9

NY0-8796

ANALYTIC PROPERTIES OF EXPECTATION VALUES OF
PRODUCTS OF FIELD OPERATORS

by
Abdus Salam

THE UNIVERSITY OF ROCHESTER

DEPARTMENT OF PHYSICS AND ASTRONOMY

ROCHESTER , NEW YORK




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



ANATLYTIC PROPERTIES OF EXPECTATION VALUES OF

PRODUCTS OF FIELD OPFRATORS

by

Abdus Salam

Department of Physics and Astronomy
University of Rochester

Rochester, New York

December 15, 1958
AT(30-1)-875

Not for publication,

Individual copies willl be supplied as long as the supply lasts,

a .



ANALYTIC PROPERTIES OF EXPECTATION VALUES OF

PRODUCTS OF FIELD OPERATORS

Lectures given by Dr, A, Salam
at
The Department of Physics and Astronomy
University of Rochester
Rochester, New York

with

Appendix by Dr., S, Okubo

Notes complled by F, Troyon
assisted by H, Schnitzer



—F

PREFACE

These notes cover the material of lectures given'by Dr, A, Salam
from the Imperial College of london at the end of July 1958 at the
Physics Department, University of Rochester. The purpose of these
lectures was to acquaint the graduate students with the latest work
on the axiomatic approach of field theory. The reader is assumed to
be familiar with the fundamental ideas of Field Theory and Dispersion
relations.

The appendix of Chapter IV is due to Dr. S, Okubo., We would like

to thank Dr, Okubo for proof reading the menuseript,
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INTRODUCTION

The aim of these lectures 1s to give an account of recent
work in "Dispersion Theory". |

Dispersion relations are integral formulas connecting Real
and Imaglnary parts of scattering amplitudes., In establishing
these, one wishes to use the minimum number of physlcal assumptions.
One assume s that

1. Xocal field operators A(x), B(x) exist in Hilbert space

2, There exlst no negative energy states,

3., The field operators have suitable transformation properties

for Lorentz transformations.
i, One assumes that these satisfy local causality requirements
(a(x), B(y)]=o (x-y)2< 0

5. Asymptotic condition”

With these minimum of assumptions-it appears that one can go
a long way 1n specifying what the character of a scattering matrix
should be as a function of its relevant variables, Whereas axiom
(3) specifies the group theoretic properties assoclated with space
time (parity, angular momentum, etec,), axioms (2) and (4} tell us
that one can consider scattéring amplitudes as béundary values of
analytic functions in configuration or momentum space. One is thus
enabled to use the very powerful machlnery of functions of complex
variables,

The dispérsion relations are merely a reflection of these analy=-

ticity propertles and are rather trivial deductions from them,

% To establish the dispersion relations in a physically useful

form, one also needs knowledge of spectrum of phgs%cal gstates,
(This will be loosely c¢alled "Spectral relations®,



Cne rather simple remark: Tt is equally feasible to consider
scattering amplitudes or vacuum erpectation values of field operators.
This is because the 5t" axiom allows us now to obtain from vacuum
expectation values, the appropriate scattering amplitudes. For scat-
tering process with two incident and two outgoing particles, it is
sufficient to consider vacuum expectation values involving four opera-
tors,

The central problem, in the context of dispersion relations,
then, 13 to dlscover the analyticity properties of vacuum expectation
values considered as functions of many complex variables.

To study these properties, two methods have been adopted, One
is to use directly the theory of complex variables, This is the ap-
proach of

l. Boguliubov and

2. PBremmerman, Oehme and Taylor for proving dispersion relations

and

3, The computation of the analyticity domain for the vacuum

These papers rely on theorems in complex variable theory--theorems
which are not already part of the Physicists' heritage and consequent-

ly the acceptance of proofs-remains still somewhat an act of faith

 for most of us,

The second approach is to use axiom (2), (3) and particularly
(4) to obtaih-integral representation for vacuum expectation values
of the scattering amplitudes for real values of the arguments,
The analvtic continuation to complex values becomes trivial and one

can study the analyticity properties by actually staring at these

expectation of three operators by Kallen and Wightman (preprint)
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expressions and the proofs do not have the status of acts of faith,

This approach was first used by Nambu (N. C. & 1064 (1957)).

He made use of perturbation theory to obtain these representations,
Kallen, Lehmann, Low and Gell-Mann, (Physical Review) were the first

to obtain general representations for vacuum expectation value of

two field operators. Dyson (P.R, 110, 1460 (1952} solved the

problem of constructing a general integral representation for a
scattering matrix element following work of Jeost I, Lehmann (N.C,

5, 1598 (1957)5 and Lehmann has used the Dyson representation

to obtain a proof of dispersion relations, following the original

idea of Bogolyubov, | ' h““‘“\

Thus, the aim of these lectures is to lead to a simple proof
of dispersion relations using Dyson-Lehmann method, We thus obtailn
all results of Bogoliubov, Taylor, Oehme and Bremmerman, Unfortun=-
ately we do not seem to do any better than the lagt named authors.
The lectures really attempt to present the ideas., Proofs rigorous
enough to be acceptable to a mathematician are not attempted.

The plan of the lectures is as follows:

We first discuss general properties of vacuum expectation
values and congider the magnitude of the problem from ihe point of
view of theory of many complex variables,

Next, we write down Nambu's integral representation,

Next, we consider Dyson's integral representation for the

‘scattering aﬁplitude end its analytical properties following Lehmann,

Then we complete the proof of dispersion relations and summar-

ize the results so far obtained for elastic scattering problems.



DISCUSSION

What are the problems and the outlook.

First,dispersion theory: -

We have succeeded proving dispersion relations for (w w), (w N),
(v = ) cases only » With restrictions on momentum transfer,

We succeed in proving (N N) relations for A = 0 only if M.>
( V2 -1) My which is unrealistic, so that really no proof for
N - N Case exists, _

We carmotrprove the relations for (N = K) (n,5).,.(KZ) etec,

e« « « + » Cases at all, not even for forward scattering, This 1s
rether a sad plcture,

In using the Dyson integral representation, we remarked thaf
the representation ia powerful in studying analyticity properties
of the scattering amplitude as a function of 1 variable while §
variables are held fixed, This is a 1imitation. Again ﬁe saw that
by using the completeness relation, Lehmann was able to obtain
larger analyticity domains for momentum transfer for the cagse of Im T,
Here one 1s essentlally studying Im T more closely and in more detall,
One may possibly repeat this, use unitarity condition which has not
been explolited fully and thus be able to prove s;me of the unproven
resulta, Thec field is coﬁpletely open 1n this respect.

The other interestihg thing which one may remark upon is the
consideration of where the lower 1limit should be in a dispersion
integral, This is the type of problem we flrst discussed uiing
perturbation theory for WB (see report on work of Karplus, preprint).
This .again points to the inadegquacy of the information fed into dis=-

persion relations. This may be made more explicit. Dispersion re-
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lations (and all our considerations in these lectures) refer to
space-time (or momentum space), Conservation laws (like those of
charge, nucleon number etc,), and all things corresponding to
internal degrees of freedom come in rather surreptitlously., Take
N- N scattering., What one shows first of all 1s that there are 10
scalar functlons which describe the scattering. The fact that
there are 10 such functions reflects the spin, charge, nucleon
number state (strangeness if any) etc. of the system., But as far
as dispersion relations are concerned, the heart of the matter liles
in these 10 scalar functions. They may and indeed do have inter-
relations through unltarity but dispersion relations and all our
work In these lectures disclaim having anything to do with this
aspect of the physical situation,

How can these 10 functions still "know" of the conservation
laws? Only through the mass values fed into the spectral relations.

It appears that one of our inadequacies may be in rnot feeding this

information properly and this may be the core of the difficulty in

specifying lower limits in dispersion integrals, One suspicion is
that all this may be connected with what fields are elementary and
what are not. Nambu (preprint) has some considefations on this prob-
lem, Also Mandelstam has conjectured dispersion relations where
one may {ix energy and vary momentum transfer, But, I would not 1ike
to start on these topics now.
I lecturéd here 2 years ago when dispersion relations were

new and I said " . . . . these relations will dominate our thinking

for many years to come"™, I would like to repeat that statement,



CHAPTER I

In this lecture we consider vac, exp. values of field operators,
The most famous product is the Teproduct of Feynman., For our purw
poses we shall find it advantageous to concentrate on two types of
products; (1) a straight product of field operators = the Wightman
product = in configuration space and (2) Fourier transform (in
momentum space) of retarded products,

We consider these two types of products and try to deduce their
general properties from the axioms, No integral representations
are found in this lecture. For those interested only in the Inte-
gral representations thls first lecture can be omltted. Some of
the remarks are rather stirff,

Bl. Wightman Product

Definition
Wn (xl;xu"')Xn) = <ol ¢l (X.)----- “‘¢n(xh”a> 1.1
We restate the field theoretic Axiomatic assumptions and study their

consequences systematically for wn.

(1) -t _ Relativistie 1.2
' Ula, 1) dtdUlaA) = g(Ax+a) invariance

(q,JL) is an element of the 1nhomogeneous’proper Lorentz
Group ya , meaning the operation of transforming by the homogeneous
Lorentz transformationJl(Ud7L=l)followed by translating by a,
U(drAJ is the corresponding unitary (or anti-unitery) transfor-

mation operator,
(2) no negative energy states exist.

Wightman shows (Phys, Rev, 101, 860 (1956)) that given a set
éf.wn one can construct a theory of a neutral scalar field,

For the present space time reflections will not be included in

-
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our considera't.ions. In §l., the role of reflectlons im discussed.

'Wﬂmﬁi_ﬂ
(1) LI, gives
Wi (%00 xn) = Wi, (A x +a, A%t a, ey AXata) (1.3)
since Ula,A)le>={e>

(2) From pon existence of negative energy gtateg ome can show
that W, are boundary values of analytic functions:
Write ‘
.3,,' = X¢— Xiw (1.4)
W = Wh (3, 34)
Agsume W posess Fourier tran.sfoms-
"

Wo (B, o) = Jexp (i X PrE)Wa (- paci) 4. - %P (1.5)
We first show that:

W,, =0 unlass F-J-z'; 0 , Piez0 (1.6)
Write
Wi (Riy ey dn) = % <ol (x)+- - g ) A >< R 1, ) - . (kM 0>
Here Pulh>=RulR> % HR><hI=1

W (X1« v, Xn) = {_<atd>, AN *"" “@(a)l&xﬁmﬂ@)eﬁ' L (xalo>
.-;R(Xg xﬁvn) -
, . \ . (1.7)
- b - P X s —(kX
= AZ«W, (x)-re ™ x“ﬁ(oumszﬂld)&ﬁ(o)e s m....,);n(x,.);»e_‘g
Comparison of 1,5 and 1.7 establishes the result of 1,6,

Congequence: Wn(x) are boundary values of analytic functions,



Write
3:]“L9

This theorem is displayed in and at the seme time proved by the formula

W,(]’.,...)l,_.): mp(-l:;ﬁ"fj) W. (Pu"':Pn-:)cfup.---pr,,., (1.8)

where 1, lies in the future light cone, The 8(n-1) dimensional open
region thus defined in 8(n~-1) dimensional space of the components of

the 3> is called the future tube,




82 : Study_of the Analvtic Function U, (1)

In order to studv further the properties of W, we need, on the
mathematical side, a basic theorem of Wightman, Hall and Bargmenn,
(Kon Danske Vid, Selsk Mat. Fys, Medd 31, Mo, 5, 1957) and on the
physical side either invariance for wvarious reflections of local com-
mutativity of field operators. These concepts will be defined as

we go along.

Wightman, Hall, Bargmann Theorem

A function ${( Y. . ..., %) of n 4-~vectors J,...-Y analytic

in the tube —~ o2 < Re W' <of, Im X in_the forward cone_ and

t_vnpder the pro homogere Loreptz 2 L'
analytic in_the ertended domesin obtained by making the complex Lorentz
transformetion S-—»AY where defA= 1 (A cap have gomplex matrix
glements rather than real ones), If further £ (%,.+..%) is invari-
ant_under space reflections also Iggggp_zg_l_mgg_g_(z‘:,'fn! igs a fune-
tion of the gcalar productg .Y and is analytic in the corresponding
domain_of variables L e . .

The theorem tells us that

Wil T, o+, ) = W ( Toe;) (1.9)
There are in all (n-1)fs and "_‘ﬂi’;’) scalar products,
For greater compactness it is more convenient to introgillzce a
gset of new &*‘_2:'_) variables defined thus: :,'=‘:Z—7k ) ey,
e.g, for n = 3, there are 2 ¥ 's; thus
I == %= Y, = 3,—:'-7,
:&_—‘1 Xi— X3z Y= }2—‘:91-



there are three scalar products 3';1‘ ,T: y Y .Y, . Define three z's thus
Z,= 1 Z,;:J; Z,,:_- Y+ X,

The three scalar products can be replaced by three squares,.
2a , T 2 Zy
The theorem can be restated,
W, = W. (Z:)

As the variables J vary over the tube, each variable z.; varles in
an open set o;; the complex plaﬁe. Since the _Z,;? are not independent
(all z; depend on (n-1) Y’5) 1t is not a trivial problem to find the
manifold wbich is defined by z5 .
Eggamplg.gz

1) Consider n = 2, As we have only one vector Y in this case

21 and L? are equivalent, Here

(r*) '
. y:-}_"q ,}=X,-X;_
" Fon He
light cne $ in backward h,H'-au wa_ }:._. ?1“25 }.y
3 space-like Fin ferwoard lighk-cone .

h 2
It is eagy to check that the set J f£ills the entire plane except
for the real axis and the origin, {This will be called the cut-plane),

2) For the case n = 3, Kallen and Wightman (preprint) have
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discovered what the domain locks like. In this case also,itis suf'-
ficient for the validity of (1.9).

Write

]

Z=%t Zze=%" Z=(5rL) (1.20)

Here J= 3-4'7 ; 9 lies in the forward light cone while - o2< ¥« oo
The problem is to find an explicit determination of point Zq» 22,
Z3 which can be written as follows, |

Answer; The boundary of the domain 24, Zy, Z3 spece is composed of

four analytic hypersurfaces. The cuts Z,=£%0 ,Z,=f>0

232,42, + v + _:_:r,__z_; oLr< o® (1.11)
(For the case when(sz,)(JmZ;)>0)

Z3=Z,(1-RK) + 2,(1-4k) 0Lk 4P
For the case when (ImZ,Y(1m2.)< O . For W, and higher products

no determination of this domain has been made.
We wish now to make an extension of this domaj.n by using local

commutativity of field operators,
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83, Local Commutativity

We do not wish to take ¢, , . , ..., ¢, as
identical fields. To simplify life consider only Wy and Wj,
We wish to show that as a consequence of local commutativity
of fields one can extend the an.alyticitv domains,
Take W,
WAa (%1,%:) = <ol ¢A(x') ‘bn[ﬂi)"”’ (1.12)
We have seen Fthat Wig(3*) 1is an andlytic function in cut T
plane, Consider .
Wa 4 (72, %) == <0o| b (=) §, (1) | 0> (1.13)
Using same proof Wea (37) ' is another function analytiec
iIn cut blane. From local commutativitv

[ datx, 5(x))=0 (1.24)
(We are using L,C, for the first time), we infer that the two func~

tions Wi ( ) and W, (I%) are equal for real
negatlve values of X . Thus
Wag (3%) = W, (3%) ‘ o (1.15)

in the cut plane, This is a powerful result, Note the cut-plane
excludes the positive real axis, so that there 1s no statement about
the points when x, and X, are time-like, Fowever, one still says
that for the Fourier transforms
W (0) = W 1.16)
Wae (P) = Wea(p) (1.

Let us now consider n = 3,

Wase (%) %2, %5) = <01 ¢y (%) g (%) §, ()| 0> (1.27)
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Wiase is B. V, (Boundary Value) of Wjg(%i2x,z5) where
21, 23, Z3 have been defined in (1.10). Iikewise
Woae (2,%1,%5) 18 BV, of
Waac (Z. )23 ,Za) ' (1.18)
If X,~ X2 ( —~ space-like to ) '

B, V. of Weg, (2:,2,,2;)= B.V of W (2,2;,2.)
(1.19)
;f (X.“X;)z<a

It is easy to -show (Wightman and Kallen) (similar. to the case of Wi
and Wj, ) that the above is sufficient to.give us the result
W (24,24,2,) = Wy (24,25,2))
for those regions where both functions are anal_yfic. This also means
that wherever one function is not defined, the other can be considered
a8 its analytic continuation., loecal comutgtivity rermits us to extend
the domain of analyticity from the original domain in (1,11) of §2,
to the domain formed from it by permutation of Z; and Z3. In a similar
way, we find, by considering the function Wace(23,22,2,)
that it 1s equal to Waac (2, 122 ,Z;)l wherever both are defined so
that one 1s analytic continuqtion‘ of the other into the' domain where
only one of them is defined. In particular it follows that Wape (Z.,Zz,z,)
is analytic also in the domain obtained by permiting 2q, Z5 in (1.11)
of‘ §2. Further we get a eimilar result for WCM (Z;,Z.,Z;) etc,..
Tt happens that (1,11) defines a domain which i3 symmetric for permu-

tation of Z1_,. 4, so that there is no gain in extending the domain.

2



The final result of application of local commutativity 1s the
following, All the six different vacuum expectation values from the
three operators @4 , &y , Pc are boundary values of the game
"megter" analytic function WAIC (z,2z, ,Z,).

This function 1s analytic in the union of domain in equation
(1,11) and the two domains obtained from it by permuting Z{ with 22

and Z3.
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84: Weak Local Commutativity.

In this section we wish to consider the deep correspondence which
exigts between

(1) loeal commutativity

(2) TGP invariance

(3) Existence of analyticity domains of W-products.

Consider complex Lorentz transformations: In particular one may choosge /\.

so that
AI=-3 ' ' | (1.21)
(See Jost, Helv,Phys. Acta 30, 5, 409 (1957)). Thus
W (¥)= W(-¥) ' (1.22)

At this stage we now introduce reflections; time reflection T, space
reflection P ard also Agsumption /4 charge-conjugation, If we assume

that the W-products posess invariance for the combined operation TCP then

Wy (1,00, %Xm) = <01, (X) - G, (xa)lo>= <0l lxn)- - §fxpfo>  (1.23)
Specializing again to n = 2, TCP invariance gives-:
Wag (3} =201 %) b (1] 0> = <ol Pol-32) Py (X1} [e¥= Wiy ( 3) (1.24)
Now putting equations (1.22) and (1,24) together
(1) Wig (5= Wag (~1) (2.22 B-H-W)
(2) Was (FY=W, ( ¥) ( (1.24 TCP)

We would 1like now to find those points J for which)mJ = o so that

for such points, putting (15 and (2) together
Wae (3)= W, (= 3) (1.25)
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This would be nearly local commutativity for such ¥, To prove
this all one needs to show is that there exists a set of real points
for which (1) holds (i,e. the set of resl points where complex Lorentz
transformation matrix A (dekA = { ) can be chosen so that AY= -3’).
One can show that such F eyist and for these ¥'<0, The proof is
given by Jost and we shall not repeat it here. Repeating the steps
in this chain of arguments is the following:

Use B-H-W to show W, i3 an analytic function of )

Since ¥'is invariant for Y—>AY uwhereA is a complex L,T. (dekA=))
and since W is invariant for these transformations,

| W,eg (5) = W, () (1.25)

In particular consider A such that A'S=-% . The only real

points for which it is possible to find /A are such that }:A o

Thus _
Wag ()= Wep(-¥) (1.26)

i.e.

< Pa(x) g (0)% =< balx) $63)0, , (X,-M) 20 (1.27)
Frem TCP invariance

< ©a () &g (4230 = < By(-x2) bal-X) >0 (1.28)
Thus ’

<L o (x) s (x))>=0 (=) <0 (1.29)

This 1s still not local cdmutativity in the operator sense; it is
a statement referring only to the vacuum expectation values, Jost

calls this weak local commutativity (WIC), Below we give the precise
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definitions but the important point made by Jost is that WLC is neces-
sary and sufficient to guarantee TCP invariance of the Wightman product.

Definition of WIC:

Let
<0,¢. (Xl)""¢n(Xn)>,=<¢"(x,.)----¢, (X|)>° (1-30)
for all X,,...,x, such that
h=} 1
(Za3)<0  Zx=| 220 (1.30)
(where ¥, = Xi- X g ). Then ¢,,..., ¢o  are said to satisfy

WiC.

Jogt Theorem

TCP invariance which implies

LB b )= D (=) e+ b UxID (1.31)
is completely enquivalent to WLC, The heart of the proof lies in ob-
serving that, W({Y)= W(A ‘J‘) '
and the set of real points for which the complex Lorentz-matrix can
be chosen such that .A_\S = = \f . is precisely the get of
points where (2__)\:3")2 o ZA;_ =] A 20
so that for this set of points

W (¥)=w(-3)
i.e.
< hxye e W= L) L (xe) (1.32)
If WLC holds then L.H.S, of (1,32) by definition equals
<o) Do lxn)r v+ - g, (X)) Jo> (1.33)
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Comparing (1.32) and (1,33) we have the statement of TCP invariance

and vice versa.

The connection of analyticity with 'i‘CP and. WIC has been made
more explicit by Dyson, Dyson (Preprint)

We have seen from B-H-{ that W (¥) is analytic inslde the domain
vhere 7 lies in the future tube and also the extenslon of this do-
main given by the complex L,T, A . {i.,e. the set of points ./\.T .)
Dyson asks the question:

What is the maximal set of real points inside this extended domain,
so that W( }) ia regular and one-valued,

For the cagse W,=< @, &) Ps(x)>, this set is the set of points
for which X,~X,., In general DJyson fi_nds that thls set of points ia
the same set at which WIC holds.l (From Jost's theorem we know that
WIC holds at these points if theory TCP invariant,) |

If we ask, under what conditions willW, be analytic at all real
points Xpyo o0 2y Xn for which the vectors X,/—X; ' are space-

like. The answer id, this will be so if WIC holds at the same points,
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§ 5: Retarded Products

So far we have considered just one type of product--the Wightman
product., Recapitulating, Wightman product turned out to be the 8.V,
of an analytic function in X~ space on account of the property of field
theory that there are no negative energy states, Local causality came
in to show that, for evemple, Wpp and Wpy are different boundary values
of this same function. 1In fact, as we saw the suggestlon i1z that local
causality is too much--all we need is WLC or TCP for this to hold,

Now we study retarded products., Here we shall find that not the
product itself but its Fourier transform in p- space is a B,V, of an
analytic function--this time as a consequence of local causality., Thus,
there is a reciprocity relation. _

1. ‘W(x) = BV, of W(¥) 1. R(p) =BV, of ® (r ), r=p-b)

because pﬁ;G, p0>,d. because [@(x) Q)(y)] =0

for (r-y)2<o0.

2. There is one master _ + 2. There is one master function
' function in x- =pace if the " in p~ space due to p&; 0,
theory is TCP invariant po% O~

or WLC holds,
In fact, it turns out the domains of analyticity of W(i’) and R (r)
are identical, Conrsider
Ry = @ (x1 - x2)<0} [ ¢ (xy) &, (x2)] |05 = f o P01 T %) R g% (1.34)
we are interested in “Igz(p). Clearly .ﬁz(p‘i is B,V, of &n analytic function

r=p-1in (M in forward light-cone) From B - H - W; -ﬁz = R2(r2) i.e.

’ﬁz is regnlar in the cut-plane r? . We can equally consider
R%(xl, X5) = 8 (x1 - ¥p) (ol[d)' (%1} 4’;\ (xg)]lo) (1.35)



note
Rl. (xaj xl)"R; (X;,x.) = <ol [Q(Xa), bﬂ (x;)]l°> (1.36)
Fourier transforming both sides (note R, is a function of Xi-X2 and

R} of x,-% and remarking that the Fourier transform of the casual

a

"

commitator = O for P’Z ¢ " , we have

R. (P =R; () pico (1.37)
Since R, and R Dboth are analytic in the cut plane r2, and they
coincide on the negative real axis, we have the same gituation as in

2

x-space, We have one master function in r< plane,

An analogous situation exists for Ry, Consider
Rgbtu,x;;,x,)-.: B(%1-%2)8 ks~ )0l b (¥ &y, 44 u,)]] jo>+ OO -X2)B0i %) »

Col[ o (x2) [ beltsy patxif]le>= I Jpdp’ e—-iP(xz-xs)ﬂp'urx-) EA tprp?) (1.38)
Clearly Ralx,Xe,%3) = O ' (1.39)
unless the‘ two vectors x;—x; and X,—X; both lie in the forwgrd
cone, Thus RA {p, p’) is the boundary value of an analytic function

EA (2:,2.,2,) regular in the domain defined by |

zy= (p-in)”

Z,= (P,'".O'}l

Zy= (prp=~itarnn)* ' (3.40)
This 1s the game domain in p-space as was found for W (x,,Xa,X;) in
x-space, We have written the function as RA to emphasize that Ra (X,¥Xa.X;)
issymmetrical for d?a and 47‘ but d),. plays a special role, We could also
write Rg and R and dePine RB) R,. It is easy to check that if these
functions are -express.ed in terms of the same variables Z; that were used

in Ry these new functions are analytic in the two domains that are

* “For proof see next section Lehmann representation

. . '
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obtained by permuting the above domain of Z3 with Z, or Z,. Thus,

1
the siturtion is analogous to the nituation in x- space except for
the fact that there is no local commutativity to assure us that the
three functions are equal in the common domain, Kﬁllen and Wightman
go Into the structure of RA(xl, X5 ,x3) in some detail and discover
that in faet there does exist a relation whieh can serve as a substi-
tute for local commutativity. ITn fact, they show that‘ﬁh ='ﬁé ='§b
for all Z space~like. Thus, there is the remarkable fact that both
in x- space and in p- space we have orly one master function (i.e.

one in each space) and the domains of aralyticity of these functions

are the same,
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8 ¢; Analytiec Continuation

The W(») products or R{p) products are analytic functions of many
complex variables, The very first problem one car tackle is to deter-
mine the domain of analyticity of these functions. In this respect one
muast remember that the theory of analvtie functions of n complex vari-
ables {n>1) dif“ers profoundly from the corresponding theory for functions
of one complex variable,

For functions of one compler variable there erists for every domain
D, a function f(2) such that the domain is the "natural boundary" of the
function ard f(z) cannot be continued outside D, For functions of more
than one compler variable any arbitrary domain D cannot be a domain of
analytieity for an analytic funetion. The important point is there
exists the possibility that all functions (of many complex variables)
which are analytic in D can be continued simultaneocusly into larger
domains, The intersection of all such domains 1s called the envelope
of holomorphy E(D) of the domain b. A domain which is equal fo its
holomorphic envelope is called a "natural domain" of analyticity,

In an earlier section we considered the domain of holomorphy of
W3 (23, 25, Z3), The nert problem would be to compute the envelope
of heolomorphy of the domain, | Once one “%new the envelo;e one could

_set up come kind of integral. representation for the most general

function analytic in the domain ard interalies prove dispersion relations
(For example, Bdrgmann-Weil Formula),

One can always express the analytic function for arbitrary values in

the points Z; inside the domain of analyticity in terms of the boundary
valuea of the function on a certain subset of the so called digtinguished

boundary.
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For Wa Wightman and Kallen" compute the holomorphy envelope as
well as the distinguished boundary; and thus in principle it is possi-

ble to generate the whole analytic function with the aid of an integral,

* Their result is that the envelope is boundsd by seven analytic hyper-

surfaces

(szm)(JmZ.k).é O
=7 yi ZxZle

0 Lg<oe

lez+2323 +2, Z;-—?(Z.-rzzrz;)-p-f‘:-_o

0L pLer

This is the largest domain in which every function W, (24, Zos 23)
satiafying the requirements of local causality is analytic, If the claaa
of W3 is further restricted by imposing new physical requirements (e.g.
spectral requirements) Then this will enlarge the domain. They also
compute the "distinguished boundary" and show that this consists of points

of the form Z-.= (X.-xz)l
Zy= (*2a~X%3)"

Z; = (xl —xi)l

with X4 X2 xj real vectors such that at least two of them are time-like

or light-like,
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One could do likewise for W, which is the product of field opera~

tors relevant for scattering processes involving two incoming particles
and two outgoing particles, W, would be a function of six complex
variables, The general problem of obtainins the holemorphy envelope
has not been tackled, Bremmermann, Oehme and Taylor* however have
considered the problem of computing the holomorphy envelope for a suit-
able sub-domain (called the "semi-tube") of these six variables., They
are thus able to demonstrate encugh analyticity ﬁropertiea of WA to be
able to demonstrate dispersion relations for m - N scattering cases

and several other cases with restrictions for momentum transfer and in
some cases restrictions also on the ratio of masses of the scattering
partiele and the target,

We shall not follow these general considerations any ﬁore for to
make any headwasy one needs the theory of functions of many complex
variables. Instead we use the simpler and converse approach of trying
to obtain integral representation.for the scattering matrix elements

we are interegted in and then study their analvticity properties.

* Phys. Rev., 109, 2178 (1952)
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CHAPTER II
From this lecture we start considering integral representations,
We first consider Perturbation theory - that i3 to say - we are assuming
a Lagrangign exists and has specified form, As before we avoid compli-
cations due to spin ete, and work with neutral scalar fielda, The
perturbation theory results are to obtain an orientation of what to
expect.

8 1: Integral Representation for T- products in Perturbation Theory:(2)

It is simplest when using perturbation theory to work with the

familiar T- products. Consider (T ¢(1)~-¢(E)>° represented by the

diagram P P
with E external lines
e
Consider a particular Feynmann graph with
E external lines momenta py
r internal lines momenta ky

n vertices
¢ independent momenta
We have the relation £ = r - n -1

At each vertex there is an energy-momentum conserving &~ function, For

.each internal line we have the propagator Z%ék) The matrix element is

proportional %o

there are r factors in the irtegral corresponding to the r internal lines,




Using Feynmann's method (B)to evaluate the integral we have
!
M-...._'[:(r-l).'JS(‘.{-"‘-r")ldu)r[{dﬁ)t J - (2.2)
A LR>-m2 -t L Ryt piFemTue] ‘

I -
The integrand is of the form C o Rz where Q:%A;tﬂ.,-&g—? Aghs+ C

is a quadratic form in the f,
kst are linear sums of e/
Ay are linear combinations of «. and p; (2.3)

C 1is 8 sum of terma-m}u‘- and P} e

The integration in (4R 1s performed in the appendix, The result is
1

PR ern ’ r . _A_ I’:—le ) -
I = ()  fr2e ;)e(g(;u.-;){x) AT (du) (2.4)
(]
where At ‘—A'
$
A= |A] =P x= 7 c (2.5)
are two invariants of the quadratiec form,
- = A
X __ CAFAAA: AR Y p: Cofiy==S prt s ly) peap
= A = ((m'u,pu)+pip; Ci=—-2mu+d; ) pop, (2.6)
so that
I = (!:TT’)P(r—lf-l),'JHu)rS 5 ui-) A ) '
A (2 ) [P.-a-d.-,-(u)_zm*.,._] r-2¢ (2.7)

. ) *
which is the representation want.ed( 1).

*1. Chisholm, Proc. Cambridge Soc., 48, 300 (1952)
2, Nambu, N, C., VI no. 5 1064 (1957)

3. Jauch and Rohrlich, "Theory of Photons and Electrons®™, Appendix 4.5,

. '




Another method to evaluate (2.1} 1s given in the appendix, It
makes use of an integral representation of Ag{R) .
EXAMPLE s

Let us make use of the Chisholm-Nambu representation (2.7) to
obtain the analytic properties of T(3) caleculated in the lowest order
Feynmann diagram. Assump there are three fields ¢ ) 43”43 coupled to
three intermediate fields ¢, , ¢,, ¢, as follows _

Lik = 3 bbb + 95 bu bt + 92 b ba by (2.8)

The masses of corresponding particles are mqy, m,, mq and My M. My

where the stabllity criteria are

My € Mg+ Mg my <L im,+my (2.9)
Then
{
K —-d-3-y) dadgd
I(P.z}hz) Ps):-"ConS}nn”x — {“ dzﬁ r) f T
[PAr+ppatpida-rid—mi g-mzy ]
° (2.10)

Specialize to mass shell i,e, p*=m> , P;'.:: rn;' ; and also set for
simplicity mj=m}=M" and my = md=m"* ]

, .
§(1~d~A-p) dud@ dy

I (Pl‘)z const, x - "
[Py -mid]+ (B+r) [ M ~m* ]

(2.11)
°
At this stage there are three masges in the problem, the inter-
mediate masses mg and m and the external mass M, Dropping the suffix

in p*, I{ P") is regular for complex p2 because the denominator
D= (Py-mid) + (e ) [ Md-m?] (2.12)

does not vanish, On the real axis D = 0 for ‘p=p),d=d., A=A, , =y,
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when
dot/fBo+ o=
ff'/:"or.- MR, + (1=de) (M~ m*) =0 Ao, 30, Y030 (2.13)
The function J[(p*) 1is therefore analytic in the cut p plane.
The cut extends along the real axis from PoL-'—" min p.z Fo co , (Note
P," cannot be negative because in the relation,
Bodepi=m>sde (mF=m™ M) +do M*= & (o)

#
the r.h.s, is always positive }. Thus we expect & Adispersion relationm,

{p*} b X

: . I (Ri6)-T(R~ie)

I (Pz) =~f_§f‘r 4R p - R* -

P
P> ©  im I8
= ypp 2.14)
T L ph-p* (
pe

The important question now is, what is Po"

7?7 Ope would expect
that the branch point occurs at p;‘h-.(zm)zbecause this is the threshold
for the production by the quantum ¢, , of a real intermediate state
of particles ¢, and $, to which it is coupled. ILet us see if this expec-

tation is justified,

Po= Min = {m."d + (m* M‘d)(/?w-)*)}

Br (2.15)
=M ""7317" {qu-l- (BryXm=md=M*)+ (/54.})"'/\1 z}
*To show this,fe}>0,§()>| and the discriminant of f(4.) is
~(matm+ MMmatm-r)(mat-rf—m){m+M—=ra) . Stability criteria

are ma+m>M,ma+M>m) m+/M > ma . Hence the discriminant is

negative. So F{(d) >0 .

. + '
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for v 2o p+y=|—d£l

A straightforward minimization of the right hand side gives for

/3.:‘_%: mai (2.16)

M¥+ mar-m* _
Since M.=)i<s 1in order that ,,,,. should lie within the range

of integration, we have

(1) A*ymi+m* ; In this case ‘
po’= ;71; [m (M—ma)‘][(Mm,.)‘- mﬂ < fm’ (2.17)
(2) vhen MamP+m’  then [Bozyo=L , de=0
pE= Yt (2.18)

Thus the expectation on general grounds for the value of pJ 1is verified
provided M*< miem*< (m+ma). . It is not if miemd M a (m+ma) .
This is an important result. Before we discuss its significance, let

us note that for the photon nueleon vertex

m= oy
Ma=my
M=m,
so that A1 <mg+m® t+ Case (2) applies ard pi=4my .

The conclusion from above is that the general arguments based on
thresholds leave out an important case which is taken no cognizance of
at all, This does not méan—that for ease (2) a general proof of the
dispersion relations can be sﬁpplied. In fact it appears that proceeding
fl'rom general arguments one can obtain only case (1) i.e, p'= kemt
This means that intermediate states mugt be such that M z-";m:-l- m*

2 . . (2.18)
. The last resort for this 18 M=m +m



=30=

Chapter IIT Integral Representations From General Congiderations:

There is a second class of intezral representations which are
derived from general principles, and these Aiffer from the Chisholm-
Nambu type of representations. The only known ones are representations
for the vacuum expectation values of products of two field operators
and for the general ratrix elements of the commutator of two field
operators.

81, Two Fold Vacuum Expe _ﬂmgn_‘la;lue_s__(.l)_;

We want to find inteeral representations for the quantities
LPERYPR)S = ( N (x=-x')

<Lee(x))y=1t A (x~x’) =-2¢ &(%e~X!) &’ (x~x") s
ol

<CTE(X)P(X)> =L Ay (x-X')
where ¥P(x) is a scalar real field., We suppose the existence of the
vacuum defined by B..|>, =0 and a complete set of eigen-states of E.,

P Ik = k,;lk)- with Ko>0. (k may be degenerate).

We assume invariance under the inhomogeneous Lorentz-transformation.
We have

LP(x) P(x)), = % o) P(X)nkY<nk| P(x)] 0> =

CiRixex’) (3.2)
= Y <ol P(0)|nhay<nR| P(o)oy e

ok |

using translation invariance; n represents all the other quantum numbers

necessary to specify the states, Defining
PR = (@) 5 <ol @(0)hndhnle(@>=(m)’ 3 [(ol @y any|™  (3.3)
h h

(1) H, Iehmann. Nuovo Cimento, 11, 342 (1954)
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j’(ﬁ.") depends only on R* asa consequence of Lorentz invariance.

We have so

47 (x-x)=~ J o(ryg (k) e Juy

(3.4)

where O(R.)enters because we sum only on positive energy states A,>0 .

Formally »
p(R= [ 90095 (Bt .9
Using the integral representation of the free field At (x- x*)
+ ! . 2 ~ik(x-x") |
A (x_xl m) :'._-(2_‘--?,-_53 {B(KO)S(K -m )e (xx J".& (3.6)
CP .
AL”’(X"X’) - S f(’x‘) A+(X"Xi,k") dx* (1.7)
Similarly e
o
A (x-x")y = f PO AC (x~x’, x¥) dx* | (3.8)

This is the integral representation wanted. In.fact it could
have been obtained as a special case of the Dyson representation treated
below. )

From (33 we have ?(K"):; O as a consequence of the definite
metriec,

In the case of two different fields ¥i(x), 4, (x) we would find the
same integral representations but we need WIC or TCP (Ch, I} to be

able to use the same density functions for all the functions in (3.8).




' 1 Tntegral Repregentation for the Comuts 7
Field_Operators,(?)

Dyson has completely solved the problem of finding integral Tepre~
sentation for f(X) =< QIL A(%), B(—%)]'P) by an extremely elegant
trick:; not only has he solved the problem of finding an integral repre-
sentation for any function ;((x) which is O for x’< 0 , but also is able
to incorporate into this representation the knowledge given by the
spectral relations., This knowledge can be stated in the form of a
cond:lt’ion on ffg) the Fourier tranaform of ;( x) . In fact cur problem
is the following:

(1) Given ?-(x): 0 , x<0

(2) Given that f(q), the Fourier transform of .;(x) vanishes in

a specified region in gq-space: R

-
Find an integral representation for f (x) .
Dyson's Solution:

Let
Z= Ko, X, Xuy X3,y ,Yr = XY 21= x"-y" (3.9)
F= Qe Qi) 91, 95, R Ra=q, R rre %A (3.10)
Consider ~ e | ' |
F(2)= % £ (x) §(x-yY) (3.12)
Then - - ; (3.12)

f(x) = &-!T_T £ F(z) Jy":,}_—ﬁZSE(z)Jzy_

(2) Phye. Rev, 110, 1460 (1958)

B 4
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Further 1f F(r) 1s the F.T. of Fz)and {(q) is the F.T, of ;((x) , it is

easy to check that f(q)= F(q‘,a) 5. (3.13)

The ecrucial remark is that
1
D ¢ F{f") =0

Here Gl-—i‘_z-i_z_i_)l. (3.14)
$ Tarr r ant 2 A

go that if D:' D(r)= 0 where D{r) 18 the conventional odd invariant

funetion

D(r)———— e(r) § ) (3.15)

F( ") can be represented in terms of a surface integral

F(r)= JJV’ [F(r’) D(r-' ')]

(3.16)
Here
C oy _
[FJ%;D]:F%D_—DS;F (3.17)
In particular
{(g)= IJV [F(g4), 2 3 D(1-1, k)] | (3.18)

* Thia follows uaing (3.12). Thus
' f(?)-_—.(-z—'--m*ffﬂ)e Iqux “—'—'é’;_b#j‘ﬁ(Z) “quc‘ny F(cl,O)

Dyson's definition of F.T. of ;(x) is: 'f(‘f) y m‘*f* (x)e a'?x
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Formula (3,18) 1s the basis of the integral representation being sought.
Let us choose the surface v’ to be the surface qa'--O . Then

dv;’= d%q'ar,' Ak,

£(3) =£"rr fa&" J?i'{"(‘:iﬁ')’a}ﬂ [etqi-3-) 8" ta- a2 -

- ¢(q/~9:) 8 5 3’:(‘?"5’)} - (3.19)
(9~9) § (gt ™ A") 12=0 |
Formula (3,19) can be recast by partial integrations to read

=5 J‘M j‘P“ €(2:) § (92 (2~ AI[ 3 h?)+4. 3, (u, 49 (3.20)

The crucial point here is that &, , é; themselves are fully deter-

minate in terms of the original function -f(q) *. More symetrically
$6)= (dh{db €(qo-u § (-0 £D (w9 =

=~ GuR| R [ dh B (9-4r AV (w49 (3.2
In configuration space
?(x) =~ (111')3 gJﬁ_‘A (%, R "7’ (%, A*) : (3.22)
* Tn fact
6 (u k)= L g [omR ( fa)] 3. ()= ke P ()
wvhere .

] a $(g)
)= L 24 2 , A _..L. 7 Y
The explicit form for (u,ﬂ‘) is ;

Y lu,f)=L J d5 #o(R)+3[90-(4-9 R ES(RY
g _1)((1)1 (9"~ (4- 922 R-]* E‘]o‘—(wg)’:.‘lﬂ’]

. !
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So much for the solution of the first part of the problem., We
now wish to impose restrictions on "YW(uA) to correspond to restric-

tions on 'H‘l) . Dyson proves the following result,
let

f ()= <QILAE), BERLP> (3.23)

P+Q

Write R==5— and let the Fourier transform of ?(x) be £(3). $(q)=0

unless R+9 , R'-z both lie in the forward cone, and
L 1
(R+q)3m>  or (R~9) »m, (3.24)
Then “W(,A)= 0 except in the region Sgiven below, Assume without

loss of generality that 04 ms my
(m,-RY¢ (R-u)? I |
_( =AY (R-u) }’ 0g Brgm’ ' (3.25)
7,(""1" {2)1-$ (R"’u)l

o0z (R-w)?
‘ ( ) } mi¢ hrem} % ($) (3,26)
(my-AY ¢ (R+u)?

0 {(R-u)* o< (R+uU)” R*> m,t » {3.27)
Wﬁﬂlﬁﬂ of Dyaon's Integral Pepresentation,
In the last section we have seen that
Fod=ar® (At )T B QR ()
where ~ ‘%
T = [ ™rig,m 4
alearly f = 9(;)}(x)=(zm}’ j A, (%, R P(xRDAR (3.2.8)
. p— {”‘R‘L’ P) Q) N
Q _ P-0 .
Set R= P;: R'= 5 (3.30)
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Note that wilth three vectors there are six sealar products q") 7-3 ’
g-R’ and R, R'> R.R'. § 1isa function of these six scalar
products, "V depends directly on R}R’:R-R’ vhile the denominator
(q-u)‘:.ﬂ,‘ in (3.29) contains tf'direct.l_v. Note that R occurs also in |
the specification of the regions R and S outside which f.- and VY vanish,
Ideally one would like to have the domainr of analyticity of )‘,. for
the simultaneous variation of all the six scalar quantities. The Dyson
representation is quite nowerful but not powerful enough to give this,
Howevef, holding five of these variables fivxed it is possible to get
the analyticity region in the siyth variable.

For most purposes f, is considered as function of 1-R,1-R'. We shall
find in succeeding pages the analyticity region of f,. in the variable
g-R' while all other variables (¢:R ... etc) are held fixed.

Specializirg to the frame R=0(time~like vector) it is easy to

show that R'-cl is directly proportional to cos 8 where & is the angle

between vectors P and 4 e

Thus )(._ (¢R, 1.R’)=fr(?"£.$) (3.31)*

¥ The invariant expressions for these quantities are

~ 3R ( -
_?“_JR—‘I P%‘Pio P? M P-1=—g.q__

=Q.q.._.Q.q'= Q.q—%ﬂl q Q_.E _.3_){RR}

- q—_R"_ 'R (R‘R‘)

##This holds only if the states are the same one-particle state or P =g

l- - -
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The analytic behavior of f, as a function of P.¢ can be derived

easily., Use spherical polar coordinates

E'§-= cos 8
E’Q Co.{dsm[j
§§ Cos(o(-s)sm/}
The denominator is equal 1o
gi+u~2q,u, + 214 /14{ o5 (6-a) - R (3.32)
Write
— - QU= 2qou.~ Al | (3.33)
2/glidising
Thus . ® 1 '
_ P (x.o)
fl' —_ J)(fmré?j- (3.3&)
where o 0
v (3.35)
.3. 5
- Truagete R\ UL 4, 41y 1 Jk*"l’ u, 8
X,d )=z
$(x,a)= §(x+ PTIAPoY: )IPI ued vl /3 (w,
Xg=WMin X whenu and R vary over the region S .(See appendix)
: !
xo._._M,’n_il‘f'Utz'ioU--&l =11 + (M- E_—_’el)("’o‘- mz) é
2igilul 191" [#R*~ (m-m,)*] (3.36)
and q." invariantly equals
(Rq)- R (3.37)

R* .
If we expand the denominator of (3.74) we have X - cos « - cosfd—~ sind -

- sin® ., SinB=\/I -cos’®@ . It seems as if we must ecut the cos -
plane because cf the double valuednees of sin € , Since the denomi-

nator contains only coso and not sind

i o

cos Basd—Sin 05 /'nof

T
L o CoRy

X~ cos (B~of) # - Cos (o)

EL
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In the second integral put s=2w-o', We have:

f_msy_‘;,‘ J_MM

X— cos (6~d) X ~ cos(8+d’)

so that
m™m

= ZJ Q (osa) (X— cos 6 cosa)

(x-<o5 0 osh)* ~5in*8 Sin'A

(3.38)
" As 8in @= | — <56 the integrand is function of cos & only and there
is no branch introduced by siné& ., |

Singularities of §, as function of cos 6 ocecur only if the denomi-
nator vanishes, That is, for cosf= X wso 2 (VX —1'Sind= U+iv

Splitting into real and imaginary pert, we F£ind

o -*9-1-—'”1' = |
x= K=t T

#hat is the singularities 1ie on or outeide the ellipse, We can assert

that the real and imaginary parts of f, are analytic functions of

cos & in an ellipse with center at the origin and semi-axis X, and Vx>—; .

Note that x, is a function of ( R, q ,m, m,) 1.e. of five variables
1.1 ' R"— . :

R%9,R:¢ and m,,m, ;cos & involves besides R, R'q also R'g . Thus

we have essentially obtained the analyticity domain for the variable

Rff in terms of q", R"’,Q-R and m, , m, ,

. -
S S OB 2N G NS A SN @ G A N ah B TE T E T
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§‘ R sentation of a_Double C tator:
The problem of finding an integral representation for the vacuum
expectation value, of products of three fields is still unsolved.
Consider the double commutator '.

D,, (,2) =<0l[ C(x)[ B(x), A(x)1 0> (3.38)

Introduce Y=Ri=Xa, Z= X=X . Dyson has (preprint) solved

~ the problem of finding an integral representation for D which satir

fies the causality and mass spectrum conditions, that is:
D(yz)=0 for yz< (o] or both _
'« 0 ,(y+2)'<0 (3.39)
and F(P} q)—’= 0if 920 or both p'< OJ(P--?):O where F (p,9)
is the F.T, of D(y,2) . The result is

oo o ’

D(.yjz): f ds [c“ {JA w(-(bézh) A(y:5) A(z43y, ) (3.40)

We have the property F(p,9)= D(p,~q) . This integral representation
fails to satisfy a basic property of the double commutator: The Jacoby

identity:

DCBA (vz) + DBA(. ("'7_2’7)"' DAca (117'7-) =0 (3.41)
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Chapter IV Applicat £ Dyson' terral 1 tation a
proof of "Dispersion Relationg" for scatteripg amplitudes,

81, Kinematics:
Consider the elastic scattering of two particles

Initial state final state field current
scatterer k k' A(x) ([32- %2)5 =4
target p p! Y(x) (OR- v2)¥= ¢
On the ptk = pl4k! | (4.1)
energy shell |
On the P o= p'2 = w? (4.2)
Mass shell !
K= x'? = p2 (4.3)

The main complications always arise from the kinematic specifications
of scattering so that it is worthwhile to devote careful attention to
this,
From (4.1) only three vectors are independent p, k, p' (k' = kip-p')
There are six scalar products ﬁ.k, p.p', k.p', P°, p'2, K. It is
convenient to use k'? = (k+p--p‘)2 to re~express k.p' in terms of k‘z,
and the other five products so that the independent sealars are k.p,
p.p’', k2, k'z, p2, p'2. Since k2 = k'z, and p2 = p'2, the number is
reduced to four, We shall always specialize to the masé;shell p2=p'2=m2,

but keep k2 arbitrary. Thus there are three independent covariants

k.p, p.p', kz . (4.4)
Alternaéély one nges the set
v, A2, & (4.5)
s 5 O\ -,
Here W< = (p + k) , A*=~ [P E) (% €)
2- .
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W is the total c.m, enerzy, A the momentum transfer, Subsidiary

relations for e.m, frame ars

e = TR m (4.7)
—_f_ 24"
Cos 6. = | Ek? (4.8)

There are two further variables which are useful, These can
be expressed in terms of W2,¢32 and k2. But it i3 simpler some-

times to have a separate symbol for them, These are

_ (p+p)(h+R)

w (4.9)
. 2 ‘P+P|)1
The connection with W~ i1s ag follows:
2
W =2wvVA +m*> + 2A + m*+ 4™ (410)

one further variable will be introduced:
Wr=(ptR) =(p-R) = —1wVd%m' +24* +Rem*  (4.11)
So much for kinematics.

82, Analvticity of scattering amplitude: (Lehmann, preprint)

Before discussing dispersion relations, let us use results of
the last section to obtain analyticity domein in a number of variables
for the scattering amplitudes.

To simplify discussion we assume that the scatterer is a meson
and the target a nuclegn, while all states congruent to the scatterer
(1.e, states having same quantum numbers) have mass 2p. All
stateg congruent to the target particle have mags m+ p (p<m),

Using LZSiE one can write <oubp;}{’lp)R..h):@hg,’é".‘53.'n>+277'¢'$(p+ﬁ;f’iﬁ')T

(Alpy
o[ 45 oo TNk (422w

* Lehmann, Zimmermann, Simanzik, Nuove Cimento,

##% Omitting an unirportarnt kinemratical faector.
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Write

pré _ g R=p_, .3 T (4.13)
T is a function of R2 =(§2),¢32 and k°, The frame defined by R = 0
happens to be directly the e.,m, frame, Using results of the

last chapter both (Re T) and (Im T) are analytic functions of cos &=

2
=1- ?éé[‘ regular inside an ellipse with center at the origin
&
and semi- aves Xo, yXI=y Here noting (R+1)"-; K"J

{R—9) = m? ve fina .
(- g2} (ma=m*) SR { W;x-'f‘) mt
[ W2 (- Y[R

Xe (W)R?) =|+
(4.14)
Thus one has di_rectly the result that T is regular in a certain
region in A2 plane, the boundary being erpressed in terms of
variables I-Jz and k2.
This method tells us nothing about the analytiecity regions for
the variables w2 and k%, | |

This is because in the last section we concentrated on the

singularities introduced by the vanishing of the denominator in (3.35)

while the numerator 'ﬁ’(u,'k‘, We, k2) may itself introduce singu-
larities for w2 and kz;

For Im T it is possible to construct a Dyson integral-repre-
sentation, which contains more information. This representation
‘is such that essentially a simultaneous variation of variables

2 and AZ (for fixed W2) can be studied, For the variation

k
of AZ alone, the region of analyticity will turn out to be even

wider than the one previously given.

v
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To this purpose we use the alterrative form of Im T given by LZS,

ImT= & [ MW} B2, 2 - MIWS R 49

This follows from the fact that
JBuh

Dm‘r:-,‘:{d“xe K <p‘1£1'(‘§)3('§)]|p>

M (W: &%, 4" ) is defined by
AR’

X

(4,15)

(4.16)

- t
MW R, )= fﬁx e T <N DI =

:[2.11')'*2< P)fjfo)i F"'&}‘)(P"‘R))“J'fa“]??
¥

(4.17)

One can ecast M in a form where a Dyson-representation can be written

) %
for it, One can show that indeed

i ﬁi‘})x."i 'R—Z—'E" Xy
MW Ry A% =2 ,{J"‘X.JJ'*X, e .
/ (4.18)
. 2Ll QUYL DI prhr><pré i LI E) V-2 11 0>
r
M{W: £, A*) can be cbtained from above by changing
h—>-f ,R>-R ,prp’, pi—p (2.19)




For this form of M, a Dyson-representation is immediate

o d%u, fu ditdnt B (g Xl
MW A) =\ T
( )3-; ) 2m [(-@-;-E-u.)‘-m‘][(ﬁgf-wz—*-‘]
(4.20)

where

@"""‘ Z /\}3\ (“Ux'z)P"'P‘) Y;(“‘l*:) p+#)
The crucial poin): here is that (5 is a real invariant function of
(p-;.ﬁ,)"-_-_ w* alone and does not independently depend on kz.

This, as we remarked before, is not true of "Vy.

To prove this let the annihilation operator for incoming nucleon be
Yin (p) , then
P15 ()1 P+R, > = <ol (P) )] pe b,y = <olL ¥ ()5 ()] 1P+ R, p>
it (p+f-p?)= R em® 2™
since <oli(e) WV (p)p+A,y>=0
in this case . For mesons m,Z3u,
Using the relation [ ¥, (r’),j(v)]=6_'.r-!:)3h [d'*x e.‘P* B(x) [ j{e) ¥(x)]
and an analogous treatment of the second factor in (4.17), one obtains

after some rearrangement Jc',lr:a stated result,

‘

. '
S G Gn R Gy S h B o am
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The analyticity properties of M in k2 as well as A* are contained

in the denominator. Specializing in the frame p +k =0 (c,m, frame)

one can again study the points where the denomirnator vanishes

Cne

finds that one obtains once again an allipse in complex cos 6 plane,

lvi;.' heri

1 . . ) 2 .
with semi-axis given by 2Xe —1 and ZXe ¥V Xo-i wherin

inator does not vanish.
Xo 1is given by the same expression as previously,

is elementary and given in the appendix.

N Py
vNE& AsSnom=

The proof
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§3. Proof of Dispersion Relatiocns.

Consider the expression for the scattering amplitude:

R+R

M U, a &) i(-%
T=-]d%e <p’1660Li(%) i (-$)11p> (4.21)

In this section it will be useful to set down some of the formulae
in terms of the variable w, instead of ” and W2, In the frame

p +p' =0 set

%”_ﬁ.’:{w,\lw’; (d‘*ﬁ‘)':‘é_} (4.22)

A
where: € 1is a unit vector €'p=0 . Then

Iwxs-lexVwEa= g2

T(w, 2% 8= - ga%« e # (rrpon) D

Notice that all the wdependence of T lies in the exponentisl, Put
£‘= Rﬁ;—iﬁ: 3 W= w,+rw,
then (4.23) defines an analytic function T (w,a%R>) of the com-
plex variables w and k2 regular for
Im w> IVOTIIRE  wire  wirRMA* (4.22)

or

ZW;_(w,—-\fw,E_E?-'-da') < 2:{.7_&0; ( W, +v Wl‘ﬁ:.z-“‘al) : (14-.25)

Take R%= 3,14 - A% Then T is regular in ImwWw>0 and if
T is bounded we can write the relation:
+ o2 P"
T(w, 4% 4*) == | dw ; y
(A S5160 S e (4.26)
-

Using (4.16) and the relation M(Wl(—w))zM(W"(w)) we can write

S DI Wm ME g Ay 0w N N o AN B AN NN 4 N .
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oe
'r(w,ajm)-_—,%,faw*amv'(w,’atﬂ*)[m’w * w’-:—w] O (.27)
Returning to the v;:iablesvvz'and VV‘, we can now wfite the spectral

'conditions*. From (4.17) we see that M(W’,‘PL‘,A") bas a pole for
Wt-'-'(p-i—ﬁ)."-'"-ma' and is zero unless (P*a)‘?’ﬂ“*’m)z that 18 W'D (/“""")}

and W >6 . From (4.19) we deduce that M(W,R%A*) has a pole for
W;m1'=(P-ﬁ)1 and is zero unless (p-ﬁ.)‘ag,u-#m)"that is Wt?)(/‘“ﬂ\"

and Wo>0 . Tn the w plane

(w)
' M(W*) 30 Y MW o
SANNNNSNONNNY, W=m W=m WIIIFITT NN
W (e W (msa)*

The bound state contribution can be shown to be given by
MW RS a%) =g (R S(wWEnr)

M (W RS 2% = g~ (B § (W m?)

T
*The point about shifting back to W is that the results of last lecture
were all proven, holding Wz fixed and not w fixed, It is in fact, not
.really necessary to introduce the variable w ., One does it for relation

(4.26) looks rather nice.
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From (4.1€) and the spectral conditions we have

T L " LY T i i _ ‘|
Tl )= oW W ) e s * Ve e Rl |
(mau)* B
_"_ 3‘(3-") ] + !
2T |[WEms W mi2 i ot (4.28)

This relation has been writter for A*<- A% . e want to contirue

this relatior to the mass shell A'sM” ¥ TIf it is possible (4.26) would

becewe il Im T (w’ 4% %)
T ey b I_Jm w,a,mM
: T(w, ‘M )_TTJJW w- w
- o0
which leads to the usual dispersien relation
"'(—p
.V ) A ™
e T(w,a%x)= 22 Iaw"m Tlw, 4,000
m w'—-w
, “op (4.29)
If M{W'% A%, R>) ig an analytic function of k2 ir the domair

| 9m A 2§ , & arbitrarily small, Re&"_‘_/u" with AZP/O and
W"),[m-r,u]zthen the irtegral in (£,28) defires an analytic function
of w and R in the domain:
Rigm> (B2 <2 iwal V& + M7 (4.30)
The demein is a wedge ard Ba.= w; =0 1is on the edge. At this
point we need the edge of the wedge theorem which.tellsrthat the func-
tion will be analytic in a neighborhood of the edge, that is for IK:{AS,

and [wije 6, : (4.31)

The next step is to prove that g"(ﬁ") is analytic for B."A)u".
#This method of taking &‘-f-A"ZO and then continuing to the value 3-"'742

has been invented bv Rogclyubow,

B ‘




In (4.20) the bound-state teirm is given by
My (R*) = g*(A*) [S(Wrm?)+ 8 (W)
with

@ (45 p+A)
(oo )t et

9(#" = d¥ud=? J (p+RY=m™.

let us chocse the M  syster with 2+ﬁ =0, P,+£.,=-, m

gl | BTy g

— —h:'- o V,— 'U‘-"
S+ 2 U mu, 2 feu-x

The analyticity can be studied in the same way as for the complete T~
matrix. g(A% will be analytic as long as the dencmirator does not
vanish in the region S with W=m ,

This condition has beer investigated by Oehme and Taylor (preprint),

Their result is that g(£*) is analytic for real £* as long as

2 Mo —
ﬂl/‘-&:“,(: mm, ( 2 M)
M+ma-m,
For considered cases we have Rorax 744> which is sufficient foe the

proof of dispersion relations,
To sum the results,the right hand side of (/,22) defines for complex
1 F 3
FL" an analytic function in the strip K.z—"-/“l; Ig-_a‘ s . T(R*)
z

is an analvtic function equal to this right hand side for A ¢ -4

which is inside the strip. ©So the two functiens are identical and
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(4.28) is proved.*

The proof above merely makes clear the main ideas involved., To
see the same ideas developed with precise rigour, see the papers of
Bogolyubow and Bremmerman, Oehme and Taylor{ Physical Review, 109.

2180-2181 (1958)).

We must remember that we have supposed th&tﬁfﬂﬂwas aralytic for
ﬁ"{.,/u“ . Using the result cf 82 and of the appendix we know that
this is possible only if A <L A nmax.

The value offAmax is computed in the appendix and applied to three

interesting cases.

*The dispersion relation can be written

©o 0
\ ( MWEES) ) | MONIER) X 1
TWaR)= W ot tar [V Wewn o (W W
/
(mppd™ | (mip)™
:l —
with W+W = ka4 2m®+ 2 R> It is not different, but looks

nicer than (4.28),
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S.Application to Dispersion Relations

Here, we consider three cases,

1} pion-nuclecn scattering.

m = nucleon mass
¢+ = plon mass
m=3u ; Mi= MM and 2R > miu

We can check that the minimum of X is given by Xo . Then, acecording
to the procedure by Lehman, the region of analyticity of the imaginary
part of the amplitude with respect to ﬁz is given by

14 T (Mlz‘,Mz)(m?-’-_m‘) :,-oy' ﬂiﬂ/“l-
A - IRC-I + II"R"‘(‘MI_H‘I;):'

By inserting the various values, we have the condition

2, §_ 2 2 i
ars G S
2) nucleon-nucleon scattering.

m = nucleon mass

p=m M= M+ = mamor
2R 2 2nmr if m 2y

2R > 2m if mrzm

Similarly, the minimum X is given by Xs and the region of analyticity

is

o 16 R%- 4 (it R foar)®  (mi= )= u)
& + ‘
16 R™ $R*— (m,=m,)*




=con

Tgking the minimum with respect to R, we have
A%E M 2 mmy -,
In order to have A*< 0O this requires
My 2 (V2=1)m
3) K=N gcatterine.

To have the dispersion relation hold, we must have

4% 96 ] A% [M-R‘..cmv)‘J[:‘-R’:t""-,&)ﬂ - (o= )
I6 R YR (- ™
m = nucleon mass
k= g
Sl i my= m+mar

It 1s rather difficult to get a necessary and sufficient condition
for A 20 since A™=0 gives an algebraic equation of the third
order with respect to P\l and the final result is rather complicated,

and does not seem useful, Instead, we calculate numerically, the neces-

a
sary condition for 4 2> 0O . Tsing

Mmy= 3-535‘ m'rr
We can show by numerical calculation that only if m.>&. 5732 ma

then a*>o for ZR>mp+ m o . Thus, we can prove the
dispersion relation, only in the case of m,>&.573 m, ., Actually,
mpy=7,986m and this does not satisfy the above condition, and
hence we cannot prove the dispersion relation for K-N scattering., If
M, were slightly bigger than the actual value, by about €.6my then
we could prove the dispersion relation. (In this case, of course, mge

must be bigger thanm,) (actual m, is 8.522 m,, )
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Appendix to Chapter II

By a translation and a rotation in the R space we can put the

quadratic form in the form:
: J ]
Q:ZA:,R,;-!-C A“>0
The invariants are in the new system:
A 0

We know the formula (Jauch and Rohrlich p, 457)

1
A
0 Ta,

4R f _ ot
(B*+2)1  (@-0(q-2)LT*
With our choice of the time-like metric Z is negative in our case.

The integral has to be understood as having a small imaginary part_
in the denominator i¢ ., We perform the integration successively on

kys Kyy ... kp. Ve £inds

i
1 =0 ;).fgs( 2 () (i)t s ! !

{r-5F {7 4 }?»famc

B dtgg

(I

which can be written uvsing (A.l).

‘_..‘fd_li v ru.—.;ﬂ:r""f
I =) (r-22-){(dv) g(g ‘ ‘) | AL

The result can be obtained in a different manner , using an in-

tegral representation for the Ap(k) function,
- -]
| -je-z%(atm

Ap(R)= = % db

~m
o

The matrix element can now be rewritten:

of
v -£ Q(R)
1=+t {(ab) e* e
-]
where Q(k) is exactly the gnadratic form {1,3) with b instead of u,



We have the formuls

We diagonalize again the quadratic form

QRY=5 AL R* +¢ '

We perform now the integration in the 132

. ; CALAT i A ls
I______z% by e Lifﬁ'ﬁ. ¢St "“'S‘“Efet 2 _

L )
i ( et St ) g
=7r |(db) e 2l = J Jb)'"
2er J e Ty ) P E

¢ and A have been defined in equak. (2.5), We notice that if we replace

the b's by bt where t is a common factor, X and A are multiplied respec-
tively by t%' and k¢, This is a simple consequence of (2.3), We
make the change of variables

b,=d.t The Jacobian is equal to £l
bl- =3 d; e

b.-.| dr-tt‘
b = ("'.2“3) ¢

-l
We introduce an additional variable o, defined by &p= |- «,
[}

The domain of variation of the new variable 1s o<Ld;&l’ Ogtger

So that
et (i
I____ FTte) f{dd)rhlf e 1:.\‘ 's€) é"ld'e -
2" ° o AL @58

X458

= ._r_(_":.'f:_) J@,‘ *‘g(zd,q) _e-__i’ﬁ” At
A

j=1, ... =1 in the first line and j=jhrin the last, Using the

preceding remark it can be written

. ' '

L



®
i oo X
.y 4 ' r "‘"2../\-&
Y . e r-t
‘ I= L__(.?_L) f(dd)rS(zl‘*J |)I—_./F_E'—e ¢4k
. ° : 0 ’

to make the exp, ¢convergent ateo,

* ]

o s e ' r 'l
I= AL 0] f(Jd}rS(édj—l)(Y-—u’--D.'Ilr(_T?Z)r-zﬂ =
2" o ! :

2N

| ,
_ R r-1€
:.:(iTl")e(r-zE-l)!I(AA)FS("ZJ,'-I) {14——") .

This is the Chisholm formula,

Integrating r-20-1 times by part we find adding a small imaginary term
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Appendix to Chapter ITI. Alternative Wava of Specifying the Region.§
's Integral Represeptat
(R-u) > (m,-R)Y'>0 0& A% m! /
o  (R-u)'y b | B om?
| (R+u)*y (m:-R) >0 04 ftem
(R+u)*> 0 : Rz m?

If R= 0 (this i3 always the most convenient choice’ then this means

that so far as Jul and A are concerned,Ul4R ,and £ f(t_al) . Where

' T
- ! U=y
f(!)=3(m.+m1)-R(r-—§;)
) r
forlulé-,%l. $()=m,-2[R(R-1u1)]"™ for -E—AIL‘.!-‘: R

Here B R"‘——,}(m.—'rn,,)l; wvhen B*< 0, f(u) is given by the second

equation for allfujs R, For U, thie reads

VU*+ (m-R)* - R & Us & R U+ (m-BO° 0% fsam,
4l— R £ u.& R-14l | . Rome

These equations can be written:

4l &R 4]~ R & Uo < R~ 1Yl

R qu{ 0, m,~ VHR-’- Uo) —Iu|* ;m;—\/(ﬂ-u-)l‘ m't‘}
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Appendix Chapter IV

_!-}g-.—.o 9= _E:_L" qa = 3—‘

. o ™ 3y
T Ay I 7 . . 2 .
| N(Wt&,_d):-.—m; du;, |l dlu)dx}|da g, |dg | dxe -
’ a o or_

. é (Vioa L‘!Jl’; xil, cos ok 5in By 5ing3, +mﬁ‘m,3_‘ > W)
[ X, () - es(e-xl] [x (R - cas (::c-at)]

Here -
2 o UL, "U - Kb
xo(Re)= 2ieio” Ui gl-
2|8 |y, l£inf3;
-~ A A . .
=)L0,0 _ U= Cos Py sinB, ) Sinpsinf, ) cos 2,
A . . .
ﬁ:me,s:‘n &0 62,::: Cos (p, 5InfBa, sin Pusinfa ,cosf3,
A= P' o = !PI“Pz
note that
2T
dx =
(. [x,~m(o-x)]ﬁx;—w(¢-4):|
= 27T . Vxt Vxe-
sz+Jx. Jx‘ -au{o-q)
Introduce zo=[R.| % ""ﬂt . Then

o

M( W: 4,} Rz) == Ju;,dlli;llli.;) st"J d4 J-P (u.'.,ll._l.;l, Kf:W-t,-W) .

’ Zl + 22
. 'JZ}-' &.;1 ;2:’— ﬂ__::

lel+ Vl,"—- E-\/ 2 ﬁ«-} - B*:C‘-s (9“")
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Note that the entire Az, and ﬂ.‘dependenee is contained inside the
factor in brackets. To studvy this function we restriet ourselves to

A*20  and A’ u™. M is singular if

(1) zi~ Rl=0

(2) Z.Z-,_-l-\/z,"—&:' Jz:.?"‘ ﬂ: —ﬂ_:m(é-d}: o

(Note that ﬂ,,i can become negative in the so-called unphysical region),
It will be shown in the next appendix that for U,Kl varying over the
region $ , under some restrictions, and for ﬂ-"ﬁ/“z

gy (i pdom= )

min (z;z--
Wi (m,- )™

8o L RZ2*o if mvu,m,>m ,W">(rn.—m;)2 what has been assumed
in the caleulation of the min, This is always so in all applications.
The second term equals zero when
leos O= 2 05 EIVZ-RE sind
Here z-=z.z;+\/'z'?:—7? Ji':fﬁ_f
Note z;z o0
Two cases arise z, >0 so z-IR2}
then singularity occurs when fcwwd = (Ri24%)=%Z

Since z > (A only the minus sign is possible, so that the

singularity arises when
A= L (R212) = L (RFs 2+ R VT-AD )

This is irrespective of the sign of A.* .

\ .




-

. .

Thus
| i, L Yomi= )
wi ( m;— ma.)"

. T
A*¢ A = 'zl_‘ min (RX+222-R2) = min 2

In the second case z2;=0 . Then the ellipse in cos € plane which

gave the anélyticity domain in cos & Just collapses into the real axis,

"Evaluation of the Minimum Xe :

The problem, which we want to solve here, is to find the minimum

of the following quantity:

!w"a-fs.'-l""w'—(r-"-)‘ ,
-2 /8] v - (4.1)

where Vo and |U| are the variational variables, subject to

o4 |U|4R
- £ U, 4 R-1u] |
and’
w % max {O, mi—V (Reuo)tiul? , ma-VI{R-w)- 'g_'i} Ly
. ' (4.3)

From (A,1) it is clear we must take the equality in (A,3) to have a
minrimum, Obviously, the minimum Xs of X is a function of R,)ﬁo,

and 4o ., However, these are.not so convenient for our discussion,

Noticing that at the center-of-mass system g+£=3= 0,

. m=Rg*
10=""9%

L EIETE """R'; [M RE- ¥ (m*+ RY R+ (m: R‘)ﬂ
| | (A.4)
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By (A.4), instead of 4, and [Re), we can use mand £, The ph_vsical
nieaning of m andv/F is that they are the mass of the scatterer and the
'project.ila, respectively. Since we wlll want to make an analytic con-
tinuation later, with respect to &" y, from a negative value to the
positive oﬁe; ve do not assume that R* must- be positive in this note,
The notation of the Ch. [V 1s related by W=2FR . |
Furthermore, it is convenient to use the followingx and y rather fhan '
\ul and u, . |

X =V {(R+ud>Ju)*
Y=V (R- us)= Ju)* | (a.5)

or i
Ua= ey (X’*’-yz.)

= [ oy [4R% (-2 ._

TE (A.6)
Then, Eq. (A.1) is readily transferred into
e IZR’ 3'_-[4-R‘¥ (rn"'-t-&‘.)_]f’"%[x!?—rﬁ- '-911:7%1(5‘3-7‘)1 | -
. VL4R™ (etyy J LR (x-yY") (a,7)
and
X=max{o, mi-%x , ma-y§ | (4,8)

As we can easily check, then the conditions Eq. (A,2) become simply

X+y L2R <, x>0 , y>o (4.9)
'_I'hus, our problem is simply reduced to finding the minimm X, of X

from Eqns, (A.7), {A.8) and (A.9). Because of Eq. (A.8), we must classify




bl
three cases according to
(a) ZR>m;+my
(b) My+rmay>2R >|m-.—-rm|
(e) [m.-m,] »zR> 0

The physically interesting cases are the first two {a) and (b), In
what follows, we assume

My >m, >0 : (4.10)
Generally, this does not change the final result, and whenever the
dif‘fe‘rence comes, we will specify it. Furthermore, the variational

region of X and y are subdivided into several regions, according

to the follewing diagrams.q) In this case, the point (X"M. ;y-rrh)
Y

is inside the region Eq, (4.9). So,
according to Eq. (A.8), we divide
the region by the three lines;

‘MamYi=m,-x , X=rmy © and

¥=m, and we get the three regions,_

(1), (II) and (III), Then, by (A.8),

at (I) K= ma-y
at (II) K= M <A
at (TIT) x= 0 (a.11)

b} In this case, the point [ X=mi,y=m,)
is outside the region Eq, (A.9) and

the region {III) of the previous

X case disappears. The value of x

is still given by Eq, (A.11),
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R

{r) .

2R

Case (¢}

Investigation of the case (a): We
D

X

This means to rotate the triangle

In this case, the line m,-y =}-n,-x
does not intersect with the region
Eq. (A.9) and the region (II) of

the previous case disappears, also.
Thus, the fegion (I) covers the whole,
By far, the cagse (a) 1s the most
complicated. First, we will inves~
tigate the case (a),

will name the points of the previous
diagrams as indicated here., Further-
more 1t is sometimes convenient to

use
Xty =
X-y=s

(A.12)

by A5° in the counter-clockwise di-

rection, First, consider the region (I), By (A.11) and (A.12), Eq.

(A.7) becores

g8

2
X = 2R %[‘}'R’-'-(m"yu‘,i+m,‘+m;(5-.‘:)--——“ +m= R ot

I Vlrrs ez )

It is easy to check that we héve no sclution of the nekt equation inside

the region (I), If m:#m*

X X
s ot =0

As we will see later, when the relation

2
m,'f'-m >0 p m?‘_ﬂ":-o

(A.14)

(4,13)

. ' '
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is not satisfied, generally, there is no minimum of X, namely X, =—oo .

: 'I"hus, in what follows, we assume (4,14). Actually, in the physically

“interesting case, (A,14) is eutomatically satisfied, Then we have

no minimum of X inside the region (I), This is also true for the
regions (IT) and (IIT), if (A,14) holds. Thﬁs, the minimum Xo of X
must be obtained from thé boundary, if 1t exists. So we .must inves-
tigate the boundaries.
-The 1line EF is obviously defined by
s==(my-m) mx-m;< t<mrm, " (A,15)

Then, Eq. (A.13) gives

K= 2R 4[4 Rt [Lpiem) - B tm- )t
el Vo (o™ VieRrg> " | (4.16)

The minimum point of {A,16) is given by

L=£‘ - lf-(m.-}-m-..) Rl-" (m,-m.)(m";. &‘) '
° H—R*-{m‘+&‘)+ Zmimo (A,l’?) '

In order to have Eq, (A,15) satisfied by this too, we must have

$R*> (my- ;f";)("‘z.- rn_.)

(4,18)
This 1is surely satisfied_f‘or_r R*>0 because 2R> my+m, . For
the negative R one sufficient condition is
- R-l..( 31‘”;*’7‘1‘ - -
T | (4.19)
Ingerting (A,17) into (A4,16), and after some algebra, we find
n
F 5 LR * 3
Xo = | + ("nt"m Xm,- R*)
[ Hee® LiR™ (my-m, Y] (A,20)
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B) The line AD:

X diverges on this line as we can see from Eq, (A,13) by putting

E=W, However, it may be possible to have X= - o* there, instead of

X=+o2 So, we must investigate the sign of the numerator of Eq, (A4,13),
carefully in this case. We can check that as far as the condition
(A,12) is satisfied,X= o= ., But if the condition (A.14) ié violated,
then it may give =-e¢ , which means there is no finite minirum. (See
D and E).
C) The lines CF and BF:

In this cese, it is convenient to use the original x and y vari-

ables, For example, on the line BF, Yy=m. , m,2x<2R-m,

Then, the expression (4.7) gives

; 2 pd .
X=. 2R _Ji(‘*Rt""l" ﬁ;)‘_i[x"f-mf-f- r—"éﬁ’-(:‘?ﬁm‘ J_]
Ig-dl J(lf'ﬂz‘ M;t-xz)l-‘ﬁm: xi-'

By direct calculation, we can check that
ax '
-a—_; £ 0

for rm, <X <1-R"'mt,

So, the minimum of X on the line BF occurs at the end-point F, However,

this point F is also the end-point of the line FE, where the minimum
is proved to exist in*the middle of it (See A,), Thus, the minimum
on the line BF is not smaller than that no the line FE,‘ and we are
not necessary to consider the case further, The same is also true on
the line CF,

D) _The line IE,

A= 0 , 2ZR >y > ma-m, 'The formula (A,7) gives.,

_ 2R (m-R) R mt g
x"lLl(lm*-r) * ry:;("' HT)

El
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So, according to the condition (A,14), the minimum occurs at the end

point E, So, by the same reagon as was given in the previous case,

‘this minimum is not smeller than that of Eq. (A.20), Tt must be noted

that 1f m2A"<0 then X=-o0 at y=2R ., The condition (4.14) is
essential,

E) The line 20:

-y

Similarly, Eq. (A.,7) gives

- 2R _ (m-m?) 4- I+ R%- 2R2x>20
X == TRl #A*- x* lﬂcl( R* ) ’ g

By the condition (A,12) the minimum occurs at x=0 ,

X, = Xoin = g (FR*=m™= R23m})

4‘&]&5 | (A.21)
Similarly, if m;-m <0 then X=-of at x=2R, |
F) The line EO:
We can check that the minimum of X occurs at the origin and it
is given by Eq, (A.21), 1In the discussion of the céaes (D), (E) and
(F), 1t is necessary to use the f'act maym, , If mydm, then my
in Eg. (A.21) must be changed into m, . So, (A.21) mist be written

as

= lfmﬂd (2212 e ()

(4,22),

Thus, we obtained two minimum (4,70) and (4,21), We must compare both,

The requirement X;3Xo,and so Xo is the entire minimum gives the fol-

lowing conditions on R,

HRY - Wi )< [4R% (- 2Rt o o B s (o R }

(4,23)
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In our case 2R >mMi+m,; this is satisfied always if A*>o . Next,
let us investigate the case (b)

Investigation of the case (b)

Y
C .
metm,>2R>my-m, >0
(w 8 In this case, we can
[ follow the procedure
(t) :
similar to the previous
0. A . '

one,

A) The line BD:
In this case, we have the formula (A,20) under the following con-

ditions,
2 B>
R > (ma— = Ama-my) ‘ (4,18)

Z.R{H-R’:- m= R +2zm, m-.,} > (mi+my) %Rz-(m‘—ﬁ")CMz- ™) (A.24)
In the actual application of dispersion relation, ¢ may be negative,
algo, In that case, we must interpret Eq. (4, 20) as

Yo
Tt L_Qe
xo ! [8‘1 ‘m;—m )(MI a)]

4R Crm-—m.)‘"

(4.25)
Then Xois purely imaginary, and the condition (4.24) means that the in-
side of the square root of (A.25) is not negative; and we are looking
for the minimum of 1X in its rigorous sense. |

B) The line AC:

If the conditions (Al4) and (A.24) are, then we can show that
= + 02 is there. However, if one of (A,14) or (A,24)is

not satisfied,

*

. i
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then generally X=-oco. Note that the new condition (A.24) is neces-

sary in our case, though it is automatically satisfied in the case

. of ZR>m+wm,;

) __The line CD, DO and AQ:

The afguments are exactly the same as in the previous case (a)
and we do not respect our arguments here, We have the sﬁme minimum
(4,22),
¢) The final case (e), (lRélm,_—-M.I) is the most simple, and
its minimum is given by (A,72), Summarizing these resulté, the mini-
mam of ¥ is given by

Min X = Min(Xe, X,)

_ (mzor)(m B) Va,
Xo=| | + ozt A7
° [ PR [ll'ﬂz-—(m,_—m,)"]]

where

X,= Tﬁ"é‘,‘\[w— (m*+ &%) +2.ax (i mi)]

and if the conditions
=
bR> (mym N (mamrmy)

2RIHRY o™= R 242y | > (it ma YR frn= R ) (P~

“and

‘m"(m{‘— m*Xmi~ B2 [¢-R1~ (ma- m.)‘][‘l—mf Ra¥mi s mRml(m+ &")J
are satisfied, then Min X = X, . If the one of the first
and the third is violated, then Min X = X, . If the second con-

dition is violated, or (A,14), then Min X = - o°




