (tz}lzi g;izdx (4.2)
Z, -] . SG3(x)dx (4.3)
ig;"ﬁ «1- S&f‘:'?‘ff‘ (4.4)
)

Note that in this formalism the absorptive part of the free

photon propagator equals



2 mp i = ae) o (e??) - 0h7? ) o (R

(i1) The vertex function
(1) From € and P invariance

P~

M ep’) = Iptip) = = T (=p"\p)

where transposition (~) refers to charged meson indites.

(2) From the Ward-Takahashi identity r; muat have the form

(true for any arbitary gauge)

ry=rtrer et (B

where

t‘FLA - a"Yp) ~ a"Xp") and c‘rL” -0

Poasible forms for [ﬂaA for scalar and vector mesons were
displayed in equations (3.9) and (3.28). The properties of

rL’ are listed below,

(A) Scalar case
(1) From symmetry considerations

B, = (p+p'), B(p?, p'2, )

3l

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)



(2)

(3)

(%)

2 2

with B(pz. p', tz) o B(p'zo P, tz)

The physical requirement that lﬂa does not exhibit

a8 pole at t2 » O implies that

2 .2 )
gt ELE_Am%mnamel = finite

t %0 t

The requirement that the mesons carry unit charge
imposes the restriction
[ (p.p')‘
a = 2 as t -2 0
2 ,.02,.2 " “Pa

2. tz) ~» 0 for ¢t -» 0, This con~

Thus B(m?. m
dition is iu fact pavt of (4.11)
On the meson-photon mass shell

um)

[y(eip" = (oo", 567 - —§~;—- [26D)-206%)

where E(pz) - Z(pz) + B(Pz. m2. uz)

For p2 - 0 write

- > 0

2 2 2 2 2
Qt‘ E -Z - B El(
"‘2*23'12*1 *‘E"*-Q*““l = E'(p )
2 P H >0

32

(4.10)

(4.11)

(4.12)

(4.13)
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Thus

= (p+p"), 2007 - t (p2-nDE'(pD)
2 2
p'S = m (4.14)

uz"O

Pa(P:P')

On the two-meson mass shell

'] = 2 - ' 2
raeen] , = onn, [14 560 23] = (o) (D
p=p (4.15)

This last equation defines electric form factor fg(tz).

(B) Vector case

The general expression for r;

B . .
v is dab(t) Bbp‘v(p.P » t)
with

Bbp = (ptp'! )b[#lg +sz t, + 33t p + Bap p + BS uEv

+ (gt -8y, b )Bg + (gt 4y, t))B, + 2, P Bs + 2 PBy  (4.16)

Thus
(x-m ) G (x)dx
[0 = - (") g, [% + ]
apv ‘Y(x -p )(x-p'z)

%‘_(x)dx ’ 1 - 2 s - |2
P p.z) [}p+p )P Py *+ (x-p7)g, Pl + (x-p )gavp;1

+d, (£) Bb“v(p. p') (4.17)
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(1) The symmetry properties are

2 2 2

2 2
B vt)uBl’4.5.6 (p' Op Ot)

2
1.4,5.6 (p°,p'

2 .2 2 2
B, (p".p'",t") = - B, (p'z.p .t2)

2,2 2, _ 2 2 2
38'9 (P P Lt ) 89,8 (p D Lt )

2

2 2, o _ 2 2 2
B, 3 (p".p'", t%) By (»'",p%, t%) (4.18)
Clearly only seven of the unine Bi are independent.
I 2
{(2) 1In order that apy have no pole at t~ = ),
Lim Bi(pz.p'z.tz) 9 9
t2—> 0 tz = B{(p ,p'") for all i except
i = 6 and when
p’ 4 p'? (4.19)

(3) Contracting out on the polarization vectors of one

meson

(i.e. r\aw(P.p')dW.(P’)) we get
Bbm,(p.p') = (pip')y [Blgw + Byp t, + Bst“t‘,]

+ (gt 8,508 + (g, t, + &, t,)B e, P By
(4.20)
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so just six form factors remain. Contracted out on

the second meson polarization vector only three form

factors survive:

Lo Py 4PV = dyp) [(pep (3 +56 Q)| s 8)
+ (%c»p te - %o.c tP>J"b (4.21)
with
"& (tz) = ] o+ Bl(mz, mz, tz)
Q () = -B(w’, u, %)

Mo(tz) - 86(m2. mz. tz) (4.22)

We shall call 5 , Mo and @ the electric, magnetic
and quadrupole form factors (through the designation
is not strictly correct in the last case). These

must be gauge invariant just like 'é in the scalar

case. In the static limit we obtain
g (0) = 1 (unit charge)

Mo(0) = K (magnetic moment in units of -g-;
Q(0) = 2—5 (g +K-1) (q is the quadrupole moment

m e
in units of o (4.23)
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(iii) The 2-particle contributions to D and A; General

Expressions

In our calculations, the 2-particle contributions will
play a crucial role. These are computed in this section
with completely general spectral functions of §3 for scalar

and vector electrodynamics.

(A) Scalar electrodynamics

(1) Photon self-energy

2
%r' Im Dabal(t) - : 7m)3 S d*p ra(p.p')ﬁ*(pz-mz) 5+(p'2-m2)rb*(p.p')

In terms of the spectral function for b7l and the

form factor of rﬂ this reduces to

2 2 3/2 2
6,(t?) = Lo (1 - 2" B (eD)] 0 (Pt (4.24)
6(!: - ) t

with fg(tz) defined in (4.15).

(2) Meson self-energy

This has been computed before in §3 for p = 0
and [ -I"A. For the general case it is convenient
to separate the photon mass shell contributions into

two parts; one part coming from the Fermi gauge
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(t 2), and the second coming from the
ab

remaining terms atb 2 .2
2206, (2% - 5, (P%)],
in the photon propagator. Thus,
9 *
2 1m a(p) = alp) [x(p2) + YD ] 8" (pD)

where the gauge dependent contribution Y(pz)

equals

1) = 2L (R8T (6005, e

(4.25)
2
- - 2% 120012 (502 - ocan %)
2P u
(Here @(#2) is the quantity which arises naturally
in evaluating the phase space integral
fa*e o, (2D 5, [Cp- -t)2-u?]= M
= 1 e[ z_(m‘_t*)z (\.' W\L— m)l__ 4""\1}‘& lg'_
1P‘ i ][P X ] (4.26)

Indeed the result with p = m has already been

used in (4.24).) The Fermi gauge contribution,
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X(pz). to Im A(p) equals

2o = 2 [y 2 RG] - W 1) - IZWJ\‘}:]
P ¢ (4.27)
with E(p’) defined in (4.12). All in all then,

2,12 2
6(o%) .ﬂu\ [0 - otas)) +—-9’——)2- (4.28)

pm)

It is worth remarking that for a =, (i.e. no
time-like photons in intermediate states),@(apz) = 0
and G is positive definite as indeed it should be.

In the limit as “2 -~ 0 (4.28) gives

G(p?) = °_‘_9§‘_E;”_'"f)[<a-3)(£:_+_rﬁg 2GR + 20pm) Re z*w)a'(p)]
} P (4.29)
with E'(pz) defined in (4.13)
The total number of unknowns appearing in the equations for
A and D equals four (6(p°), Gy(t?), E(p?) amd £ (tD)). Thus
besides the two equations for G and G3 we need two more,
These are provided by writing the two-particle approximation

to [ using (2.24) and are set out in §5.
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(B) Vector electrodynamics

(1) Photon self energy

From the equation

(62 6, = - & ab(t)gd b Mape Cor b)) (P dpe LBY Ty % (5,1
) LB, (Fw) 5, 0% )

3

we arrive at:z6

2 2
2 at 4m 2 2
C.(t°) = —f(l---—z- o(t"~-4m")
3( 24m (tz 2) t )

(£ et ) | B = 28 (0 20) Re £XE)MLE) |
- Bl 2w) (s 4wd) R BXEIRUEY) + P+ 4md) | Mo (B
£ B A) Re Mo IR () + b (- am?) | R [

e
b

(4.30)
with the form factors Jf?. '(e, and @: defined in (4.22)

(2) Meson self energy

A rather lengthy evaluation gives the following

general expressions

G = & |-{3+ ?Z‘."ﬁ) } ) (2P
9"’ k- e
+ (_‘_P_i'.‘_’)_ (3+'U-’)|E(p‘)l‘ + P—(Ef-:“—;—t-)'ke EEIMEY)

P ™

+ G @)E e, £Xp)Qe) + B '“Xl* -B- ) e EX(ING)

et p"
+u(1\>+:m ) M) _&iL'_lR;M*(r IN() >
4-m
; R 1) Re QFPING) - (}_‘_‘)lﬂt)ae QEINGY
m>p*
i6 1|>z) QU™ + - 1) +2p (Pt*“‘x) NG P
B m P pe

(4-31)
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with

2 2
E(p?) = 2,00 + B,(p%, n?, %)

Wp?) = -Bs(p% o, )

2 2 2 2
M(p™) = B, (p", w", u)

2 2
NG = B G% w w2 (4.32)

The first equation (4.32) is analogous to the scalar counter-
part (4.12). Further,
3

-, . . .
6,(p) = & -“%;&h)|zl(>’)}‘+ oK) (3+<P(r* )IF( )+ M IR
‘* ’l 7.

+ (prpe m)o) mF.(P)F(p)
4"\‘”‘

~(4.33)

where

F (0D = -(0%-0%)2, (p?) -0’2, (pP)+:(p-u+u?) (DD +N(p2) ) 4p7By (b2, n?, 12)

F,(07) = 2E(D)+2p%8,(p% 0", 1) - (pP-n*mH)a(p?D) + NGD) - M(pD)
(4.34)

2

In the limit p“ — 0 as noted in (4.19) only E and M

B, — 0.

are non~zero. All other form factors N, Q, Bz. 8
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Also in this limit, E(pz) - Zl(pz),
5 ,
F,(p) > -(p?-u’) ]:Zl(pz) -%:M(pz)] “mzzz(Pz).

F,(0%) — 22,07 -M(p?)

2 2 2
Writing e 9&.%_). = Q' etec. and E'(pz) "?“EIB"'Z'B‘)'\
oo * i X ,<4.35)
G(F) = - 2t h%—“) 260 - C st el
+ a('}-m")i B +llmp}Re2,(P By
b (o P ) ReZVP)Q () - 2wV Re Z0FIN'G)
£ 2l PR ZHEIMGY) + |Mq»‘)l )
i i

(4.36)

G,(p) = &ir:::'\;ge(r - ) '_3am‘f(p+m‘)|2l(p‘)|‘ -3 ) TR
+ 2 (p-w)* Re Fl*(r") FO)

- 205 W) ) Ra FX) Fa)

TS )3{ Re Fy IFs (F) + Re FI(P) R)

L_. % (FL'M'L)Z(P'L*_M\.) le(P\.) \1+ t(P\.’mx)4Re F:(Fx) FJ.,(?\')

e

(4.37)
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The total number of unknowns for vector electrodynamics in

the limit ”2_;, 0 appears to be twelve,
2, 2
Gyv Gy Gy EGD)E(ED), M%) M D), 20" LD N D) B, (67, By (D).

Besides the three equations for A and D we need nine more
equations (from the two-particle approximations to the vertex

function) to make a complete set.

5. Vertex function in the two-particle approximation and C-parts

(two-meson, two-photon processes).

The Basic equation

By considering ¢ 0| j(0) | p.q >i.n =<9 lj(Q)l zgut otﬁ:z \ P.q >in

and ws\ng PT invariance, we get
In (A()N()) = Re § ACs) ['(s) 5,5,4"(s) (5.1
0 = m {A(s) N(s) 5,0M"(s); s = (pta)? (5.2)

One may extract from M the one-particle reducible parts in

the s-chamnel thus writing

M= Moy M(s) A(s) I"(s) (5.3)
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Using ImA = g \ATWZ 5,58 Egqs. (5.1) and (5.2) reduce as

ENE
follows :
Im[" = Re S\"a 5 M(l) (5.4)
0 = Im Sra 5 M(D (5.5)

To see the character of these functions, assume all amplitudes
are scalar functions, Eqs. (5.4) and (5.5) are equivalent to

the (two-pnrticle) unitarity condition on M(l) '

Im 56 5 M(l) + \Sﬁ+b+M(1) 2 -0 (5.6)

and the equation

1pr _ Inm (s 624(1)

tan O = Rep - Re‘SE N M(l) (5.7)
This is the homogeneous Riemanmn-Hilbert equation which has been
extensively studied by Muskhelishv11127 and has the solution
M(s) = cX(s) (5.8)

where

X(s) = exp {;}, { 91’9-‘-’—’5} (5.9)



The inclusion of three and higher particle states converts (5.7)

essentially to the inhomogeneous form
Im ™ =tan @ Rel 4 u(s).
which has the solution

1 U{x)d
r- [°+"i“1? @L.%T%@]X(s)

(2) Scalar electrodynamics

We will now consider the two cases:

, p'z - mz' tz - 0)

(i) [ for the unphysical photon (t2 %0, p

(ii) [ for the unphysical meson (p2 % ’

(i) Unphysical photon

To make the problem tractable we must approximate to
M(l)u From crossing symmetry for M, M(l) must include the
one-photon contribution [' (k) A(k) I (k). This contribution,
by itself, however does not satisfy unitarity; in fact for the
relevant values of kz (i.e. kz < 0), M(l) is purely recal
and thus needs to be supplemented by further terms. These are
given by (5.6). Neglecting \Im M(l)\z compared to Im M(l)

unitarity gives Im M = - Re M 20 With Re M =PA
(1) (1) (1)

1
in this approximation we finally obtain28

L4

(5010)

(5.11)
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tan O = S 5,5, Mal (5.12)

Using the phase space integrals listed in the appendix, this

works out as
)

2, 2 2 2
can a(c?) = 200700 S a2 Lom 2t -2i%) (262412 -t Bz ad)
2(t -4m"t )° tm™ - t k

422 (5.13)

where 8 (kz) and 23'1(1‘:2) are real for the integration range

of k2.

Collecting all the relevant equations in the two particle
approximation with the photon unphysical, the propagator and

vertex function equations are

2 3/2
1in 23(t2) =2 (1- -‘-‘-'fi) o(t>-4a?) | £ Colk (5.14)

%Im‘é(t‘) ol B (k% 4m)R¢'&(t‘)Sd (@ -t2- 200 (28 K- 4-m).é(k)z (&)

2 (b5 i)t P - v (5.15)

with the boundary conditions 23(0) - 'é(O) = 1,

(ii) The unphysical meson and consideration of C-parts

The calculation is similar to the above. It is more
complicated in so far a&s gauge invariance demands a proper
treatment of two-meson two-photon (C-part) contributions which
are involved in the intermediate states. Some remarks about

the C-parts are therefore needed :
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1f Cab(p. p'; k. k') stands for a proper Compton scattering
graph (i.e, one meson irreducible graph) it is easy to show

thatz9

kacab(p,p';k.k') - r'b(pd-k. p') - Pb(p. p' - k)

KIC, (P p's ke kD) = [ (p, pt&) = T (" - K, p") (5.16)

These identities can be represented diagrammatically as shown

in Figure 6.

The symmetries obtained by C and P invariance are

s -~ ~4
', 1Y = ( N ' ! meele o1y w o ere!
Cop(PsP sk k') = C o (-pl.-pik,k") = C . (p'.pj=k,-k') = C,_(p',p;k’. k)
(5.17)
Similarly to the vertex function we may define a "gauge covariant®

separation

B

B a +b.B :
c4 = cf!b +Clp where K'Ch = k'"Co =0 (5.18)

Now [" itself consists of two parts, [ A and the purely

transverse part (see (4.7)). Thus ch (kCA ™ o) itself
consists of CAA terms (k Ad -["A -[‘A) and B terms
ac®® e 1B pBy . now

A + nN_nA ) - -w?’zG [ (P+R+Fvb i
r'b (\: k’?) PB (P‘}: k) lkbz + gdx (7\ ) (x) (\("Fz)(X"(P*'kY]
__(hrp'-k),
EarEs)
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so that we may write
dx(x-n?) G()N  (p,p* 3k, k' )

(x-PFR2) (x-p2) (x-p ' 2) (x~p 1K)

CabAA(p.p';k.k') = 2g.,2 +S (5.19)

where
N (PP sk k' 5x) = 28, (x-p?) (x=p'2) + [(p4p") k' - (+p") Ky (o' D)

- - ’ 2 2-
(e (ptp ") -l k! o ! 20

Similarly from [“B - PB we may wriﬁe
AB, N — .
Cap (¥ R%) = -4, () ("*")°\Es" (BU, 7 ) = BGTRT v 1)
F g0 LBOR FFE W) 4 B(RS Y 1Y)

SRR LGP RO = )| PR

|+ 9o {BOFTRY b k™) + B (3 v k)

-

(5.21)
The expressions (5.19) - (5.21) for C possess all the requisite

30 nd together give the [ dependent part

symmetry properties
of C. It is this part whose inclusion in any calculation is

necessgry to preserve gauge invariance.
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We can now return to the discussion of the vertex function
with the meson unphysical. At the outset we set the photon

mass zero so that

PRERD = (40" 2007) - (p*n?) (p-p") E'(pD)
p,meZ

t2-0 '

Clearly
(p-p"), ra(p-p') = (p2-n?)z(p?) = A"l(p) and
(pp"), [ (p.p") = 2(p*4u’) 2(p?) - (p*-n?)? E' (p%)

Approximating to M(l) in (5.4) by the gsuge covariant combina-

1:1.01131

St ot e

we obtain (after a lengthy calculation) for the vertex function :

WA -
’:? InE '(F) = u_'___Q___JG Sl 3 do” | 'Z(P‘)lz A(p+ "‘i)l__ C\,f*r 5!"%’”\- 3\'«“%} £ty fmt
1 (P" ) - m* ‘,‘- ov"
T p* (44 + v )2
Rzl e
_ 4-P++ Qg + q,‘f+ 7mﬂn}+ Em"q,"-r Lot
FL - Wt |

(5.22)
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Equations (5.14), (5.15), (5.22) and (4.29) together with the
boundary coudition' Z(mz) = ] complete the set of two and
three point function unitafity equations., Before closing
this section, it is ;s well to be reminded that 15(t2) and

E'(pz) are themselves boundary values of the same function

2
B(p>.p'2, t%),

: : 2 2 2
£(t) = 1+ B’ u’,t?), and E'(p%) = ¥ Blemap)
92-’0 a

and that the full stability criterion (relation (2.6)) specifies

for these the boundary conditions

it pZE’(pZ) and Lt (t2)~0(1).

2 )
P > t 9a

(B) Vector Electrodynamics

The exact unitarity equations for [ are far too ilong and
complicated to write down in full generality, particularly
with the meson unphysical. This is on account of the large
number of form factors involved and the need to include the
C-parts properly for preserving gauge covariance. The problem
is slightly more amenable with the photon unphysical because
here one deals only with three (gauge-independent) form factors

8 , My and @ as defined in Eqs., (4.21) and (4.22). Nevertheless 4
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the genmeral expressions for Im &, Im Miand Im & in terms

of &, M and 9) (given by the one photon exchange approxi-
mation to M(l) as in the scalar case) are still very compli-
cated. We shall content ourselves here by stating the unitarity

equation for Im ‘E (the simplest) .

0

2 3 N r
o?eh(1-5) I f(e?) = LO(E-4n) g W 2200). (B 2= e x
4m 2 (bt-am)T R

8

w

ot
Re &(t") [ 4ot) {(Iilm - IaT) 8 () (13T, -15, )RR )
- 2B R W) (I3 To0 - 1, T Ig)

+ 4M(h‘)@("}){ﬁ (Tn- Ta) - Ta (2T - I.I.e)}
M) 0 T2 T4 (Tg- Ip) -1, T4 (1,34~ L))

+ M‘.(h»){lI:(IM'IS “I)-L(nTy- 4L -I) Ils)}
R () (a0 w‘){ (1720~ T 1) B00)s 1 (B3, - I?I«)Q’“‘?-

- 1R0RURY) T3 (13T, - I Iq14)

+ANWIER)] 13 (13- 1,T,) - T Lo (5,3, LL,)}
+ AM K)RI)] 13 (T, Ty - 1 1,) - T (L T,- :;:3)}

\ J"\?(\'}){I: LTy -I-1355)- LRI LT, - T - I Iq)}

(5.23)-
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The 1's are simple traces of d(p), d(p')., d(p-k) and d(p'-k),

and are listed in Appendix II. In the region of large tz we

get

A 3sz::8 S a’ 2, oy (Pendy (P
Re ) [ EHer 2 - 42700) + 4R 1) 207 1t Q)
+ER (L PGB () — (bRt MU ) QR
- 2 M)
“ReQU0) [E e (kP 28Y) {£70¢) - Q)& + LR QR}
= AR E(EFRIMIC) B AK) + 2R (MO Q (1)
¢ R M)

(5.24)

This equation together with two similar ones for Im M,and Im &,

and Eq. (4.30) for Im ZB 1 completes the two-particle unitarity
set for D(t) and r'(t).



Part 111

The two and three particle Green's function equations of
Part I1 are solved (in the gauge approximation of § 2B) to
obtain explicit expressions for D, A and [ A in § 6 for
scalar electrodynamics and in § 7 for vector electrodynamics.
Also verified is the statement that the full [7 (in the two-
particle unitarity approximation) behaves similarly to [ A.
In §8 we go back to the Dyson-Schwinger equation for A and
show by actual substitution that the unitarity solutions of
§ 6 tnd»§ 7 satlsfy this so far as the high energy behavior

is concerned.

§6. The Solution of Unitarity Equations for [, D and A for

Scalar Electrodynamics

For scalar electrodynamics we are dealing with a renor-
malizable theory. One solution (the perturbation solution)
of the equations is well known; it involves (for A, ' and
D) a total of two subtraction constants (Z(mz) - ], 23(0) - 1),
In this section we attempt non-perturbative solutions; these
will serve as guides for the more complicated case of vector
electrodynamics. We also f£ind that the photon subtraction

23(0) = 1 is not really necessary.



(2) Meson equations

Rewrite the meson propagator equation (4.29) in the form

In z"}(p?) = tan 7 Re 271(p%) + U(pD)

where

(02— ud)?
Re 2 - 0> - o) E'(pD)

tan Yy ® - P 2,
N
14 1o B0 WD gl
P
2, .2 2 2
U(Pz)"“‘a - tm zz.m
b 2 ) 2“ - [ 2
2p" {14 Im E'(p")
| 4

The equation for E'(pz) has the form
2 2
Im (p° - nDE' (D) = (266D | 2 £6?)

where for large pz
-]

f(pz) ~ y} dx [A(x) + {Re Z'l('pz) Z*(p?x)} B(x)]
-1

3 2
-ditS - 25 4 10x =3x 4 1
with A(x) m— and B(x) o

Note U(pz) = () for the special gauge a = 3,
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(6.1)

(6.2)

(6.3)

(6.4)

(6.5)



Using Muskhelishvili's result , {6.1) has the formal solu-

tion (subject to Z'l(mz) - 1),

@2 - u?) :
1 s . - 2 dx U(x)
z” (%) ~X(b)E* 2 (x-mz);(x)zx-Pz)]

where

2 2
x(pz) - exp [{g - m ) g( y{x)dx ]

T X - pz)(x - u?)

Also from (6.4)

202 . 202
o2 - ad) £ D) = 1 Siz(k )lz £ 1(:25 ydk
p o

In writing (6.8) we have assumed that the vertex function for
scalar electrodynamics needs no extra subtraction besides the
one at Z(mz) » ], Since £(pz) —>» constant for pz—» o0,
this assumption is equivalent to Z(pz) - 0 at least as fast
as 1/11192. We must now show that the expression (6.6) for
Z(pz) indeed does confirm this.

To see this, note that if (6.8) holds, (p2-m)E'(p2) —» O,
so that U(pz) — constant and tan ?(Pz) — 0, Therefore
X(pz) in (6.7) —> constant apart from a possible logarithmic

factor, But (whatever this factor) for a ¢ 3, X(pz) times
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(6.6)

(6.7)

(6.8)
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the integral within brackets in (6.6) must increase at least
as fast as (1n p2).32 This is precisely what we set out to
show for Z-l(pz) (compare § 3, Eq. (3.16)).

One may now set up a detailed iteration scheme to solve
(6.6) and (6.8). A wide variety of schemes are possible
depending on what we take as the effective coupling constant;
a particularly convenient scheme is to go back to Egqs. (4.29)
and (5.22) for E' and Z and to start with the first
iteration ' = I A [ A], ( PA defined in § 3), i.e.

E‘(O) =0 B?a writing the higher iterations as follows,

_7]_': Im z(n+l) (pz) - OL_Q;i‘_Lﬁ_) [(&‘3)(\;1+ ml) \Z(“)(P")\l“' ,)_0;__ ml)lR.L ZL"‘?‘(‘Pm.) E(MI (\’L)}
P (6.9)
m4/p2 ( _
\ 2 2 4(prm)*
% Im E(n+1) (p2> - aegg —g % dq2 z(n)(pZ)\Z X
- 2(p -m") ’q|,++s\;‘q}+3m‘¢‘me"f'+6M“ +
2m2-p2 ky'%}
n . L LY 'lh'\l)}-
e O Zv“z,”mz

A ISR o

b-e

_)

(6.10)

|
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At each iteration stage Eq. (6.9) improves Z(pz) and
therefore [ A LA-] , while Eq. (6.10) gives the corresponding

N B ( M= l"'A + PB), The starting expressions from (6.9)

are
_ 2 _ 2
L 1w [2006H] 7 - - 52 (3?4 ) (6.11)
giving
‘ 2 2
EARITOY R -0 RTINS C I PP (6.12)
p m

ie precisely the expressions written down in § 3. In the next
order of the iteration, substitute (6.12) on the r.h.s of
(6.10)., This gives ;-5_1- Im E’(l) which in the limit of large

p2 equals

. 0O '
[~
1)y, 235, 2 2 2 _! S tetrg’
%Im (1 v~ g 44 Gy b {% Pt' v }
2
P

2p
+ . {(F‘* ¢ 9y 1}
el T T Ty

33

2 , at3 (6.13)

252
pz [0(3"8) in B'f]

~
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Using the dispersion relation (6.8), we get for
1), 2
El( )(p ))

(0% - e DY = 29 (6.14)

2
[9(3«3)]2 1n 25
m

Collecting all terms, this means that the "first order"

correction to the full r'equals

r1§1)(P.P') ~ (ptplla . _ (p~P'za> 7 (6.15)
p.2 - a(3-a) , . _EE %(3"8)2 1n P‘Z
2 2 2 “
t™ =0 -

As expected from the earlier discussion, the correction

2, behaves asymptotically in the

term {for the fulll) talln P

same way as the initial term [' A:z (p + p')alln pz. If we
t

insert E(l) (pz) (ie the full ') of Eq. (6.15) into (6.9)

we obtain Z(pz) (and therefore r‘A [A:]) to the next order
[1+ 2 2]
(a-3)

2 -1
or 2102 ~1 4 9‘-‘-;-‘2)- 1n(E5) [1 - 2] (6.16)
m (a-3)

1
T

o

m 2D x

2
a(a-3) ln2 (25)
m
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which has exactly the same form as (6.15) apart from an effec-
tive change in couplingy' and this behavior will persist in
all higher orders.

(B) The photon equations

Like the meson case, we first set down formal Hilbert-
Mushkelishvili solutions for the photon propagator and vertex
equations and then construct explicit expressions for D and
[ by an iteration procedure where (as in §{2B) the iteration
starts by assuming [ = PA [D] . Rewrite Eqs. (4.24) and
(5.13) in the form:

i 2 2 3/2 i
Tz e m s =g - BT ae?etn?) | 2,7 DE(eD)|
(£7-p7) t (6.17)
lin B(tH =tan o) Re B (tH (6.18)
T
(22002, (D
where from (5.13) , tan 8 =~ OCS w-i X! é—l's")"&' (6.19)
£? o -® koo

The boundary conditions are 23(0) - ‘&(0) w ] while the
stability criterion specifies that (apart from logarithmic

factors) at worst g (tz) # 1 for large tz.



Now the Muskhelishvili solution of (6.18) (incorporating
£(0) = 1) gives

2
2 t 9 (x) dx

Now apart from logarithmic factors this behaves at infinity
11ke3’

1
2 z] 9(>)

fi(t )y = [%m -; 3

4m

Since from (6.15) 9(®) # 0, it is clear from a substitu-
tion of (6.16) into (6.13) that Z3 = (1 ‘~g63) <00,
Also it is perfectly possible to write an unsubtracted

dispersion relation for Zs(tz)

2 3/2 2
z (t ) ....... S(l -"’.@..) \?__(zl_l_. dx
(x - t9)

36 the boundary equation

2 3/2 2
z(o)n-g(l LLZL. dx

provided o satisfies

To see how the unsubtracted integral (6.22) behaves, con-

sider as an example the case pz = 0 discussed in Footnote 35.
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(6.20)

(6.21)

(6.22)

(6.23)
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1f 'g ~ ll(tz)%.3z6.22) gives(apart from logarithmic factors).,
Z3 x.l/tz ie. The photon propagator D= constant for large

tz. Intrinsically there is nothing in the discussion so far

to preclude such behavior (the stability criterion is still
satisfied since 23'%f3=51); however (in spite of the attractive-
ness of the eigen-value Eqn, {6.23) we do not feel warranted

to entertain an unsubtracted dispersion relation just from a
discussion based on the two~particle unitarity approximation

with one photon exchange. Taking the ~~~~ervative attitude

that the dispersion integral for Z3(t2) needs one subtraction,

we write
-1, 2 a .2 w232 |20 8 e
23 (t7) =1 - T t 'g (1 - -;—) 5 dx
¥(x - £7) (6.24)
so that apart from logarithmic factors 23-1(t2)oz 1.
Like the case of meson equations one may now set up an
iterative scheme to solve (6.20) and (6.24), Omne attractive
scheme which is fairly close to perturbation solution can be
obtained by writing (6.18) in the form
-1 -
3 I 2 B = ean (0 + ) Re [2,7N(eDE(ED)]
(6.25)

Imzs'l(tz)

where tan p = 13
Re 23 (t™)
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Assuming that the fine structure constant (2wva) is small so
that tan (9 + 8) 7 0 in the lowest iteration, a first

approximation to (6.20) which incorporates 2(0) = 23(0) - ]
is given by38

é(o)’étz) _23(_9) (tz) -1,

Substituting this on the right in (6.24) we get

2 2 3/2
1200 %) R 3 = G - 4m ) gctz_&mz)
L m[ )( ] é(t *p.z} -tT
so that
(o), 27"} at? 4 ()
[27¢h] = 1ee - RO
e "(t (6.26)

which for Zs(tz) gives precisely the usual perturbation

expression.

For higher iterations define

| 2 3/2
2z, ™Mk -8 -7 o)) |800H |2 6a2n)

L o

° 2 -1
11 ‘“’"1)(: ) = _L“ tz;:‘;‘ N S aZre™ (A ED (Hz,™ "o
t t7)°

2 (4m>-t2- 2k2252:2-+k2 tn)

(4m :)k

4m2~t

(6.28)



with 23(0) = 23(1)‘, Notice the similarity of the iteratiom

procedure to that adopted for solving meson equations. The

approximation '8(t ) - th ) is essentially the statement

that r=pA [D;l Inserting 23(0) = '&(0) as given by (6.26)

in (6.28) and (5.29), we obtain ian the '"next order"

c

2 2 2,,2
1 Im 6(1)(‘: ) aG(t -4m ) gt Sek2k z§2t +k7) 6
231()wt2 tk aln(zi-")
g v 2 2
oy 72 8(t -lam
% ln“ (--5)
o
(1),.2 72 dx 72
g = = S a(x-tz)lnz &) = ¢
2 m2 a In (;-2-)

This expression for é(l)(t‘?) [i.oe N B] is to be compared
with ,g(c:)( h {.a. D ﬁ) ot ""'“‘“w
o in (l:l.i)

ot

The magnitude of the "correction' gives an idea of the "'effec~

tive expaunsion parameter', So far as the behavior at infinity

is concerned this is
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(6.29)

(6.30)
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A -1 -1 Q 2 Q 2
¢ L1 A _%(o) ~(1+721nt)-(1+61nt)x‘ll
- 12

Pan 50 (1+%mth

with g(o) and gu) given by (6.26) and (6.30) respectively,
The important remark ig not the size of this "expansion para-
meter'; what we wish to stress repeatedly is that our major
concern in this paper is with the high energy behavior, and

a cousistent and stable behavior is being provided by our

iteration procedure which starts with = \"A [A, D} (ie é(o) - Za(o) ).

Summary
To summarize the work of this section
(1) We have shown that Z = lim 2Z(p2) =0 for all a > 0,
pz—m
a3,

(2) Ve have obtained two solutions for the photon equations;
one of these corresponds to the usual perturbation
solution with one subgraction, the other is a new
solution and exists only for special values of «a,
provided no subtraction dispersion relation is valid.
In this paper we do not wish to choose between the

alternative solutions,



{3) For either case a good first approximation to |1 is

provided by

rh - 200)AT ) [wren), = 2 pron (BeD-1))
PP
This expression has the merit that the two-particle
photon (propagator as well as vertex) equations are
identically solved for r‘E;FA. This is not true for
the corresponding meson equations, but a simple itera-
tion scheme can be set up which starting with T‘A,
computes the full M out in successive stages. A

(o)

convenient lowest iterate for A is given by
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(6.31)

2 2
240 0y = (p2-n?)! [1 + 9—%:21 (1-%) (1 -2 ] (6.12)
P m

The corresponding iterate for 13(0)(t2) {(for the case

when we allow one subtraction constant) is given by

(<]
R [23“’)(::2)]'1 .14 9_16_:3 g G- 5,_@_2_ 302
2 x(t"-x) #
4

This ["A has the property that when any pair of particles
is placed on the mass shell its asymptotic behavior

in the unphysical momentum k( = p, p' or t) 1is

(6.26)
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(ptp') (p-p*)
(o) (o) — g a ,
A » D z - i 6.32
p[ j ‘(lnk B In k ¢ )

with constants Y and 3 proportional to the fine
structure constant 2wa. This characteristic behavior

is always retained in every subsequent iteration where
A(o) and D(O)

are replaced by A(n) and D(n) .

This same behavior 1s exhibited by any iteration to
the full [® (ou the two particlc mass shell) — i.e.
n B

of the momenta,

behaves in the same manner as [ A for large values

§ 7. Vector Electrodynamics

(A) The power of the stability criterion in specifying acceptable
high energy behavior of A, [ and D 1is first really exhibited
in the conventionally unrenormalizable theory of vector electro-
dynamics, A full discussion was given in I; we summarize the

conclusions,

The Dyson equations for ﬁ are
2

p -m d.(t K)
Zl(Pz) -Z<*-2-—'—g'°) +% Tr(:—i‘-"-;-@-) (7.1)
p ~m p-m
Z.(pD) =zm 2 +Tr (e - t K) (7.2)
2 o = a~a *
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Since by definition

Z = lim Zl(pz) and Zmoz = 1im Zz(pz) 39 (7.3)

pz-—>°° p?'*-*°°

the second terms on the right of (7.1) and (7.2) must approach
zero, Now a sufficient condition for I AA ~ 1/k to hold
(with [ A for example defined in (3.28)) is given by (see

I, (2.21))

lim p2 Zl(pz) ~ Zz(pz) (7.4)

92—5 o]

There are two distinct possibilities
[A] Either z:no2 is finite so that (7.1) must be solved with

the boundary condition Zl(pz) = -1--2- (i.e. Z = Q)

P
Bl or 240, but z (pz) o~ pz . For this case the equations
- 2
(7.1) and (7.2) must then be carefully interpreted and moz
must be intrinsically quadratically infinite,

For case [A) , we expect therefore

A ~1, P~ 1/p

A
For case [B] A zl/pz, N =~ 1
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‘ These two will be called the vector and the scalar alterna-
tives respectively,ao The two alternatives are differemtiated

by the number and character of subtraction constants.

In §7B - 7E we assume moz

£ o0 and investigate in
detail the '"vector alternative" turning briefly to the "scalar
alternative” in Appendix 1I1. It appears that the "vector alter-
native" gives results similar to lowest order perturbation theory

for the propagator A though not for ['. The "“scalar alterna-

2 & E 3 »
tive" (mo = ) if it exists has no correspondence with the

perturbation solution for A or [,
(B) Using Mushkelishvili methods we may (as for the
case of scalar-electrodynamics) seek to find (formal) solutions

for the set of equations for A, [', and D, and thereby

verify that
M —1 . pxl 2y 0 L 2y, ,
Tapepr 0 PR Ze APIEE . L0 (7.3)

Alternatively we may use the simpler procedure of §'ZB; ie
choose r’A which satisfies I évl/(ap+bp') and check from

the equations (4.31), (4.32), (4.30) that Z,, Z, and D

1" 2
as well as l“B (on two particle mass shell) do exhibit

the behavior (7.5).



On account of the complexity of the equations for vector
electrodynamics we use here the simpler pfocedure of § 2B.
The required acceptable form for ks [lA, D] will be
constructed in stages, first by considesring the photon equa-

tions and then the meson equations,

{C) The photon equatioms

Since the spectral function ie 2zige independemt and

F

positive definiteza, one can use Lzlmann’s theorem directly,

This states
2 p" ¢e?
z,(ch) = 2452 <o)
t .
t2d90°

implying from (4.30) that tzﬁktz). t%M{tz) and tﬁaﬁtz)
behave in the like manner at infinitypal

The stability criterion (on the mass shell p2 - p'2 - w?)
however gives relations like f;(tz)ZB”%(tz) ~2 1/t2° Thus

for consistency one needs

6,(t) % B (D = M (D) ~ 1, Queh) ~ /et

for large tz.

(7.6)

(7.7)
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Rewrite now Eqs. (4.30) and (5.24) in the form

-1 4y, -1, 2 4 -1 “1, % 41 -1 12
In 2,” % -a [e \z, gl” - 2t're(z, &)z, o et \23 W2 +.-] (7.8
In(z,"%) = tan 8, Re(2,"%) + tan 8, Re (2,"}) + _ (7.9)
xm(z;b@ « tan 0, ne(z;%> + tan 0, Ra(zs“'})(,) + . (7.10)

with a similar equation for 2;@0 Bere tan O's are compli-
cated functionals of 2‘.3. ‘é v gf, and M;,  Just to examine
the structure of these equations, coansider (7.6) and (7.7)
only. If M, and @, are treated as unknown functions, Eq.

(7.8) has the inhomogeneous Mukhelishvili form
(&

Im (23"1«2 ) = tan © Re(ZB‘%) 4 U(tz)

According to Hﬁ\:tskhelishﬁili results the (homogeneous) equation

possesses a solution vanishing at infinity like 1/t2 if

e
and only if the phase change LG] o~ = v, This then is
the uge-independent) restriction on the possible values of

the constants of the theory like o and the observed magnetic

moment Ko

This condition and its implications in terms of CDD poles

and bound-states (Levinson’s theorem) will be discussed in a

separate paper. Assuming hower the behavior (7.l1) we may
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approximate | = P4 or equivalently 8 - —&A [23] as

follows: 42

G,(x)d
Define —g" [7.3]1 - A zS(r.z) S-—%—: (7.11)
t = x

and take as the first approximation

£ 2"z,]. Moo= Mz] =k &h%D, Q-Q=0
where A 1s the nomalisation constant [- S*:;l dx]

specified to ensure i;(O) = 1, Using [‘ - A from (7.12),

equation (4.30) reduces to the form

-1, 2 Q 4w’
;;ImZ3 (t)---‘—z—-z'—-(l-' 3

1 4m2)3/ 2 E t At i 12wd) -2 KE (- 2) ,m‘ﬂw?')i]
24m 't t

x |1 - 2,(tD)| % o(eP-mD)zyon?  (7.13)

If K= 1 (normal perturbation theory has such s magnetic
moment) we notice that the bracketed expression in (7.8)

has a less sningular behavior at large tz than for any other
K. For reasons stressed further when we consider the meson
equation, we consider a general value of W. 1In that case, a
solution of (7.8) (exact in the asymptotic limit) can be con-

structed by first neglecting Z, on the right side and solving

3
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for a constant 25(0). This gives (allowing for one subtrac-

tion constant 23(0) - 1),

p ety my 0 [ dx g dad 32t D) Kxtcn]
t -m wongu— - S————
3 24m S‘ x© * (Zy)* (x-¢*)
tm” (7.14)
2
~ & L
~ 1 - 4 ' 2' b‘ 2
24m (ZB (0)) Lm
To obtain 23’(0) in (7.14) all we need to do is solve the
equation which it provides for itself ) viz,
«1? a ~ dx 4wg%h (x1w4w?x+4}w*)
2,700 = 200 = =gty [ G (1% .
24m" (2, (0)) X X | -KR (-2t x4 R
Amz
(7.15)
2 m?
Clearly f%(t ) = 5 . The electric and magnetic
a3t2 in t2

form factors for spin one electrodynamics for the case ¥ ¢ 1
are therefore highly convergent quantities. The solution

(7.14) was obtained by neglecting Z, on the right of (7.13).

3
The form of (7.14) shows that this neglect was perfectly justi-

fied if we want to get the asymptotic behavior, To solve (7.13)

exactly, substitute (7.14) for 23 on the right and iterateo43
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‘ So far we have not considered (5.24) for the full vertex
function . We first verify that if the approximations
g € [23] « My M, [23] with Z, given by (7.9) are
substituted on the right side of (5.24), the full é behaves
similarly to ‘ﬁA [ZS]. Explicitly a lengthy calculation

gives

1 1m §(e? )%'"T“g a? 2,71 2y £ 2(HreBctd) | (P2 (12
32m t

-2 [actaeaedent (2 + 2c5¢ |
& 6.2 2
< M ke di Y m 16
2 22 (7.16)
310 | Imt Ink T, 99
a“t a’t (In t°)
wz ‘
nd has ex the s ehavior as ﬁ‘ t:z ikewise
we_have compu gg_ Im m Z g ;g&ggzz and_have shown
that orn ors d zero in the expected nexy

ie 1[t’§1nvt222 and 1[5"( in t_,.;zzz, These were some of the

most lengthy and arduous calculations of this paper and the

verification of the stated results was s consequence of a

number of cancellations which could not have been forseen
when the calculations were first set up,
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To obtain Re ‘& , Re M and ReBl, one can write down
dispersion relations. On account of the rapid convergence
of g . M and & , dispersion relations for these quantities

need no subtractions., If this is the case, the three conditions

8(9).1.-§S§P—‘§3—"l dx (7.17)
My(0) = K = - ;ﬁ‘;f 82) g (7.18)

S ﬁ‘@éﬁ dx = 0 | (7.19)
X

(the last necessary in order that Q(tz) satisfies the
stability criterion and exhibits at infinity the behavior
1,’1:4), determine three equations for the three unknowns

a, ¥ and the (physical) quadrupole moment ¢, introduced

through the definition

Gao-gfmime,, .,
m

see (4.23).

Conditions (7,12) « (7.14) are the analoghes (for our iteration
solution) of the exact Muskhelishvili restrictions mentioned

o
earlier on the phase~change [6] oy ™ T



(D) The meson propagator snd the final form of rA

We follow the procedure of §7C and examine first Eqs.
(4.31) and (4.33) for indications of high energy behavior of
A and the full [' . Unlike the photon case the spectral
functions Gl and GZ are not positive definite except in
the radiation gauge. Thus we cannot use the stronger form of

Lehmann'’s theorem. However the equations have the form

-1, 2 . -1 -
Im Zl -2 a[p 4+ terms involving Z1 E, Zl ]‘M, atc,]

-1 -1

"l . a [1 4+ terms involving Z, Z,, Z, E, etc j

Im Z2

2 v 2

so that barring a cancellation of the leading terms within

the brackets [ ] , one may expect Zl =~ }—f . Z2 ~ 1.

P
This is (partly) confirmed if we consider (4.31) and (4.32)

as they stand and impose the requirements of the vector alterna-

tive (see § 7.4) e SGldx < R andSszx <00 A and

&noz finite). This would need

Z, =E & M® sz' o~ pz

1 N' = pl'Q' =~ 1/p2. 2, = 1

2

or equivalently A =1 and [ = 1/(a' + gp').
We are now in a position to specify a form for PA LA, D] .

The tentative form suggested in Eq. (3.28) satisfies Ward's
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identity but behaves unacceptebly like -g--&- %’ +« It also has
no functional dependence on the photon propagator D. Both
these shortcomings are simultaneously removed provided we

replace in (3.28) the factor
IP"“P')a Euv by gpv(m')b“l«.gbutv’gbvtp)] [gab*dab(t)(l“g\(tz) )]

Bap BV [En, * da (00 (1 - 8e?N)]

Bay DY [gav +dyy(t) a- -gA{tz))]
and p pilptp’), by p pi(ptpl)y [gab +d 4t (1 - ZA(tZ)ﬂ

Writing out in full, we propose to choosezm

PA, [a 0] = [.gw(m-)b+u(%“cv~gbvtu)]ha\+al“(t)(u-gact‘))][pf%
SAENCEATI ”éxﬁf!%é s [gop o8- 870 { A0

X-Pn

Fteb (), [ -datO(1-840)] € tﬁ(ﬁ#‘?)

(7.20)
With. this FA. the meson equations reduce to the form
2
L z,7l(s) @ Uem)  (40?) [3a(stn?)? - 2(s-02)2-3(s%+10n stm?)
T 1 22
24m”s
+ 2(s-m2)? (6+i?) (7.21)
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g

2 2
1n z,(s) = “(3"“4)‘2"5'“9 3am” (s+n?) |z2(s)\2 -3(3-3m2)|l‘1(s)l 2 ]

8m s

Cz(s-mz)(zsmz)ner;(s)rz(s)—E-(S-M‘ Jsem) RO
(7.22)

where
Fi() = -3(s-n’) (2-102, (s)-u'Z,(3), Fy(s) = (2-KZ;(s) (7.23)

Whereas Eq. (7.21) is immediately soluble, the same is not
true for (7.22) except in the special circumstance ¥ = 2,
corresponding to the fully symmetric Salam-Ward~Glashow
electrodynamics.és For simplicity of solution we might fix
on K= 2 to determine I“A, other possible values being
treated as a perturbation. For ¥ = 2, Eqs. (7.21), (7.22)

reduce to the formn

2
L mz " s) = e o(5o0?) [3(a-1)(s+m2)2~s<s2+10mzs4m")+1z<s-mz)"]
24m”s ’
(7.24)
2
1z, o) = - 3—‘;‘1-3:-‘3-1 0(s-a”) [ atota®) - (s-sz)‘X (7.25)
S

Since Im Z-I(s)c» 8, the dispersion representations for

A will involve one extra subtraction constant other than
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Z,(u’) = 1. This will be taken as 2(0) = 2,(0) = 2,(0).%

The equations possess the following solutiouns

-1
ImZ )d
l(s).l.g.(sm)[_:?_._(.). j 10"‘}

x(x-mz)(s-x)

= 1+ (s-m )[.1__2__2_(_):-\ s{s-m )agdr(xl-m ') [3(8-1)(x+3m )]

24m (s x) +(10x-—3lnn )
s -1 a(3at?)s . 8\ V7
x & (17l - 2lsfDe g, (2 (7.26)

2 2 2

m 24m m
oo -1

-1 -1 o ImZ2 “{x)dx
ZZ (s) =2 (D) - T x(s-%)

2
m

00
~1 3as x m 2 2
=2z 7(0) + == (x+m”) = (x=3m")
( ) ) g,z (s-") [a X=3m ]

~ Z2°1(0) + i‘%é-‘—ll in (35) (7.27)

Clearly 2Z = Sli.m Z,(s) = 0 for all a > 0. Surprisingly,

however Zm} w lim Zz(s) is also zero for this particular
S X

approximation.
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To treat the case of arbitrary ¥ 1is not difficult.
With the solutions (7.26) and (7.27) as the basic solutions
a simple subsidiary iteration of (7.21) and (7.22) can readily

be set up. We shall not write down the resulting expressiomns,

(E) Summary

To summarize, vector electrodynamics is a finite theory,
provided the following insertions are made in vertices and
lines of irreducible diagrams for all Green's functions

other than [ , A and D.

- A = ] ¥ - 2 (P"m‘)zl(l}) ‘("“'mm)la(ﬁl)
P P [’gpv(m )b+2(gbptv'gbvtp;]2ab*d’wb(t)(l g (t))] P’ Pn
oo 24y ] 2)-Z(p?
+ 2,0 ")y, [gaptd y ((1- B(ED) | o

+ p,[Bay gy (D0 EEPN]TO e, [sa;'dap(t)(1'-5“2))]}(?'2)(

7.28)
Am,'l(p) - ~gw21(92)(92-m2)+pppv %(pz) (7.29)
D 'l(t) = d . (t) czz (tz) -t t/a (7.30)
ab ab 3 atb ¢ *
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A convenient first choice for Zl, ZZ. Z3 and ﬁ is as

follows
o0
- 2 23/2 ,.2...2 4
Z, 1(1;2) -] - .;'L;t‘_.&. S' d; a - Ax by (x TZOm §+12m2) (7.31)
" (24" (0))“(x-t")
lm?2
£ Z(t)[lZ(t):l
£%) - =3
t Z '(0) (7.32)
) o
2 2 ) )
Zl"l(pz) -1+ {(p ~m )_gl-z (0)—] u}; : )dexgx(+vvia) [3((1 u)(n?m)ﬂox 34-m]
" o : (7.33)
- d
ng(pz) - (pznmz)z} (p2)+m?|z71(0) + 33" X (x " {(a -)x +(a*3)M}}
| > (P x (7.34)

To complete this set we also write down C:‘&A (computed from

I"A‘ of Eq. (3.2%) as in the scalar case)

c"‘A(p.p';k.kf) -z [gapgbv * 8,Bay = 288,y
. y[-g 2<x-m )%e, 0 + o L4 ] O (oo ks
[e-p? ][5 (4102 [[-p* 2] (- o -10% |
. !S Vabuy(PsP sk K! ;%) (x-n2) %6, (x) dx
[x-pz] [x-(p+k)2] [x-p’Z]l:x-(p'-k)ZJ

+S¢N’abw(PIP' sk, k! 3x) Q(x)dx
[X'Pz][ -(wk)z][x-p'2][x’(p'~k)2] (7.85)
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where K 1is the total magnetic moment, N, 1is defined by
Eq, (5120), 1& and G1 are the spectral functions of the

meson propagator introduced in Eqs. (3.20) and (3.24),

Vabpv(PpP';k.k';X) f [gavkp'gapk;][kzx“Pz-p'z)(p+p')B+kb(p'2-p2)

2

+{ng v "Bhy P:\\:(?-*f"-p -p'%) (php! ) +k!(p p'z)

(7.36)

and

Wiy, (Pep" sk k! %) = (x-p%) (s-p* %) [gapgbv(x%p'-k)z}'*gav%bp x-(wk)z}]

By

[ p g, e ] (36007

Hptp'HL e, (x-p)) |

[ (p+p'-k") ap;(X~pz) :X~(p+k)2]

2
+(ptp'-k).p g_ (x-p'")
- b u"av (7.37)

These expressions provide a first approximation based essentilally
on two-particle unitarity. These can be improved upon, within
the two-particle unitarity system of equations and also by
incorporating higher particle states. Any improvement means

a recomputation of A, r‘ and D by the methods described



81

in §7 and is a major undertaking. It ié however a perfectly
feasible undertaking, The general procedure has been described
already in §2, §6 and§ 7. It will be summarized in a practi-
cal form again in part IV, where also we discuss how good an
approximation to the full theory is obtained by just the

ansatz of using (7.28) - (7.34).

& 8. The Dyson-Schwinger Equations_and the Unitarity Solutioms

Just to make doubly sure, we go finally back to the
Dyson set for the basic Green's functions. We saw that the
unitarity equations for A and [ in §6 and § 7 were rela-
tively easy to solve. The corresponding Dyson equations are
much more complicated; also as mentioned earlier any truncation
of these results in equations which do not possess even approx-
imate unitarity. Rather than solve these equations ab initio,
we show in this section that the high energy behavior exhibited
by the unitarity solutions is consistent with the corresponding

Dyson set. This will ease our conscience,
In the equation [|' = zt"0 + K[\". A, n] (2.10)

approximate to K by the gauge-covariant expression



K- [FAF’AP + PAC+CA|"] D

where € 48 the proper Compton graph. The choice of ¥ 1is
the closest in Dyson-Schwinger terms to two-particle unitarity.

Since

Tt pt-1)A(p -k (p' -k, p') D(K)

we obtain the following equation for A‘l

162

2"l p) = 28, M) - By Sd“k M (p. p-1)ACp=1). D (O [(p-k, p)

(27)

(A) Scalar electrodvnamics

Writing
Ceee") = (o), [£,07 024, (0802042, D)

where

: “'1 - "1 t
ap?.p'?) - 22 ?2 (e
- p

equation (8.3) reduces, when p 1is time-like,to the form
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(8.1)

(8.2)

(8.3)

(8.4)

(8.5)
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. 2
ﬁ-l(X) - ZAO"I(x) - -—-L——igddeQ)(X.Y9 Z)A(Y)

4x(27) — -1 -
2 ) 2
im0y vy, 2f 2@ gles®)
z-p z
COATRY) (x-y)
op )3 J
- Y 2-a " 2 ‘-]
Z:tho P (8.6)
Here
q>2(x,y,z) - xz + y2 + z2 - 2xy = 2yz - 2zx (8.7
with x = pz. y = (p«-k)2 and z = k2 (8.8)
pz is the photon mass and a sp.ecifies the gauge.
Using now the iteratrion procedure described in §6 and
gtarting the approximation as in Eq. (6.9) with
B(x,y.z) = A(x,y) [23(2) - 1]
equation (8.6) reduces in the Fermi gauge (a = 1) to
2 -1 -1 2
"1 "1 e -
A (x) = 25 (x) = L 3gdydz¢(x.y, z)A(y) [—-—-‘—L———MA xx-A ] .
4x(27w) y Z-p + L€

[za'l(z) AR} 2 : (x-y)z]
2 ¥4
Z.p
370

(8.9)



To recover second order perturbation theory, make the usual

approximations on the r.h.s

| -1
z, = 1, bl - w2 & (-8 ()

» 1., This gives

Xey
-1 ~1 ie 2 p{x,y,2)(2=2%=-2y)
A T(x) »28 “(x) - 3 | dy dz =t 2
e 4x(2w) (z=p“+1re)(y-m +ic)

For pz = O this verifies the well-known result

1 -1 a 2 4
vaA (x)“-x (% -m

More generally neglecting the radiative corrections to the

photon line in (8.9) (these give rise to inessential complica-

tions), the equation reduces to the form

M) = 22870 +{ aykpae) [871w - 874

: 2 2 48
where K(x,y) = ax +pxyhay

(X~y)2

for large x and y. As in the conventipaal Dyson treatment
we shall make two subtractions before considering the conver-
gence of (8.12). This is achieved byusing the boundary con-

ditions
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(8.10)

(8.11)

(8.12)

(8.13)
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-1
A-l(mz) = 0, 'a_.é..._(l‘).

= = 1 (8.14)

which finally give for A‘l

-1

- - - 24
Al x) = 2z [Ao Lexy - A, Ym?) - (x-md) —

xem”

+ (:-:--mz)2 S dyX(:’..y) Aly) {A.l(x) - A-l(y;: 2 (8.15)
with

DR
X (xy) = 3— -Z—K—(-é«lllz—-—-l——-i (8.16)
o 0x x(x-y)

Clearly

Lo 8l 2 x S_(_tbz? 1 {re’ 0 -7 )] -1n® 070
X=y

+2ReA(y)Re [A'l(x) -A‘l(y)] Im @“l(x) -4 1(y)]
(8.17)

o™

Inserting on the right of (§.17) the unitarity asymptotic values

A

—
bi4

- % Im A() = 6(:<-m2) +

Im A-l(x) e~ x/A lnzs;

Aln =z

Alx) = -

~ Re A(x) (8.18)
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and using the following results

r 49
dx c
ly - ~ L) —) a > 1 (8.19)
(z-y) lu'y (In %)
a
o0
dy a C(n)(n-1) )
g (z-y)? 1"y 2(ln 0)° 7 sll o. (8.20)
a

we check that integrals appearing in (8.17), iutegrals like

, 2
(o [ 5
y(x-—y)2 [In b4 In y]

. 2 . . ' '
are precisely of ovder 1/lu"x. This verifies that for large

¥ we do indeed recover back the unitarity solution:

Im A-l(x) ot x/AY lnzx. This argument does nc more than verify
asymptotic self comsistency; it is impossible of course to
make any statemont about matching of A' with A 1in (8.18)

£
without fullv =clving (8.3). 7

‘?)  Vector electrodynamics

The Dyson equations for the longitudinal and transverse

parts of the meson propagator are much more complicated than
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in the scalar case but can still be written in the form ¢

xa 1 (x) zgdydzux.y. a7 0-a" ) am[aT - ] 4z,
(8.21)

X = pz. y= (p-k)z. z = kz.

To show that the asymptotic solutions of (8.21) are correctly
described by the unitarity solutions of § 7, we shall concen~
trate on the transverse part of A. Equation (8.21) may then

be reduced to the form

x(x-n")Z, (%) wgdym.y) [(u))2, 0= (y-0D)2, () 25-0D)z, ) (8.22)

The kernel K(x,y) arise from quantities like
Tr [g(p)g(p')] and it has the form

2

,(g:_:? + Bxy + nz)(a'x + B'xy + 7'y2)

xy(x-y)z

for large values of

% and Ve

If we substitute the unitarity solutions of § 7, viz,

- .3-_. im zl“l(x) ] [ﬁ(x-mz) + A] (x"mz)

1

1in Zl(x)(x-mz) & 1/A 1nx

(x-mz)zl(x) > Re(x-mz)zl(x) 2 Alnx (8.23)



in the r.h.s of (8.22) and make just two subtractions:

Zl(mz) = 0, Zl'(mz) = ], we obtain an integral of the type

= Im 2 (x) % Sm-z- Im [Zl(y) (le(X)-yZI(y))?“]

5 Im Zl(y) Rez(le(x)-yzl(y))z. typically

b

Szdz [1‘12
(x-§)2 Inz Iny

which does not converge. This means that an extra subtraction

constant is needed, Z(0), exactly as we encounter in the

unitarity equations. Making use of (8.22) and (8.23) we again

recover
1 . ~ 2
= Im Zl(x) 2 1/x In“x from
%; Im Zl(x) - S dy 5 ( N | )2
(x-y) Inx Iny .

38



Part IV

Summary and Conclusions

In § 7 wve have set down the general form for FA [}5. ﬁ].
We have also written down a convenient first choice for
A and D consistent with the two particle unitarity approxi-
mation. The claim is that if we draw irreducible diagrams for
any other S-matrix element and insert [ﬂA, A and D from
(7.28) - (7.34) for the vertices and the lines, no infinities
will ever appear in the theory., Our discussion is still
inadequate in two vital directions
(1) How to improve the approximation scheme )

(2) The inclusion of C-parts and the gauge co-variance of

resulting S-matrix elements,

(A) Improvement of the Approximation Scheme

In principle this problem is completely solved once the

form of r‘A[;A, D] is fixed. Given this form, one determines

A, D and the full [’ by solving the Dyson equations to
any desired approximation as described in §ZB.

In practice we did not solve these equations; we found

it more convenient to use the two-particle unitarity equations
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to construct explicit expressions for A and D. The practi-

cal problem of improving the approximation scheme is thus

different from the problem in principle., First let us indi-

cate how to improve the unitarity approximation.

(1)

(2)

(3)

Fix the form of I'* [, D] (satisfying Wad-Takahashi
identity with the requisite boundary properties). Com-
pute AA and DA. from the relevant two-particle
unitarity equations; this involves only (0 lo | 1) = &,
and (0 1912) = % .

Write the Dyson expressions for all other Green's func-
tions M [A‘, r, D]. Substitute [ = r‘A. A = AP,

D= DA to get Mé [lAA. F‘A. DA] and therefore

©lo 13, (0 ol a),.

Use (0 |¢| 3) , etc.to recompute Al ) DAJ with three
particle and higher contributions taken into account.
Write down now the new [ A [A. D] and the improved
expressions for MA.

The scheme above is a consistent approximation to the
£Ell field theory; it is approximate to the extent

that r‘° r A. The next problem is to compute a

better approximation to [' and then carry through the



91

stens (1) - (3) once again. If we possessed a spectral
representation for r‘B (for all three particles off
the mass shell) analegous to the general spectral repre-
sentation for A, omne need only modify Rules (1) - (3)
above in an obvious manner, Unfortunately no such representa-
tion exists.51 We are forced therefore to fall back on
the Dyson equations for A, | and D. Here then
is a practical prescription for using AA, DA. P4 computed
above to provide a starting point for sclving the Dyson
equations.-

(4) Suppose step 1 (i.e. two-particle unitarity) has been

carried through and AA, DA,IWA are known., The cor-

responding approximate Dyson equations (see 8) are
-1 -1
Im(A )=Im[ZA° + SPAPD] = Im g\" ATD (1)

Perfex[frararos+ (aaro+ (rac of 2

provided Y‘A depends only on A (and not D)

Rewrite (1) as
Im"l = Im (A"l)A + Im S(FA rp - gﬁA 5+PA*6+) (3)

and solve (2) and (3) by iterations which start with

l'e [ A, A=ab we now possess the full A, (and similarly
D). Further terms can obviously be introduced on the right
hand side of (1) and (2) and procedures similar to the above

carried through to any desired stage.



In practice it is hardly likely that step (4) will ever
be carried out and the real possibility of improvement in com-
puting [ beyond the approzimation [ £ will come when a proper
dispersion formula for [' is discovered.

One merit of our formalism is perhaps worth stressing;
the causality of this formalism in a Feynman sense is fully
manifest, Every S-matrix element can be written in the form

a* y
kzwx) [}p-k)z-j]

This is true whether we use ['= rvA or the full [ obtained by

(. auayaz .. 6| :

iterating (2).

(B) C-parts

The C-part contribution has a dual role; first, what we
called the CAA and CAB-parts:hx §5 afe necessary to preserve
gauge covariance; second the intrinsic CBB parts are basic
;nsertions; in fact as basic as the vertex or self-energy
insertions. So far as the problem of VCBB Vcontributions is
concerned, we need to write a fourth Dyson-Schwinger equation.
Gauge co-variance of the—theory however needs only the inclusion

of CAA and CAB contributions.
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In this sense this short-coming of the present paper is not
terribly serious., The problem of the computation of cAA
and CAB contributions was so}ved in §5 for scalar electro-
dynamics and a completely parallel procedure applies for
vector electrodynamics, In @ ceparate paper we propose to

return to the computation of the CBB

contributions, The
procedure of choice ig to use PB-formalism instead of the
wave-formalism of this paper. 1iIn thic case there are no C-
part insertiomns at all though of course the number of form~
factors for [ (as well as A) is couciderably increased.

The methods of this paper apply for all theoriles where

gauge transformation (partial or exact) exists. Using these

methods the range of '"renormalizable" theories is considerably
extended - it seems to include almost all spin one theories.
Discussions of Lie group gauges on the lines presented in this
paper as well as of electrodynamics of spin 4 particles will
be published separately.

We are indebted to Professor P, T. Matthews for his care-~
ful reading of Part I of the manuscript and to Mr. J. Strathdee
for discussions. One of the authors (A.S.) would like to

thank the hospitality extended by Professor R, G. Sachs at



the University of Wiscomsin where part of the work was carried

out.
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Appendix I

Phase space integrals

We will present here a collection of relevant phase space
integrals for easy reference. Some overlap with equations in

the text is unavoidable., The self energy integrals are

' 2 . 2
e L [T R e O
2p :

r \ v N
= -E? ¥ 5332 - (MP)Z_} [(pﬁmlﬁ‘upz)z-mzpz] ] (A-1)
2p e ~

In the speclal case vhen p > m

| 2 1
2 , 2 21 .4 ?
k&§+(p -m2)6$ igym:} °ﬂL]d p w'% (1 - égL J ® (t2_4m2) (A-2)
t

As for the vertex integrals,

§ d*q £(p%. ) %[ﬁp”-q)z - 2] 5+\:(t-q)2-m2
(n2-p2?/p2
_ malp?e (i 2d
9 [(p2mm2_”2) 2_%2*&

2 (A-3)

2

7y aq’£(p%. q

2m2+2p.2—p2



and

a® o, [(k-p)2-w?] s, [(p'-1) 2-nZ |2(t2, k%)
+ +

in the limit as p =¥ n.
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Appendix Il

In the evaluation of the spectral function of the photon
propagator and the vertex function with the photon unphysical,
we encounter a host of terms which involve traces of momenta
and d and e projections. These scalar products are set

out below to facllitate computation:

2.2
I, = kd(p)p' = kd(p')p - - 5“§~
4m
' 2 1;‘2
I, =p'd(p)p’ = pd(p')p = -t"(1 - =)
4m
I, = kd(p-k)l = kd(p'-k)k -l ¥
3 d(p-k)k d(p’~ ~k7(1- Z;g)
2, K2t
I, = kd(p-k)p’ = kd(p'~k)p = -k (le=g - =5
4m 4m
A
I, = Trd(p)d(p') = Trd(p-k)d(p'-k) = C:*z - =5+ 3)
®m m
I, = kd(p)d(p")k = kd(p-k)d(p'-k)k
I, = kd(p)d(p')p = kd(p')d(p)p'
Ig = kd(p-k)d(p'-k)p = kd(p'-k)d(p-k)p'

I, =p'dP)d(pNp
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1,0 = p'd(P)d(p-K)k

I,; = p'd(p)d(p'-l)k

I, = k(p-k)d(p)d(p")k
I,4 = kd(p~k)d(p)d(p")p

I,, = kd(p'-k)d(p)d(p ')k
1,5 = kd(p-k)d(p'~k)d(p')p
I;6 = P'd(p-K)d(p’-K)d(p")p

1), = kd(p-K)d(p'-k) d(p)p’

I;g = Trd(p)d(p-K)d(p'-k)d(p")
1,9 = p'd(P)d(p-K)d(p'-k)d(p")p
1o = kd(p-k)d(p)d(p")d(p'-K)k

I,, = kd(p')d(p)d(p-k)d(p'-k)k

= pd(p")d(p'~k)k

= pd(p')d(p-k)k

= kd(p'-k)d(p')d(p)k
- kd(p'-k)d(p')d(p)p'
= kd(p-k)d(p')d(p)k

= kd(p'-k)d(p-k)d(p)p’
= pd(p'~k)d(p-k)d(p)p"

= kd(p'-k)d(p-k)d(p')p

= kd(p)d(p')d(p'-Kk)d(p-k)k
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1,, = kd(p')d(p)d(p-k)d(p'-k)p = kd(p)d(p')d(p'-k)d(p-k)p’

Iy = pd(p*')d(p)d(p-k)d(p'-k)k = p'd(p)d(p*)d(p'-k)d(p-k)k

I,, = kd(p")d(p)d(p'-k)d(p-k)p' = kd(p)d(p')d(p-k)d(p'-k)p

For the case of the meson self energy with ¢ defined as in

(A-1) the following relations are useful:

pd(t)p
td(p)t
td(p-t)t
Trd(p)d(p-t)
Trd(p-t)d(t)
Trd(p)d(t)
td(p)d(p-t)t
td(p-t)d(t)p

pd(t)d(p)t

@2/4u2

= wzlépz
- o /bm?

34+ 9 /4m2p2

=3 4 9 /4m2 2

=340 lépz 2

= (p2-p2n?) o7 /8u’p?

- (Pz-mz-uz) ¢2/8m2u2

- (p2+n2 mz) P /8pzp2



100

td(p-t)d(£)d(p) & = (70?24 ] ¢?/16m%p2,2

pd(t)d(p)d(p-t)t = [(a*-uH)%-p"] 0% /16n%p%,2

2,2

td(p)d(p-t)d(t)p = [o*-(p%-1?) 2,2

]@2/16m2p TR



Appendix II1

As remarked 1n§7°A. if Zmo2 w0 , it is possible that

alternative solutions to the Dyson equations may exist, with

the boundary behavior
2 2
A~1/p°, "wp , D= 1/t

Very crudely on2 may see the effect of m.o2 « 0o in
the following mammer, The so-called "free unrenormalized"

propagator has the form

R S |
22 T 7 7.2
p [o] (9] P 0

One may expect that as a result of self-energy corrections
the first term changes to the form -g“v/(pz-mz) while the
second drops off in the limit mo2 = 0 giving for A the
scalar behavior A 2.1/p2.

To examine if the equations (4.36) and (4.37) for

Zl(pz) and Zz(pz) can possibly admit of solutions behaving

like Zl(pz) % 1 and Zz(pz) ~ p2. rewrite the equations

in the fom,

101



2

Im Zl(pz) l:l-l-ap Im M+ ]

- a p? [\zl\z-c-nez Re M + .|

1
Im Zz(pz) [ 1+ apz In Z1 4- apz Im M +.]
2
S [\zz\ + (D2 KA 2 4 i‘
or altermatively

Im Zl-l(pz) = U(p?) + tan 8 Re zl"'l(pz)

where
QU ZReM
tan O P~ '—-—'E"“i“‘*—
Itap ImM
2 ap> ~1) 2
u(p?) = 5 [1 + |2 M|
1+ap” Im M

and a similar equation for Zzul(pz).

Now if M(pz) = 1 (ie [ & p), the tem apz Im M

dominates over 1 in the denominator of tan 8 and U(pz).

[~ -]
Provided therefore that [9] = 0, solutions may exist
2

o

with the characteristic behavior Zl(pz) 1, Zz(pz) o~ pz,

m2'=°°.
o
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(A.5)

(A.6)

(A.7)

(A.8)

(A.9)
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In a sense then the "'scalar alternative' would exist if

in the original Eqs. (A5) and (A6)

Im Z1 - ap ( \21\2 4+ Re M Z ‘Ml 2 4 w )=0

one can neglect completely Iw Zl for large p2 in comparison
with the rest of the expression. This emphasises perhaps
dramatically the eigen-value nature of this alternative
{compare [9]:2 = 33, Note that if L‘iﬁnz) ~ 1, U(pz)

and tan 8 are sscentially indepeudent of the f£inme structure
constant 27a.

To conctruct the scalar solutions, te check their exis-
tence, and to checoll that no extra subtraction constants are
introduced in the vertex function [’ (besides possibly a sub-
traction for magnetic moment) one needs to solve simultaneously
with the Eqs. (A5), (A 6) above, also the equations for
M(pz). E'(pz)g Q'(pz) etc. This we shall not attempt here,

If the scalar alternative indeed exists, we have the
interesting demounstration that the (renormalized) unitarity
equations (which essentially state relations between Re
and Im parts) need supplementation by a specification of the

number and character of subtraction constants to distinguish



between possible alternative solutions, The number and nature
of allowed subtractions in turn determines if the solutiom
investigated exists for all values of the constants of the
theory or only for special values.

It has repeatedly been emphasized in the text that our
stable solution to vector {and scalar) electrodynamics is not
a solution where convergence has been cbtained by summing cer-
tain subsets of graphs., Even though the final two particle
uunitarity expressions for A resemblie second order perturba-
tion expressions, the convergeace of the theory comes not from
A but from [‘A [ A, ﬁt} which displaya scant resemblance

to its perturbation counter-part. Fuarther in principle we

have the procedure to build up the full theory - ie we can include

104

every Dyson-Schwinger "'graph" and without redundance at any
stage. We do not claim that the precise form of Y“A chosen in
the paper gives the best approximation from the point of view
getting closest to physical answers, mnor that after three, four
and higher particle contributions have been summed up, the
behavior of A, |' etc. may not change. All we claim is that
each unitarity contribution individually behaves in the manner
indicated in the text and that the stability criterion continues

to be satisfied at each stage of computation.



1.

2.

3.
4,

5.

105

References & Footnotes

Work supported in part by the Air Force Office of Scientific

Research OAR through the European Office, Aerospace Research, USAF,

Work supported in part by the USAEC, the NSF, and the Research
Committee of the Graduate School of Wisconsin from special
funds voted by the State Legislature.

In this context the following remarks of A. Einstein (Phys.
Rev, 89, 329 (1953)) are possibly relevant: "If there exist
elementary sclutions of the equations which depend upon a
continuous parameter, then the field equations must prevent
the coexistence‘within one system of such elementary solutions
pertaining to arbitrary values of their parameters...lf a
theory does not possess these features then the theory 1is
inadmissible."” We are indehted to Dr. J. Bronowski for .
pointing out this reference.

A. Salam, Phys. Rev. 130, 1287 (1963). This paper will be
referred to as I,

F. J. Dyson, Phys. Rev., 75, 1736 (1949).

The Schwinger formulation of Green's function theory (J.
Schwinger) Proc, Nat. Acad. Sciences (USA), 37, 452 (1951))

is parallel to the Dyson3 formulation above; it however
offers some advantages for gauge theories (see $9).

K. Symanzik, Journal of Math. Phys. 1, 249 (1960); an

extensive study of this set has recently been completed



6.

7.

by J. G. Taylor "On Field Equations I-VI", Nuovo Cimento
(to be published).
The constants Zl; 22; 23 occur in the Lagrangian and
are themselves defined as boundary values of S, D and
[ . For electrodynamics Sm"l = 7.p - m, DO' = pz-poz.
Po = y and tno2 and pcz (which always appear multiplied
by 22 and Z, respectively) are the unrenormalized
mass constants. Graphicaily, the Dyson-Schwinger set
corresponds to the drawing of Dyson's irreducible diagrams
for any Green's function and then making vertex and self-
energy corrections to these. For all 3-field interactiomns
the structﬁre of the Eqns. (2.1) -~ (2.4) is the same, the
distinctive differences of one Lagrangian from amother
appear only in the specification of the inhomogeneous terms
So. Do and r‘o, Also if 4~-field interactions occur in
the Lagrangian; this only increases the number of what
we have called the basic @reen's functions.
The lack of symmetry between [ and r‘o in Egs. (2.1) and
(2.2) has slways been an embarrassment (the well-known

problem of "b-divergences'). One recent suggestion to

deal with this problem is due toKSymanzik (Ref. 4).
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Other alternatives are due to A. Salam (Phys. Rev. 82,

217 (1951)) and J. C. Ward (Phys. Rev, 84, 897 (1951)).

All these proposed solutions convert the single term on

the right hand side of (2.1) or (2.2) into a series in

e2 and show that the integral behaves effectively like
SFSl‘D. To see this at its simplest, eliminate ZlPo in
(2.1) and (2.2), by using (2.3), ie set er; = Foe?KPSFSPD..
The treatment of this problem in the text (see the

unitarity set §2C) eutomatically restores the "a'' and

" vertex symmetry,

If this is the case the only integrals of type M(N)
which may still be non finite and divergent belong to

the class satisfying [g_ - %] "Ee + E7 <4 where s

is given by S0 = 0 [;liks]. The relation of these
infinities to the subtraction constants in renormalization
theory is well known and will be discussed as the occasion
arises,

More precisely the stability criterion states that

SM%’ (p) r1p.v.b(P.P'.t) Sv.v%(t)nba%(t) should decrease
as fast or faster than l/(length)z along any direction

in the (p,p') plane.

It is important to emphasize that the stability criterion

guarantees a uniformity of high energy behavior in each



12.

13.

order of iteration, only to the extent of a power count

of external momenta. The extra powers of logarithms

)

which grise in each order M can lead to a different

behavior for the sum of the series M(N); our problem
in this paper is not the determination of the high
energy behavior of this sum ZM(N>, our chief concern is
with each temm M‘N).

To take a concrete example; for scalar electrodynamics

one may choose

(etp'), r 4 -1
Pa =52 [570) - 57NN - 2o,
p -p’ - :
| (P"'P')‘tb
Clearly Xab = 8.p " —;5:;73—— ; note taxab =z 0.

} §4 K.a has the form S...STlSﬁ... the corresponding
expression for t:aK.a would contain S\...(SLS)... in
the equation for s"1. 1In other words, in writing down
the expression for tﬁxh in Eq. (2.14) one makes

consistent use of the Ward-Takahashi identity.

One mgy perhaps stress once again the close analogy of the

above approximation procedure to that followed by per-

turbation theory. Perturbation theory starts with the

first approximation l"(o) - [ 6 where Po by definition

108



14,

15.

equals M*[s]. Since tX K =0 and

-1 -1
t A[s(“)] - s(® " _ g™ 7 4y definition, Eq.
a' a
(2.16) satisfies the Ward-Takahashi identity to each
order in e2 of the iteration ,
A still more practical iteration procedure can be set up

as follows: Define

-1
1 -1 el
S(n'" ) - z(n) So o+ taK. [r\( ) . S(n)]

Pa(é+1) = r;A (P(nYJ * X% [r(n)’ S(n)]

where r‘(o) - PA ES(O)l, s{0) = S(l).
g(0)

To start off the iteration, is the solution of the

equation

g(o) _ (o) so-l +eK [P(o)- S(O)J,

7¢p' - m *

This iteration has the additional merit that the above
equation is the only one which needs to be solved. All
higher orders are given by substitutions in the orders
below.

The integrals which arise when (2.14) is iterated with

r‘A as the zeroeth approximation have the general form
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17.
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given by (2.5) with E, =2, E7 = 1, so that [* = O[PAJ.
The situation here is similar torthe case of renormalizable
theories where a straightforward iteration of (2.1) - (2.3)
shows that if SOPODO% = 0[1/k2] , then SPD% is also

0 [llkz] and [ 1is 0[\"0] .

Equation (2.2) for the photon propagator can be included

in the iteration scheme thus:

n)-l

pt -z W)y =1, (Sr(“), D(“), s(My Gieh

3 o

D = 114 D(n)

A
n - n . This means that P should be chosen

(see § 6) to depend explicitly not only on S, but also on

D. At each iteration stage one then solves two equat ions,
one for S and one for D. 1In practice, using the pro-
cedure of footnote 14, it will always suffice to solve
altogether two equations and no more.

See for example Ning Hu, Phys. Rev, 80, 1109 (1950)

where the expression for S obtained as an agpproximate
solution to Dyson's Eq. (2.1) contradicts Lehmann's

result. The only hope of rénormalizing an unrenormalizable
theory (with positive definite metric) is through an

improved high energy behavior of ", and not S,
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18, To appreciate the problems involved in writing a general

unitary set, consider the Wightman (W) and the time-

ordered (T) products:
W, =<0 e(x) ... o(X )|0), T, §<o| T(e(X)) ... o(X))| O
with the definition

# x s ooc}o
i 12

T w3 Q(Xi - Xi
2 3 1

Yo(xX, -~ X, )... WX
n perms 1 S | i

2

Using the completeness relation

W= <ole(x) | ind<in |o(x,)| outd(...

and the reduction formula

0)

<out l o(x) | i.n> = K1K2 ee. <0 l'l‘(@(x)tp(xl)cp(xz)...

where K = (32 + mz) we may write

T «2(X, -X ) ... 1V (O (X, .mADE®ET . (K, .
n L 1, n blocks 1T, s+1'%y,'5
This last set will be called the Unitarity Set. Ome could,

in principle, completely replace the Dyson-Schwinger set

by this unitarity set, but to make any use of it one must



19.

20.

learn to approximate to it, consistently with the general
principles of field theory. The simplest suggestion
(analogous to perturbation theory) of approximating to
f; , 18 to retain on the right only two (or three, or
four,..) particle intermediate states (i.e. keep only

2 Ty ‘””»tzr"ta
however comes to grief on account of the presence of the

T ’ and’th. etc. on the right). This idea
8(x) factors. In general it is not clear that even the
Lorentz invariance of the T products would be preserved
with this type of unitarity approximation and it is at
this stage that use of something analogous to local commuta-
tivity becomes necessary.
It may be noted that for any gauge except the radiation
(i.e. Coulomb) gauge; electrodynamics uses an indefinite
metric. Thus though Lehmann's theorem applies directly to
the gauge independent part of D, 1its use for the charged
particle propagator needs care. See §7 for a fuller dis-
cussion.

tt

. _ v
The transverse projection operator dpv(t) =8,y +'—ﬁ§—

tt
. v
and the longitudinal projection epv(t) -'~§§*

112



21,

22,

A

were introduced in I. Writing d and e for these

respectively, note ec.ew e, dd=-d, e~-d=1,

ed=0, Also if A =13 d+ \e, then

-1 -1 -1
= d + Ay &

In writing (3.15) we have ignored the part of the integrand
which gives rise to the usual infrared divergence

9 2t log mzl'pz. This has no bearing on the high
g = 0

energy limits of Zﬁl{s).
Z'I(s) may possess real zeroes (especially when a < 3)
s

for --g- £ 1 where
m

S S
i‘—%—fltg- -1 log (-

' 8
If a 1is small, the real zero occurs at -g- ~ - eZIa(s-a)

and the representation of Z(s) must be modified to

2 - G(x)d
Z(s) = 1 - a(3-a) (s + :Z?G(B-»as - (s»m ) g s-xx-é— ;fe

for small o and a ¢ 3.

This C.D.D pole in the inverse propagator is completely
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23.
24,

25.

innocuous for the high energy behavior of the theory
but of course precludes expansion around o = 0,

P. T, Mhtthews; Phil, Mag, Vol XVI, 185 (1950).

That the perturbation " must contain terms of the

]
form (1 -~ a log ﬁi) and (1 - a log 35 can be verified
m : m

directly by writing the perturbation expression for

A”l(s) - A-l(s') and checking through explicitly for
Ward's identity.

G. Feldman and P, T. Matthews, Phys. Rev. 130, 1623 (1963).
In this formulation of electrodynamics, xz is introduced
with the significance of the mass of a '"time~1like"

photon whose polarization is always along the propaga-
tion direction tp. Current conservation guarantees

that the mass shell S-matrix elements (though of course
not the Green's functions) are independent of hz. The
constant Lz specifies a‘particular covariant gauge:

a= lepz © 0 defines the Landau gauge, and a = kz/pz - ]
defines the Fermi-Stuckelberg gauge. For lepz‘?co one

recovers conventional theory of massive neutral vector

mesons,

1}4
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26. That €, in (4.30) is indeed positive definite

3
can be seen by defining in place of & the combination

‘ 2 2 2
KA(tD) = -1 - ERB (D) - Ex M) + 21 - ER (D)
2m : 2m 4m

in which case (4.30) simplifies to

2 at? 2 372 2.,2 2 2.2 2
G (t7) = ——Feee (1 - =) | ()| T+ = (ML) 7+ 5{X (D)
3 (2nDy? 2 \:‘5 | o2 | | X (%)

27. N. Nuskhelishvili; Singular Integral Equations (Noordhof/
Croningen, N. Holland 1946, p. 111). The solution in
the text is the so-called "fundamental solution'; it is
the solution which applies when the change in the argument
equals zero when x goes from =~ % to + *, When this
argument change is non-zero, the constant C in (5.8)
is replaced by a polynomial. The high energy behavior

-
of ' is thus determined by the phase shift [0 ]
- 00

of the scattering amplitude and therefore (through
Levinson's theorem) by the number of possible bound
states and CDD poles. A detailed discussion of this will

be published elsewhere,



28.

29.

30.

In writing this we have the familiar dilemma of S-matrix

theory; how to reconcile within one (approximate)

expression. the demands of causalltz, crossing and

unitarity. Thus absolutely strict (2-particle) unitarity

has been sacrificed in M(l) by not including terms

of the form ((PAT) aa (M ATP).

K. Nishijima, Phys. Rev, 119, 485 (1960)

T. D. Lee, Phys, Rev, 128, 899 (1962).

It is perhaps instructive to write the spectral form for

CAA in Mandelstam variables s = (p+k)2. u = (p'-k)z.
(N, (s, u3%)

AA .
c (p.p'. k. k") -2 .2 +de —
ab cs ab (x~s) (x~u)

shells

with

N (s, u5x) = 2g, (x-n’) +z[<m'> ("), - gk, Ja®)

Using the identities,

S x-m G x)dx A-lgsl - A-lguz -z
s-u

(x~8)(x-u

S x-m G{x)dx - ZSSZ - ZSu}

(x-8)(x~u s - u
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this may be more simply expressed as

-1 -1
cabAA(s.u) - zgab{A (s) - & (u)_ + 2 Em')a(m')b-kbk’a]'

s-u

‘{?gs!-zgu:]

s-u

31. M(l) 1s approximate in the sense that P' and the
intrinsic spectral functions of C are not taken into
account in writing M(l)'

32. We are indebted to Dr. J. G. Taylor for a discussion of
this point.

32&. Considering the manner in which E'(pz) arises in (6.13)

one can easily see that E'(pz) came from the following

combination of terms in the integral in (4.27)
lim 5(t2=p2) 2 2 2.2

. 5 B(p”, m", t7)dt
2a 0" t

Now from (6,31), B(pz. m2

c %) = [z30eh) 21207
G.(x)dx
- (£ 2D [
xX~t

We thus get E'(pz) e« 0 for this choice of [1A.



33.

34.

35.

The part of the integrand which gives rise to infrared
divergence difficulties has been discarded and the
asymptotic behavior of the logarithmic integral

t2

\S wékff - ~£E—~ has been used
In k In tz

0

The fact that the change in coupling seems appreciable
is not to be taken too seriously, Thus our neglect of
many-particle contributions to (6.9) and (6.10) must be
borne in mind as well as the approximation used to
derive (6.10) which is only roughly unitary. The only
important point is that the high energy behavior remains
stable.

From (6.19) clearly ©¢&) # 0. In order however that
Zg(tz) does not increase faster than a constant (the
stability criterion), the fine structure constant o

must be restricted so that
tan a ) /s
k™ = p

- 0

For pz = (0, 8(>) = 7v/2 so that this condition holds
for all a > 0 and

€ (th =(/H?
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37.

38.

39.

In order that 23(t2) has no CDD zeroces, a has to lie
within a special range of values (see Footnote 22),
Just to avoid introducing these CDD zeroes, in (6.24)
we have written a dispersion relstion for Za-l(tz),
Because of the gauge invariance of g (tz). ‘g cannot
depend strictly speaking on the gaugg‘varying quantity
G but only on the gauge independent function G3,
In a sense this is equivalent to an expansion of the
exponent in

-1, 2 2 t2 ( tan”! (e4p)
2,7 (e e (t%) = exp [}"’ & - dx]

‘ x(t " -x)

assuming that tanml (6+3) 1is proportional to a.
Dyson defined Z and Zmo2 differently from (7.3)
viz, as boundary values of A (and its derivative) at
pz = mz. The equivalence of the two definitiomns when
these constants are finite was shown in I (Footnote 6).
In 80 far as Z 1is the boundary value of Afl, the

renormalized Dyson equation, rewritten as

A"l = (1m a7h Ao‘l + SP aAlp+ ..

is clearly far from being just a simple integral equation

of a conventional type.

119



40,

41,

42,

43.

The "scalar" alternative is the one conjectured for the
full propagator A by T, D. Lee and C. N. Yang.

(Phys. Rev, 128, 885, (1962)) and arises after a summa-
tion of perturbation graphs.

More precisely, from footnote (26) one infers that it

is 'ﬁi(tz). J:EJWKtZ) and 76(:2) which must possess
the stipulated behavior, An examination of the form of
7((t2) however shows that unless there are cauncellations
between tZQ; M, and ‘& . 1in general the restriction
must obtain as stated in the text.

One can rewrite (7.11) in the form

& 3_0:) [ 1-2,¢:H)
[3 tzl(o)

To all intents and purposes we can regard Eq. (7.14) as
the exact initial Z3. since all boundary conditions are
incorporated in its integral representation. The point
is that it will be subject to corrections from further
iterations specified in (7.16) in any case.
Here we define more properly

£4¢% - AZB(tz) iﬁ'flggg-gl dx

,.L"’O
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46.

47.

48,

where the limit “2 - 0 13 taken at the end of a calcu-~

lation. This ensures that E' m N' = Q' » 0 in (4.36)
and (4.37) for the starting approximation | = r‘ A,
A, Salam and J., C. Ward. Nuovo Cimento 11, 568 (1959).
8. Glashow Nuc, Phys. 10, 107 (1959).

If the renormalization constants possess a correspondence

‘aA
with the constants in a Lagrangian, a temm 'g( 3 —t )
x X,

+ A"
~A
in L would get renormalized to §' o %-;-E where

'- + 2,"(0). Terms of this type however are not
g 2

gauge independent and in conventional formulations Lo

contains only terms F“': F_ + Hoz AY A" so that

BV o e G, (x)
one requires both - ' w0, e Z,%(0) = 2
2

‘This requirement may be used to compute 22(0)°

In writing (7.26) we have neglected the part of the inte-
grand, proportional to (a-3) characteristically, which
gives rise to an infrared divergence.

This result remains the same even if the complete puotou
propagator is included in (8.12), assuming for 23°1(z)

the unitarity behavior 1n (5-5).
m

dx = 0,
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50,

51,

For proof of (8.19) see Appendix D, G. Frye and R, L,
Warnock, Phys. Rev, 130, 478 (1963). We are indebted to

Dr, V. Barger for peinting out this reference. The relation
(8.20) may be obtained from (9.19) by differentiating

both sides of (8.19). Note that C{(2) = 1,

It has not been shown here but we have checked that 1terationé

of (8.9) (or indeed of the unitarity equations using the
unitarity solutions). do lead to complicated transcenden-
tal functions of the coupling constant with an essentjdl
singularity at a = 0,

In the authors’ 6pinicn there is no problem in field theory
more pressing than an integral representation for the full
three point function such that (like the representation

for the two point function) the comnection of the kernel

through unitarity with higher Green's functions is manifest.
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Re Z27'(s)
« (a- ow@-3) o (S
G () 1t
P\ :Q w b} P,
l |
| |
|
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