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1. Clsssical Lispersion Theory

In classical physics, "dispersion” is the dependence of the irdex of refraction
of light on its frequency., It ig well Muiown that for glass, blue light 1s refracted
more than red light (in the wvisible region) so that white light is decomposed upon
-passage through a glass prism. In thiz century the phenomenon of dispersion has been
rof considerable importance in the development of physical ideas, There is nothing in
Maxwellis theory itself to tell us auything about the refractive index of a homogen=

eous medium except the resulis c

AL
where _i{ is the phase wvelocity of electromagnetic waves in the medium:

M =Y f :
Vie know that even this relation; although wellesatisfied for hamopolar gases and
vapors, does not hold for solid and licquid media., For exemple, the relavent figures

for water are:
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Thus Maxwell’s squations do not give us & clue to the dependsnce of n on (W (frequeacy) .
Apparently, then, dispersion provides us with information about the electrical cher-
acteristics of matter,

If we consider the scattaring of light as performed by elastically bound electrona:
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i3 the eqn. of motion of an electronhere W = ;ﬁﬁ; . the polarization
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where N 1s the density of electrons, Q{ iy thes svscepibility, substituting Ef into

the egn, of motien,
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or if several rcsonant frequencles are present
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sne can also include z radiation reaction {"damping®) term in the eqn. of motion:
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80/ 1s now camplex, representing absorpticn out of the incoming beam,

2, Quantum Theory gives:

B Nez-z-:"'" A
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here -)C; #s  transition probability for ( £ —>» 0 )

ﬁ c wa "osecillator strength?

obeying ?:ﬁ =
4
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. — A &
(A),C = 7 - (difference between energy levels).
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Thiz is the Rayleigh - Riiz Combination Principle in action.

3. Kramers, 1927

defines 2 -
ﬁ"'....cf:,"}.i_.-.l. = gcw} 4+ 4 %(w)
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This was ths first equation relating the real and imaginary parts of the index of
refraction, We call thie a dispesrsion relation.

ho Scatlering Theory:

inec, Lre , o»
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various authors have derived the following reiation betwsen the index of refraction

() and the forward scattering amplitude f (w) s

z,,,y 41T -E- ey N o densi '
MW =t w - N= scanMq&g Centers
is the frequency being considered, But does the forward scattering am-=

where (WJ

plitude obey a dispersion-type equation? We will seek to relate the real to the

imaginary part of the amplitude by invoking cansality. We defims the "“Causality

- raquiremsnt® ass

If an incident wave packet reaches a point Z = 0 at ¢ = 0 == the forward

scattered outgoing waves (scatter®® at origin) must not bs seen at a distance (I )

until a time ( 7/ ) has elapsed.

Consider an incident wave on such a scattering center, obeying the causality

requirements , =2

M) = [dw e an 0t t)

l/\w <0__,(-J't
Ao t) = 2 a / P

For example, let A be a sine wave:

Alt) =0 1711»1 t <o
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then - At — W,.....i.,_-ma-
Att)= &'El"{r f A w {WHG =Ws Wffé"’“w"{

This 18 of the above general form, Now look at the scattered wave:
such thats

define’a (L Y

(dwcf Stk dtW) : An
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the scattered waves Ft) —_:f;w a(w) 7'(60} -

= 0 for T< % }_f{%’w)is analytic in I* and I°
define: I” == upper (positive) imaginary plane

i
it

lower (negative) imaginary plane

I = the real axis,

. Note that the scattersd wave obeys the causality requirement ifs
1) the incident wave is causal

avd- 2) the scattering amplitude is anal. in I and I°

Consider a 1little math:

given & {'um‘l-«“m (z) anal, in I and I*
thens {(a)&——-—-f,,i&l_,(% !
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providing, of course, contributions from the infinite semi-circle vanish,
Now separate -)C into real and imaginary parts:
‘)C = 9 + 4 /ﬁ.

agquate resl and imeginary terms separately in the principal value equations



saeh functions are called "conjugate functions™ or "Hilbert Transforms" of each other,
A\
Hote that if —f-‘ - &

Kramers' dispersion equation could have “een obtained without oscillating electrons

then (sin Ax ) and {(cos )\ x ) are conjugate fn's.

or other kinds of medels. This is the prime result of dispersion theory. There ia
#till one point (in the above) which needs to be talked about: we assumed

b A-a) = - dm pHW)
- but this really follows from the summetry properties of the theory as we shall show
‘n later leetures., Given a scattering matrix f(u.)) or S(w) for W>p en L’
find an anal, f’l’l. (using causality and appropriate boundedness) in I and I° which

will go to{{w\as I* ~— I°. This will determine S (-«} . There are 2 possi-

pilities:s

30 15 f(-w)= S ) t this is what the Kramers eqn. uses.

(6) 118 £ (-w) = — (W)

(1) I leeds to. ,/\(w/ -2 ,.{(MJ w!'de
7/((1)) = ‘% (P W"’"‘ d“" @ (w[z a.)

{3) II leads tos3 o
(W) »——-—-(}D r- j‘(w) A dw! . - 24 p ) dw!
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Hote that II is more convergent than I, in that I conteins an extra factor ((A)a )

in the numergtor. If greater convergence is needed, one can derive difference formlas:

type It = 2 9, ‘ L]
?z‘w - ;(wa) =% G’j‘l\(w) w'dw {W.tw e

¢ (i — 4 () N A dw!
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Thus the pattern iz set:

1) Given 5CW) , defined for @ >0 on I,

%4 Continue SCW) anal, ‘ly into I*

Fild N (wW+4v) 2 N (W 4V) is Anfor /> o and lim N (w+id) = S
. =y
3) and if N(w+ ip)  is suitably bounded:

o8] fw ACw ) dw!

" holds for Yy —® > and also on I®. Causality helps to fimd N (W t+ 45),

symmetry req.‘s tell whether N falls into I or II; or neither & is then a mixture-— 57!
and what sort of disp, rel’n is satisfiled,
Programs 1) Write down Sematrix assignment a3 possible.
2) Formulate causality property and study what analitic propfs are
ascribed to Sematrix elen,
3) Study symm. properties in particular to decide whather it is I op II

which is satisfied. OStudy meson-nucleon scatt. 18t we learn har to write it properliyv.
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DISPERSION RELATIONS FCR PION=NUCLEON SCATTERING

analytic Properties ¢f the Tematrix

We shall start from the following general theorem on the S-maitrix in terms of

Helsenberg operators

-8 i ( P / \\ i ) 54
{11) (l_(')_‘ i T (%,, Xa, ny, % WY C}) > = - A )Ky _{NL&T(!“,!J"»~,Ym,§3.)~(.-’—/)’i‘ﬂlw Qs

v

‘T@‘a)“a,-“-, 7'\..») = 1 {A X A‘Ng) A(“»)}

and Kj is the Klsin-Uordon operator
2 2
~ = f — "
K, o,
This result is dzrived in the appendix.

- where | Ly”_ Y ) is the time ordered cperator

We may now meke a more detailed study of mescn=muclecn scattering. To specify

the initial and finsl states, we use the notation ‘ ;37\ L‘<> ‘o denole

o

~

a state with a muclecon of momentum (h~vector) p and a meson of momenbtum K and /L
stands for all the other indices specifying the state (like spin ete, Y The initial
and final states wonld then be represented in the fom

B = =1 R

[N ow&

The transition element for the relevant case is the .
R L - ) / ] - N & N i 4
{12) {p Ak 3 {ﬂ\k‘} = c0? gKyk, <5 {,i (%0 b | B> Lelwds A%
[ R v w
where d) (¥} is the meson field operator. For charged mesons one has %o consider

eomplex fields 9‘3.: and write, in the well known manner,
. ' ) ,
Cb"i = = ((Fl_’_‘”k¢2 C#/o_; ¢>3
The corresponding transitionmatrix eclement would be ok x- ‘k—y)
Py, ; R T N i % ar) i A 4, ‘o
(o NE[p iy = o0 5“"% G ERENREXLINENA dte Aty
If we write the relation between the S and T matrics {  scsbttering and tremsition

natrices) in the form

5 = ’ -+ :;T
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we have, T - ‘j ka,/\?'i qb*ﬁ‘(#’(*”\ F‘\) <
If we now assume the initial snd finsl states tc bs steady states we can

remove the 'in', 'out' labels, as we have done in ths last equation for T~ L et

/x (})b() =

where _) {x) is a local interaction, 4> being the meson fisld operator.

Jlx\

" nucleon coupling is here not necessarily of Yukawa type bul 1sg necessarily local.

By definition of ihe chronologicsl ord=ring operator

K, TVF o b)) = k»c[9(\"3“&(’“@9\3)“‘9(1‘”""Cb‘\‘“(&?ﬁ“

The mescn

e ey - - .
= T&J*‘\*N.i?bﬁﬁ + &7 K‘fmx;)l'\weu S ¢ty i
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with .
e \\l): 1 X >/O
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Then . B’;bu ’ \}
P X b "LJ {X? E]
- j‘()”nyasv [ T mgud] > - 8¢ 5 <eli? S
{13)
provided fo) does not depend on o (j) () . In case | (x) is independent

of C# ) also, the last term also vanishes. Then

L\lﬁ-‘t—ky‘)
] 4 . 4 ‘% !

L‘Sc\qxc‘“j {p EO &x-\;)J*\UJU) 4 Oty -y joy P> €

ir l’r\> denote a complete set of orthonormal states the projection operator

S ENRCN R

may be introduced between the two J operatorg on the right side. Recalling the

properties of the displacement operators P

{)

P .
jo = & e et
we obtain S !\‘kxxm_k\)) s
T =3 (eu 9 {p ‘3 Ry b G i)\‘” “ Afx @y
= o N, ,‘\"mw!\-)) P
s e(w’k\" 1wl | & |l e Ateaty
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The requisite integrations over x and y may be performed leading to the following

expression for the T matrix element:
N ETC <P‘ ‘\0))“><“1J)‘(O’“’>
(15)  T. lax) { = <H"°""‘>< iele? N

Mo Ev\"’r’o —k o= A& Lk ""Po +k —iE
’Sl:f-“\: ® r -

where the summation is now restricted to thoge states \K> which conserve the
momentum and - i€ is an infinitesimal negative quantity which ensures the correct
contour for the evaluation of T.

If T is congidered as an analytic function of ithe complex varlable ku we may
represent the singularities of T on the ko plane. The singularities f£all into 2
groups, those with positive real parts all lying in the lower half plane; snd those

with negative real parts all lying in the upper half plane.

Singularities of T in the ko - plane

Comparing the properties so far discussed of the T matrix element with those of
a classical scattering amplitude discussed earlier, we see that T is not a proper
scattering amplitude for deriving dispersion relations. This is connected with the
requirement, outlined earlier; that there should be no singularities in the upper
half plane, for a dispersion relation to exist.
The M-matrix

We may however construct a new matrix element that is more or less similar to
T but with the desired properties. To do this, observe that the location of the
singularities of T in the koplane are connected with the - i% occuring in the de-
neminator; hence we would have & proper scattering amplitude if we alter the sign
of T in the second term in the expression for T. We will call the matrix element

Cp il §telr zK
R

so obtained as M

Cp'liter) »> vyl p>
(16) M - 9\“3 §“§’P+k E.:' Po"'ku ~ K&
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We shall denote the meson and nucleon masses consistently by p and = so that,

From the explicit expression for M it is clear that, for L°§>g_TEM, since in this

always,

~ range the singularities are unchanged between T and M and no ambiguity results by
omitting the infinitesimal imaginary part in the denominator of the second term.
" For the entire physical range ko>;x and hence, for the entire physical range, T and
M coincide.

One can immediately write down an integral representation for M which is
am M. (e (plTite, jud ] Y
and is equivalent to replacing 9(3.u<) by ©(-y) in the expansion of the chronc=
logically ordered product in the integral representation of T. We may hence form

the difference T=M: . A\k‘y _l;j)
PN . ¢ " C%
T- M =‘Ljd4< 0\43%. 0 y-» + O J)‘E (p NREN \x)‘p>€

[ ary Cp'ljur Tl pd o e =t
C it 5 AL T A

where we have used the fact that
>
{ ’_rw Xe ¢ Jo
0 x-y) + & (y-w =
It 1s to be noticed that there are no energy denominators in the final summation,
since the difference of two energy denominators with opposite values of & may be
replaced by a S-function of ener-y differences and this we have taken care of by

the restriction on the summation. For this summation the only contributins terms

are those with

Mmooz P‘—' "
Then, o \P"k‘l . ¥ 4k ? __ZP:L‘
and hence 1
\hl)w = \‘(—}M)
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However, \v;>are one particle states and hence

n2> K2
Hence there are no states with positive energy for which both these conditions
can be satisfied. Hence, as we asserted earlier (from heuristic arguements)
(18) T-M=0 for positive energies.

The Negative Frequency Behaviour and the Class of the Dispersion Relaticns

The structure and symmetry properties of M may now be investigated. The most
important ones are those connected with the Lorentz group and with the charge con-
jusation operator. These are, respectively, related to the behaviour under rotations
and (space) reflections and to the behaviour of nerative energies.

Consider now the case of scattering of charged mesons (of finite mass) by a
nucleon (also of finite mass). As usual, charged mesons are represented by com=
plex flelds and one would have two distinct matrix elements M+, M™ for the scattering

I

of positive and negative mesons:

Mt = (e’ 5(r,’+\<‘.. p- ) Se("J’LP’lD‘\O’ ,Jw]‘&’)é '
. EEN
M™ = L Spakiop- k) gQKﬂJ(F"EJ””M‘)’]\P>e 4%y

k.
)O\Aj

here we have used the displacement relation

P * -~ P : *

e jTe) e = J

(%)

to perform one of the integrations (with respect to x ). On the energy shell, the

matrix element M may be written

, : ~iky a4
a9)  mrkipp) =i feen Cp |Cjter, jodlp>e™ ™" d%
since, on the energy shell, we have the connecting relation
\‘,4\(«_,?‘\;: \(‘1 ok l\’(\b_})') = Pa}o’——-kl"
since Y’z. . P‘ 1. k2 Ll . ,\.2 i f'\L

the Lorentz metric is used in writing xzaxgﬁgz ]

enabling us to express k' as a function of k, p, p -



The Matrix element being a Lorentz invariant should be expressible in the
form . - .
(20) M * ksp, p? = G Aph (F T4 a4k G;“) wopy
where F* and G are functions of the products kep, kop1 and p'pz of which only
two are independent. It is best chosen as a function of k-(b+ﬁ)and p-p1 80 that
(21) Fi=pt ( k-kk-;p') , P-P')
gt =gt Q k.(p+ph , P'b')
Wehad ‘ ..i‘(\J A
' < %y o 1o < a7
MY = "Sebj)(P\[J\”:Jk] P> )

So that A

ik
M+ . Lge\,j)<p'\‘\:j"to>,J'\\;)]}P>e i

Hence
X

M* (k "r”’(;) = M- (’k H \P’P')

which, in turn, gives
(22) S RO bp)
G N CHUS I

If we now introduce the linear combination

F. = F% & F° N © W & +G”
- ‘T
(238) F. - F™ —F G, =&

these satisfy

(: - (—k-lhdep“ s PP'\)
e G )

0

(e pp) =+ B (= ke pr)
F;*( “"F*V" , M,') = — F, L"’“\t’*l”" ’Y"P")
Gv,y ( k.tpep) | PP') = - G, (_. k.\k,_,r.‘) ‘PF)
Gu*( kopeph p-p ) = =+ C"'*(' ke (pap) Pp‘)
These amplitudes have hence the transformetion properties of the required type for

{23b)

providing us with dispersion relations. These are functions of two variables
¥ %
X, = & -S?+P ! and X,= pp-k* . If we keep one of these fixed and the other

varied, one can cbtain dispersion relations of the type

Re F(x,.%) @ ’o___c_\.“_.'l_- O ‘F(*‘ X,)

'y
X

]

¥
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In the center of mass frame one has

2~

() e p okt o (2 ks

and Fy, G become functions of the center-of-mass variables [< e, B

. « However,

when varyins x4, keeplng x, constant, we have to keep kesin% congtant and
not, @C . (It may be recalled that ;1‘% S %i is the momentum tryansfer in
the scattering and is represented by the third side of the momentum %risngle
4@ ). Hence there exist no dispersion relationséé'cnnectinw seattering
amplitudes for a fixed value of 6, . |

If we congider the laborsastory system

p -0 Ppo= kb

so that keeping anb,p‘ fixed means keeping the nucleon recoil fixed at the

value % [« while x, = l‘"«"’“f’l) = rk, +Rp S Vavied.
The frame in which the formlae appear simplest is defined by P+ !’ifzo .
In this frame, we may specify
P - 0,0, P
P \\ . 0,0, e
' ®,0,-F
-Q,0, °

D
O ol ~ 3
[

The "Brickwall"™ System

so that

N

(25) . e ! _ >2 2
= k. = \réi-sfr‘ rﬁ

and |\~\F+{’“= 2 ko\! P? cet

The dispersion relation would now be of the form

(26) e T S FUSIPY
P - v — o
@e F U“” ) N j k;"ko

T O
"(o

§ Except, of course, for the single case © =0, vhare keeping 0. fixzd is the same
as keeping Lk cin 6_3% fixed.

e 1
e o L



b

{ 4
We mast now distinguish between WV the no spin flip and M™* the spin flip

amplitudes. Tn the "brick-wall™ system, E_*!i = O ; we have
{27a)
Wl o PPaer ke = J14» P2 frex } for no spin flip
- A i
\./\1 L"'k W= k‘o
and
(27b) - 4 2
w w = 0 S for apin fliyp
-8 '1
Witk = PR [k
Consider

(28) Mo _e:, Fik, P) 4+ k, Gk, .,p)

M11 is a function of just 2 variables ko end P with the integral representation

14 N . -ik
M = cgebﬂﬂ (P‘wa’,;<w]lP>-€
We now notice the important fact that the entire ko depsndence of ' ilies in the

ydAj
factor 654k3‘ The factor £ (y,p) = 8- ﬁ‘[iw’; jW’jIF> in the integral
is a function of x and P alone and is such that it vanishes everywhere except in
the backward light cone.

It can be shown that the matrix element M(ko,P) posgesses a nurber of sym-
metries and as a result can be written as

Mkl Py - Sqf(*,i’) RO cos Q) 4%

uhere'ﬁ(*,{>) is real and vanishes outside the backward light cone. {A. Salam:
Muovo Cimento: 1 Feb., 1956 . A, Salam and W. Gilbert: Nuovo Cimento! 1st
March, 1956). ‘

Thus the verification that

o AA "c‘ )
i ) '
Re MMk, p) = & g O MU U0 4l
l~ , ® %) \-(‘ ko
is really the verdvicetion that

* AN 5 RS
g —? (\(,P) CUS %(o‘)(a Q—D-‘:P(O( ‘;ci» oA :‘ﬁ «- \((}/""(2"43

o . - ' -
- gi g i“ g:—» L’u Ao {cg @ ){, '§{\ \)) }4\ (” !‘Og

i } &-\’ j— ‘x"

> ~ - 7
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If on the right side, the order of x and kg integrations can be interchanged,

then this is the same as the rather "simple" verification
1 |
Cos koxo C‘ngx‘ - g‘; S"" S L’o X, Co Q X, C\L(Q'

ko' — k.

It can now be shown (see Goldberger: Phys. Rev. 99, 979, 1955) that this

change of order of intesration is valid, (if at all) only if £(x,P) is a function
vanishing everywhere except in the backward light cone. We shall not repeat his
arguments since the proof is very weak at this point and one has to assume that
£(x,P) does not possess singularities worse than the O.function or its deriv-
ative on the lisht cone. We recall that the guantum mechanical causality re-
quirement for a relativistic field theory demands that local operators separated
by a space-like interval should commute; and corresponds to the requirement that
the measurement process connected with either operator cannot influence the
other since no signals can be proporated with a velocity greater than the speed
of 1light. 1In particular this implies in the present case

[J’ it , _j(ﬂ)] =0 for x-y space-like.
This guarantees the vanishing of f(x,P) for space~like x . It is particularly
instructive to note that the causality requirement enters only at-this stage of
the theory; and further, that, the causality is demanded "in the small® and not
merely for distances larger than, say, 10-13 cms. *

The dispersiom relations are

(29) Qe Flk.P) = 2 @(" k' S Flho P) iy

ke — k>
(30) @?e G,(l(o,P) _ 2 @S.” Yo Glu"::,P) Ol‘(’
A

[}

—anit

ko ° ka® —ko*

* It may be shown that if we assume that causality is not valid in very small but

finite regions, the dispersion relations for such a case would be mixed:
Re FlkaP) cos Ooky + Son Flie, ,PY e Lok,
2 g~ 9m P cos bl o e Rl P s Bk

= x
(Sudarshanjto be Bublishad) ko2 —k,2

Cf. R. Oehme, Phy. Rev. 100, 1503 (1955)
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Since F and G are inveriant and only the spinors u, u chance referred to a new

system, we may now vrite, say, for the center of mass system,

(31) MS = 0 (F & o3k &) ue

In Ris syslew,

M1y = &R :{:

- e

o4y - & + To
M@ - 4R P

The theory developed so far can be

[ QQQ :*"\Q"” QQ.Q—] PQ(COS B
r

ON\, l\,

CLQ_-—‘Q’QA —]a——""‘?‘m Q{f”ﬁt‘
rried through to give *h, cigpersion

relations for any sultable process, say the scatterines of charged psenloscalar

mesons by neutrons and protons. However for simplicity we shall consider a case

which illustrates all the relevant points of the theory, namely the scattering

of neutral scalar mesons by scalar nucleons. Then we have only one function F and

on:e dispersion relation

0kt Qo B X
£32) Re Flle, P) = —%—GD\L k,' 9 ey P) Ak

* bt P ke *

0

Te write the rp]ations in the center of masgs frame; we may substitute the expression

2 . kcz _ PLA

(33) ko - \I c1 4./\,7— l<c -

\j'__()2+ e >
fer k, and obtain,

- 9"w\ - (O"P) C.J}'Ckg!
(34) @e i’“‘ﬂ: )P) = % ¥ f —-—-——g,zic‘}z

(.)': g(kc' , P and

Flk..P) 1is to be taken to mean F Galkc,P3,P) . Since \<o= P

where Q = e(kc.P)

P< ‘<°< 2¢ and P:‘"..(. r:l' < ‘(r: < ox o
Hence of the range of integration O tc 00, the resion 0 to P%+fwl

unphysical, ie.the threshold of the proceses is at the energy }Pz-J¢5L

e et e g

is

For the case under consgiderstion (neutral mesons) the imarinary part comes from

the infinitesmials ie in the denominator # Jesin- the relation

* This assumes that the numerstor ie resl. U, Salawm

apoted st e
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we obtain ' }
? . e e e [ - <P t_{koyi\n><"“,)(°’s P>
(35) gm £ =“j££,+k<b }J\ ! >< ‘J In> e

The states (w> contributing to the sum may be represented in the following manner:

%f///{// N T
7 e

4 - ‘//"/"’. Form— o o Pl«\ [N C\‘ QJ? N -T
—\W Theashdd of jste 9
\;E &—“\ ~ W= (.&’-4%;)2' e 5-‘:0\4 °,e “’\L ‘_"v\ %f)\\\if:u((\\ COVJ’;"\\“‘ v
—_ = k2 e Bound-stolke "

——— = O

We have to supply theng for the unphysical region ourselves.

The various contributions may be separated in the f{ash.own o \ \
oo . v ‘\ s onWTy }
9vn FCk. . P = gf’ (conks. .k«om P‘M,S\Cm.\ states) + go N Nk ¢

—+ H k., P
where the last term is the contribution from the single state M) with = e

which is usually called {somewhat inappropriately) the "bound state®

The appropriate term for n2=k2 is
= < Pl je] " n) Jwr)p}
nt = ipr,k\’“z e

Graphically,

\\\k' )
~ P'__L -

-~

where the intermediate nucleon line represents a real nucleon. Taking radiative
corrections to all orders and lumping these into a vertex modification, we may

write an expression for the bound state contritution. For scalar nucleons this

gives a contribution proportional to

G S{p—krm-+) [
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whepre |

L= D lpa ,<‘p"~»f<>?-'>
- i 2 2 v"\
rl = ( ((t)-»\‘d&, k B }’3 )

Thus the +otal contribution is

Cj"_g an,‘,/vl,h“

vhere G is the unrenormalized coupling constant,

(36) CGig =

18 the vertex wmedification:

Fler )
? k’f‘ l)

We can now define

C;::y gz (\'tl, /\'~2, &2)

and then the total contribution is simply the Born aprroximation result; provided

(*)

the renormalized coupling constant

is used.

In the full pseudoscalar theory, this gives the contributions:

(1) Im M =

21 2
gfwx M = - Cj.’--—-.’ ;

(37) -

So mueh for the "bownd state”,

region is much harder,

previously with respect to P2 and put P = 0,

number of integral equations.

A-‘ﬂl v zq"?

These are not merely identities.

- gﬁ; Axr Tl id kK ops S(W;k)’—&z)
A

Lk uﬂ\m g (- -r>)

Now, the contribution from the secornd unphvsical

One suggestion is to differentiate the relztions obtained

In this marnrer we now obtain an infinite

The structure of

the theory (e.go. that it is lecal; relativistic and that the meson has odd parity)

comes into what we called the bound state term.

Nt
A L)

on the right hand side,

of the type

term

were neglected,

Al30 meson-meson attraction terms

If they had been kept in, an additional

would have appeared in the tuo relations (eq.2920)

To illustrate the results obtainable by differentiation with respect to P29

let us start with the original relation

I
R:'+k( = {2t+1) S 5 Cos ég Qtl 3?3} ,
L, e ! - . —EE '
oy - Demzemieilo e pu-Sodk
A - o g(kc,P\’ g’»’\k P) .
7. L 1
=2, o° (pet2® 3?0« )
2 pe
(%) G, so defined, differs by terms of order (}xh&)m-frmm the usual defipition

where & g,

= & P (.0, )

- ‘9
2 L
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If we now differentiate this equation with respect ® P? and then put P2 = 0, we

obtain
— Ef_“'_.ec) 2 (2 1) Sin D, CmS
S kc , (1 -+ Q(g—n)hl)
G) = = P=le ey 28] P"\f Ak - T
ko Ak
. 677— SL !\_.:- (P:‘v‘* ‘Rg'\ _ ko LP°C~”(°Q)-+ - A+\ AN 2) ;
A o dos (RFps )2+ rw\ (
- where we have introduced the symbolis
) 3, - 8 (ko 5, = (ke

k¥ o prlas o’ ‘W SENEE

Aypde) = (ko k) o(piked 2 R k)
One may proceed in a similar manner to obtain further relations by repecated differen-
tiations. The calculations are straightforward but tedious,

We have thus obtained an infinits series of integral equations which are fully
relativistic, with due regard being paid to all the symmetries of the theory. No
aprroximations have so far been made. This infinite system of equations can be made
%0 serve as the basis of a new approximation method, For example, neglecting all
except a finite number of phase shifts would correspond to a cutoff, which however
is applied in a relativistically invariant fashion. In particular, by neglecting
all terms except the pewave phase shifts and takes k —3> 0 s one obtains
the Low integral equations (The Chew-Low equations are not obtained this way, since
their integral eqguaticn is for the inveyted function and not the scattering amplitude,

One remarkable fact to be noticed 1s that the only place where details of the
coupling come in explicitlyfin evaluating the bound state contribution. In particular
both the PS and the FV theories give the same bound state contributions and hence
dispersion relations do not distinguish between them. Worth noticing is the fact
that the PV divergences have disagppeared in the dispersion relation.

To obtain scattering lengths associated with various ﬁu valnas is quite
straightforward now. Notice that eqn. ( 38 ) starts with ! = 0 on ths lefthand

-

< 5 e n e N , P H . s
St gt e ageen {;«:@; Lotgyda el Yor TH e 9
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- know all phase shifts on the righthand side. Consider meson-nucleon scattering
where we kmow 3 ;. 1s the largest phase shift. In Cambridge Gilkert has tzied to
compute the zerc- emergy limits of 4,, 4; , Mo 4, g‘Bl using the generslized
dispersion relations, The meson-mee~n attraction term ACfD was retained. so that
the disversion relation for ;10 spin-flip. no isotopic epin-flip amplitudes, contain
an atitional term A ( (ff;da’)on the right hand side; (f.pare the initial and
the final nucleon 4-momenta). The crudest apvroximation of retaining only 9 s=
phases under the integral sign (on the right-hand side) was made, ‘53 3itself
being taken to reprecent the exverimental curve up to ~ 400 Mev., '[he following
are the results: -

(1) @: » the pseudoscalar counling constant is large! ~ 12,

{(4) (q‘ + 2 8] ~ CK*P [‘42‘.,;1[(?)]4—0‘42. Here K and p
are nuclecn and meson mas<esc

(141) -—L(d d3) '~ o,

L _df

o i [+
(1v) n the 4 phase-shifts an additional constant ya d(f ?,) -
appears due to the XCb meson—-megon attraction term. This constant

could be comuted. using Born Approximation. For a smll value of this
constant = JK——;_
A, =—0:05 1 Qg =-0.0(: d3, =003
For a slightly larger value ~ El?
Ay = —0.03 : @, =004 = b+, =002
The reson-meason attraction term, if present and large, makes 1life hard
ag far as obtaining useful informition from these relations is ceoncerned.

In closing we may recaplitulate the significant points: firstly. all the

syumetries of the theory cowe into the dovelerprswi patavally, Tha fuo aanedlv
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imortant voints to notice are that the theory is essentially local and that

®causality in the small” is demanded (microscopic causality). In commection with

the latter, there is no ﬂmdé.mental length playing any significant part in the
theory. The evelumtion of the bound state contribuition fixes a scale factor for
the theory.

An essential point of generality of the theory lies in that the assumed com-
mutation rules for the ‘in' ‘out’ field operators do not necessarily demand canonicsal
commutation rules for the (non-msymptotic} fleld operators. This is varticularly
of interest in view of the cogjectured inconsistency {of "ghost? states eiv.) of
field theories starting from sanonical commutation rules.

We have not yet learned how bezt to combine the equations, anproximate to
ther and set up consistency relations to obtain detelled information., This requires
deeper study. Causality and dispersion relations are vrobably destined to dominate

on theoriee for a few years yei to come.
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Appendix I Oehme: P, R. 100, 1505<6
o0
N (erip) = oy [ (@) de! for V> ©

ZR4 ) )i (V)
g

and /\/(0)»1—,{;/} e — A/{w) for })} -z

E=2(a) ¥ (o AL ) is analytic for Y >0
(b} The lesbesque integral

o0
| A2
IO(.VJ { N(N—f—l}»{)g exists and is bounded for ) >y
- oo
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Appendix L1

S« Matrix ia terms of Heisenberg Opsrators

In a program for deriving dispersicn relations for a relativistic theory it is
first of ail necessary to write down the proper scabttering amplitudes with suitable
symetry pmper'tiés for this purpose we express the Sematrix in terms of Helsenberg
operators. We adept the formulation of {ield theory due to lehmang Symanzik and
Zirmerman and start with the following definitions and auxilary lemmas3:

Take any function ,C vy which satisfies the Klein-Gordon eguation

kK, o =0 k.= O —m*

which is normalized so that

g (ﬁ(u)’a;‘_(‘x) ___?-x B—pu))dB = A
X

For any operator A(x)  we may construct the operator
A QJ;) =k f EAW) Q“’ ,‘:(m r'*\m B é}
=k

the space integration ’oe:rrw carried out over uhe spaceallke surface A, = &: o 1If in

particular the operator A(x) satisfles a free field equation

K, Aw = o

then the opsrator A'F(L) satisfies the relation
9 A% b

ok
and hence is independent »f the space-like surface Xo = { o This rssult may be

=0

irmediately verified: by direect substitution we have,

I .
oAy | '{SU\W V%”..(;u)-—»-,(:’u)vtzA K’”)d R

- L (AM)V‘,?@@) _,_4‘[(,()-&7& [\(x))o\g =0

where in the sscoad step we have used Oreen's theorem to transformation from volume
to surface integrals end the last step follows from dimensional considerations.
[If L denotes the linear dimensions of the volume considereds the integral goes as

i -
L"'L / U}’l Lja’z ) and hence vanishes in the limit j o Hence for a free-{isld
IR

operator A(x) , is a constant of the motion, o 24

v



We now introduce 2 sets of operators, lsbslled respectively 'in' and ‘omt' field
opsrators uwhich satisfy the free~field ecuations
Kx Ao =0
}{X L\W&(X) =0
and the comruvtation rules .
TA W )AL&K\)B = "‘A(“"\)
T AW, Awk\x‘)] = 4 Ax-x)
These abstract operators are endowed with physical content by demanding that for
any two physical states repreqented by <éﬁ> and any operator Ak
(c? A\T> ¢) -\CP MRy
”’””” RESY IS
L @ A S
It is to be noted that the righthand side is inderendent of bt since by virtue of the
free=field equations obeyed by the 'in! and ‘out® fields, the righthand sides are
independent of {; o
Theydefine the formalism of the field theory under examination and constitute
strong requirsments on the structure of the theory. As an example it is to be
noticed that this requirement does not make much sen%é as applied to cases when cne
of the tuwe states9 say 9} is a scattering state and the other o bound state: for

£
L¢ A (w gg) - &Q__;MM(@B A g’s\) =0

0..-\
\

gince A(w) @Z. iz alsoc a scattering state and is thus orthogonal to <iE%3‘,
By a direct extension to derivatives we may write down corresponding results for
the Unmits * = * oo

We may now dafine the *in’ and 'cut' vacuum siates by the defining equations
+

AL: DW = 0 Ao'\/\{’ QOL*«\' =0

where, as usual, we have split the free~field operators  Ajn. Agy,y¢ into positive

and negative frequency components Aﬁing AL > One can now from the following

out
two sets of orthonormal states,
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and
ud
o 4
Doy - A4
SO LK, RO
O\A.‘J{ = ) o
) where N, .. . n " ;re &e cccupation numbers and the expression involving the

‘ - A N
factorials is the usual normalization factor,

The Sematrix may be written
where (( w)((&; stand for the set of indices completely defining the states. The
Sematrix so defined is unitary and has the property that

+
(\<>uk' - S; i\'”“sg;

The invarlance of the forrulated theory under space-time translation together
with the asymptotic properties of the field operator lead to the existence of a
lisvector operator P&»&’ which is the generator of infinitesimal translations, with
the properties:

Aw | = 2 all

[ p, A - 3Rl
"“—[: F)V.,ﬁ* v&(KZB = :;)p\ltj'wk)

The vacuum states and.th are éfgaﬁy states and by choosing an arbitrary

rhase factor we may write
a, =0, =£2
The steadiness of the 1 particle states lead to the reiations
(2, Ay )= (2, AP ) = Lo
@, Aw @) -0 An P = L
These results are equivalent to the Low=Cell=Mann results on adiabatic switching on
of the interaction like
\’I‘rua Vacuum> = S ko ,—00 ) l Bare Vacuuzr>
\True lepart state;)& S C_O) ‘°<’> ‘Bare 1 part. state> ete,

The general theorem on the expression for the Sematrix in termn of Ueisenberg
s

PSR s
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operators can nod be stated by the equation:

T 4
(o Tt ay b ) = a6 T e

where T (%, ... %)

(¢

gtands for the chronologically ordered Wick product

T xy=T ? Axyy oo N A@w,}

and K 9 is the Klein-Gordon operator defined earlier,

To prove this result, define

&
.
| Y25 - 9% -93

Then form the basic postualte of the thcory, one has v
(2, Tl ALY =t (T, YA )

= i QAM &([L)T(%l ""X*'\))‘;— ‘Cok\w dq’j
o

~if 2 (Q Ty % o) - 5@.,&30)0) Yy

i

i

i gkj Ve ,"Y"b...~.><“,\))fl> D.0a”

In this derivation we have used the postulated asymptotic connection between AN\ %J
and Ai&x) o In the last but one step we have dropped a term at J, = o

from the \ vin‘begraticn)

é"
i Liw %(Q,T(*,“"‘Kad\ﬁ')"é% ’C,(U)d:"ﬁ

(coming

Yo =2 00

= (.C:L‘Ae( -\T (X| T r\lv«"ﬁ) {1>

which vanishes by virtue of the defining property of
Q:\x >* S ) = O
YN 4
The theorem stated and proved just now can easily be extended to states

containing two or more particles. The generalization for the 2-particle case,
for example, would read

(2, Tl @) o -0 gks, kT xv00) Fasbipd, 8

We could as well have replaced the (2 on the left side by, say,

Ci(> ‘J,uuthout
impairing the vallidity of the result,

D27
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