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- l -  
High-Energy Electron Scattering and 

the  Charge Distributions of Selected Nuclei 8+ 

Beat ~ a h n , ~  D. G. Ravenhall,. and Robert Hofetadter 
Department of Physics and W. W. Hansen Laboratories of Physics 

Stnnf ord University, Stanford, California 

ABSTRACT 
1 

Experimental r e su l t s  a re  presented of electron scat ter ing by Ca, 

V, Co, In, Sb, H f ,  Ta, W, Au, B i ,  Th, and U, a t  183 Mev and (for some of 

the e1en:ents) a.t 153 Mev. For those nuclei  for  which asphericity and 

inela .s t ic  scattering a r e  absent or unimportant, i.e., Ca, V, Co, In, Sb, 

At?, and B i ,  a pa r t i a l  wave ana.1ysi.s of the  Dirac equation has been per- , 

.formed i n  which the nuclei  a re  represented by s t a t i c ,  spherically 

' symmetric charge distributions.  Smoothed uniform bhargle dis t r ibut ions 
.'.. '.. 

have been assumed; these a re  characterized by a constant charge density '\ 

in the central  region of the nucleus, with a smoothed-out surface. I 

i 
Essentially two parameters can be determined, rplated t o  the radius and 

\ 

\\ 

/\ 
t o  the  surface t 'h ichess .  An earnination of the Au experiments shows t h a t  \, 

the functional forms of the surface a re  not important, and tha t  the charge 

density in the central  regions i s  probably f a i r l y  f l a t ,  although it car-not 

be determined very accurately. An analysis of the experiments on the . , 

nuclei  C a ,  V, Co, In, Sb, Au, and B i ,  assuming fo r  convenience t h e  Fermi 
I 

smoothed uniform shape ( l ) ,  then leads t o  the following resu l t s :  the  

r ad ia l  parameter c (the distance t o  the mid-point of the sur face i -sca les  * S -13 as  A fo r  the nuclei we have examined and i s  (1.07 f .02) A X 10  cm; 

tho surface thickness t ( the 0.9 p, t o  0.1 p, distance) i s  constant for 

a l l  of these nuclei, t o  within the  estimated error,  and i s  

(2.4 + 0.3) X wn. 



I. INTRODUCTION 

In the  l a s t  two years se~eral~investi~ations~-~ have been carried 

out a t  Stanford University in an attempt t o  discover the  s i ze  and shape 

of the  charge dis t r ibut ion i n  various atomic nuclei ,  These investigations 

have been of an experimental and theoret ical  nature, The experiments 

have obtained t h e  angular dis t r ibut ions of high-energy electrons scattered 

e l a s t i ca l ly  from the atomic nuclei  and have employed the narrow momentum 

selection permitted by the use of a magnetic spectrometer i n  order t o  

ensure e l a s t i c  scattering. The theoret ical  analysis of the experimental 

observatims r e s t s  on a phase s h i f t  calculation applied t o  the Dirac 

equation for  a. model of the nucleus having a s t a t i c  spherically symmetric 

charge d i s t r i b ~ t i o n , . ~  Comparisons between the  experiments and the  

theoret ical  angular dis t r ibut ions fo r  various specialized models of the 

nuclei  have permitted conclusions t o  be drawn about the s ize of the  nuclei, 

the nuclear charge dis t r ibut ion,  and the va l id i ty  of the  a,ssumptions made 

in the theoret ical  interpreta.tion. The s ize  obtained from t h i s  work, 

and from the investigations of others, 5-11 has come t o  be called the  

"electromagnetic size" in contrast t o  a llnuclearrf s i ze  determined from 

pure nucleon-nuclear interactions.  The method of electron scat ter ing 

i s  fortunately quite d i r ec t  i n  i t s  approach, since i ts  only fundamental 

untested assumption is  tha t  there i s  no specif ical ly  non-electrom~netic  

interact ion between the scattered electron and the nucleus, Thus f a r  

there is no de f in i t e  evidence of any appreciable deviation of the electron- 

nucleon interaction from the s t r i c t  electromagnetic type, so tha t  the 

founda;tion on which the theoret ical  ana.1ysi.s operates seems t o  be quite 

secure. 



Until the present time the more detailed published data have con- 

cerned the heavy nuclei  ~u~~~ Ad pb208. These elements were studied 2 

a t  several different  energies i n  order t o  t e s t  the va l id i ty  of the 

theoret ical '  method a s  a>pplied t o  a specif ic  nuclear charge-density model. 

The analysis4 indicated t h a t ,  two main parameters of the  charge dis t r ibu-  

t ion  could be determined i n  the present sta,tus of the experimental 

studies extending up t o  electron energies of 190 Mev. These two para- 

meters may be said t o  be a mean radius and a surface thickness, 

It i s  the purpose of the present paper t o  investigate how these 

' two parameters vary over the range of new nuclei  studied: Ca, V, Co, In, 

, Sb, Au, and B i .  Another aim of t h i s  investigation i s  t o  examine, for a 

specif ic  nucleus, Au, the  range of values of the  two parameters permitted 

by a f i t '  of theory t o  experiment within the  experimental errors.  Our 

r e su l t s  fo r  Au and Pb a r e  i n  agreement with tanslyses of our ea r l i e r  experi- 

ment s by Ravenhall and ~ e n n i e , ~  by Brown and ~ l t o n , '  and by H i l l  e t  a l .  8 

Furthermore, new experimental data a re  presented without analysis for  

nuclei  which a re  probably not in t r ins i ca l ly  spherically symmetric in t h e i ~  

ground s t a t e s  and which require a more extensive analysis involving tk~eil- 

quadrupole moments. Such nuclei a s  we ha.ve studied include Hf, Ta, W, 

Th, and U. 

11. APP;ARATUS AND PROCEDURE 

The scattering apparatus used in these experiments has been des- 

cribed i n  ea,r l ier  papers. The following improvements i n  the apparatus 

may be ment'ioned: 

! 
(a )  The electron beam. can now be centered on the target ,  by 

observing t he  visual lrrminescence produced by the electron beam i n  a t h i n  

~ s ~ r ( T 1 )  crystal ,  which can be brought in to  " the  ta rge t  position, A 



bright  beam spot can be seen f romthe  con t ro l  room through a telescope 

and two mirrors. This f luorescing c r y s t a l  method (due t o  Mr. A; W, 

Knudsen) became possible when t h e  aluminum window of t h e  sca t te r ing  

chnmber was replaced by a 6-4.1 f i w l a r ~  window, t he  transparency of which 

permits observztion of t h e  ins ide  of t he  sca t te r ing  chamber. During a 
b 

12-hour run no d r i f t s  i n  t h e  beam-spot posi t ion la rger  than 1/16 in. occur, 

(b) A secondary e i s s i o n  beam monitor of t he  type jesc r ibed  by 

Taut f e s t  and ~ e c h t c r ' ~  has been i n s t a l l e d  ins ide  the sca t te r ing  chamber 

jus t  beyond the  sca t te r ing  ta rge t .  The secondary emission monitor has 

bean focnd t o  have a l i n e a r  response up t o  f u l l  electron-beam ir . tensity 

and now replaces the  helium ion-chamber monitor, which in previous use 

was foilnd t o  be s l i g h t l y  non-linear . 
The Cerenkov counter which we use fo r  detect ing the  scat tered 

e lect rons  i s  careful ly  shielded with lead and paraffin.  On the  average 

only one background pulse i n  two minutes ha.s been reg i s te red  under con- 

d i t i ons  of f u l l  e lect ron beam, t a rge t  i n  place, closed analyzing ma.gnet 

0 slits, and magnat a t  90 . With open s l i t s ,  t y p i c d  counting r a t e s  ~f 

50 t o  100 counts in the  same time period nre  obtained, 

In  most of t h e  experiments described here an energy spread of 

O;5 percent i n  t h e  primary. e lect ron be,m was chosen, The beam spot a t  

t h e  t a rge t  was approximately 318 -in. wide and  148 in, high. I n  a l l  

experiments the  t a rge t  was held a t  an angle of 45' with respect  t o  the  

d i rec t ion  of t h e  primary beam. 

The co l l i s i on  energy l o s s  of  t h e  e lect rons  in the  t a r g e t  was a 

maximum i n  t h e  cnse of Ca, where it was approximately one Mev. The l o s s  

of energy due t o  r e c o i l  of t h e  t a r g e t  nucleus, a t  183 Mev and a t  a 

sca t te r ing  angle of 90°, amounts in Cn t o  0,9 Mev, and i n  Au t o  0.18 Mev;. 



The angular resolution of the  scat ter ing experiment depends mainly 
. ., . . 

on the multiple scat ter ing of the  primary electrons i n  the target ,  on 

the f i n i t e  acceptance angle of the  analyzing magnet, and on the f i n i t e  

s i ze  of the beam spot.; Multiple scattering is the main effect  l i m i t j i g  

the ta rge t  thiclmess. ' The multiple scattering angle was kept smaller 
. . 

+ than - 1,5°. For Au a maximum ta rge t  thickness of 5 mils a t  183 ?:lev 

( target  angle 45') was ;sed. The acceptance angle ( in  the scattering 

plane) of the  analyzing .$agnet was adjusted t o  f 1.5O. In the prepara- 
: > 

t ion  of the  theoret ical  bcattering curves the f i n i t e  experimental 

angular i3esolution has b3en taken i n t o  account (see Sec. 111). 

A major problem i n  these experiments was t o  separate e l a s t i c  

scattering events from ine la s t i c  'scattering events. By an ine la s t i c  

scattering event we understand here an event i n  which the bombarding 

electron gives up some of i t s  energy t o  the ta rge t  nucleus, which i s  

thereby l e f t  in a.n excited s ta te .  Ine la s t i c  scat ter ing i n  high-energy 

scattering experiments has been observed i n  Be, 1 3  c,14 %,l5  si,15 s,15 

and sr,15 and i n  other nuclei. 

In a l l  of our experiments the number of counts per uni t  integrated 

bearm is measured for va,rious magnet c~srrent  set t ings,  Thus an ela.stic 

peak i s  obtained and i n  some cases one or  more in&las t i c  peaks, depending 

on the  ta rge t  nucleus and on the  scat ter ing angle, are  found. In Fig. 1 

h typical  e l a s t i c  peak i s  shown for  Ca together with a, small i ne la s t i c  

peak superimposed on the Bremsstrahlung t a i l  of the e l a s t i c  pec?k. The 

number of counts i s  plotted energy of the scattered electron. In  

t h i s  par t icular  case the  ine la s t i c  peak is s m a l l  and well separated f r m  , 

the e l a s t i c  peak,: 



The best energy resolution of the  scattering apparatus obtained 

i n  these studies corresponds t o  a peak width energywise of 0.4 percent 

( f u l l  width a t  half maximum). It is therefore possible t o  recognize 

inela.stic contributions a r i s ing  from excitation of nuclear levels  with 

energy down t o ,  apprcucima.tely 300 kev. For the nuclei  Ca, V, Co, In, Sb, 
t 

Au, and Bi ine las t ic  scattering was e i the r  clonrly resolved fromthe 

e l a s t i c  events o r  e lse  no evidenca from l i n e  shape s tudies  fo r  an 

apprecia,bie ine le s t i c  scat ter ing contribution down t o  300 kev was foundo 

A s  a measure of the d i f f e ren t i a l  e l a s t i c  cross section, a sum of 

the counting r a t e s  a t  6 points defining an e l a s t i c  peak was usually 

taken, X:) absolute 'cross sections have been measured so fa r .  Results 

with any given t a rge t  material are  however subjected t o  a kind of 

standardization by associating the msasuremant a t  each cvlgle with a 

corresponding measurement using a standard Au ta rge t ,  After correcting 

for the  target  thicknesses, cross section r a t ios  with respect t o  Au 

become av3.ilable. In  Sec. IV these ra t ios  w i l l  be compared t o  t h e  

theoret ical  r a t io s  (see Ta,ble 11). The individual Au runs agree with 

one another a t  each angle almost t o  within the counting s t a t i s t i c s .  A t  

angles smaller than 90' the s t a t i s t i c a l  error amounts t o  5-7 percent. 

The over-all accuracy of the re la t ive  cross sections obtained ia ..,, 

these experiments i s  of the order of 10  percent. A t  l e a s t  half of t h i s  

error is  due t o  counting s t a t i s t i c s .  The remainder has t o  be ascribed 

t o  d r i f t s  in various par t s  of the experimental equipment. No corrections t, 

were found t o  be importa,nt enough t o  be applied t o  the d i r ec t  experimental ;,. 

data and no background ef fec ts  need to  be subtracted, A discussion of 

possible sources of .corrections has been given i n  e a r l i e r  papers. 1,2,6 



A, Introduction 

The experimental r e su l t s  for  Ca, V, Co, In,. Sb, Ta, Auj B i ,  and U 

a re  represented in Fig. 29 In order t o  display d i f f rac t ion  structure,  

the experimental cross sections have been divided by the angular factor 

(cos ~ / 2 ) ~ / ( s a  ~ / 2 ) ~ ,   his factor is proportional t o  the theoret ical  

cross section f o r  point .scattering obtained using the f i r s t  Born 

approxitrntion.) From Fig, 2 and Fig. 13, we see tha t  while for the 

nuclei  Ca, V, Co, In, Sb, Au, and B i  the  cross sections show pronounced 

d i f f rac t lon  structure,  t h i s  s t ructure is much l e s s  marked for  the nuclei 

Hf, Ta, W? Th, and U, The experiments thus separate the  nuclei we have 

examined i n t o  these two groups, which we sha l l  c a l l  ( a )  and (b) 

respectively. In  t h i s  paper we sh8.11 analyze t h e  resu l t s  of only group 

(a )  nuclei. 

The nuclei of group (a,) are  believed t o  have l i t t l e  or no " in t r jns i c  

deformation1# in the  Bohr-Mottelson sense,16 and the electron scat ter ing 
! 

i s  e las t ic ,  The nucleus can therefore bo represented by a. s t a t i c ,  

spherically symmetric charge distribution. The e l ec t ros t a t i c  potent ial  

due t o  an assumed nuclear charge dis t r ibut ion is  obtained numerically. 

The d i f f e ren t i a l  cross section f o r  electron scat ter ing i s  then ca,lculated 

by means of a p a r t i a l  wave malys is  of the Dirnc equation for an electroc 

moving i n  this This analysis, hhich is a lso  performed 

numericallyi18 i s  very complicated; for  gold a t  183 Mev, for example, 

the f i r s t  ten phase s h i f t s  are modified appreciably by the  f i n i t e  nuclear 

size; The re la t ion  botween chnrge dis t r ibut ions and d i f f e ren t i a l  cross 

sections i s  therzfore known to us only cmpirically, a s  it were, from 



experience with many such ca.lculations. One relationship,  namely tha t  

between the  observed diffract ion s t ructure and t h e  re la t ive ly  abrupt 

nuclear surface, shows up very clearly. This might also be inferred 

from t h e  f i r s t  Born approximtion, which predicts smooth cross sections 

for  smooth charge dis t r ibut ions such a s  the gaussian shape 

p = po exp(-r2/a2), but undulating cross s e c t i ~ n s  with diffract ion 

zeroes fo r  the uniform and llsmoothed uniform" shapes. 19,20 A s  can be 

seen from Fig. 2, the experimentally observed d i f f rac t ion  s t ruc ture  

becomes more pronounced for  the l igh te r  elements, where the Born approx-ha- 

t i on  i s  n ~ r e  rel iable* This approximation al..so predicts tha t  the 

d i f f rac t ian  s t ructure i s  a function of ( a o  I! s i n  9i2)/fic, where Eo i s  

the  electron energy, and R the n;clenr radius. Hence th3 f a c t  t h a t  

diffract ion dips of the same order occur a t  appracbate ly  the seme value 

.5 of A s i n  8/2, which i s  displayed i n  Fig. 2 by using Af +n $2 a s  the  ' . 
scale for  the abscissa, indicates tha t  some parameter describing the 

3 radius varies roughly a s  A from element t o  element, This prediction is 

confirmed by the detai led an,dysis presented in the  next section, 

The nuclei of group (b) all have properties indica.tive of collectfvie 

motion of t h e i r  outer nucleons.16 (Evidence for t h i s  from other experiment a 

1s ci ted a t  the and of Section IV.) Hence we sxpect contributions t o  the 
' 

electron scat ter ing ar i s ing  from the asymmetry of t h e i r  charge distribut.i.ons,. 

-and from t rans i t ions  t o  t h e i r  l lrotationalfi  levels ,  which are  so low in 

energy as  t o  be unresolva,ble i n  these experiments. It can be shown tha t  * .  

fo r  sui tably chosen nuclear parameters these contributions f i l l  i n  the 

diffract ion dips t o  yield smooth cross sections, l i k e  those observed 

experimentally, The analysis of t h i s  process will be given i n  another 

report.21 some of the nuclei  of group (a) show properties character is t ic  '.,,, 
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of a l i t t l e  collective nuclear motion, also, but t o  a nsgl igible  extent 

a s  regards the  electron scattering, 

B. Charge Distributions 

A s  i s  t o  be expected, for  a given experimental e r ror  the amount of 

d e t a i l  th8.t can be observed i n  the charge dis t r ibut ion.  i s  limited by the  

electron 's  reduced de Broglie wavelength, which a t  183 Mev is 

1.08 X cm. Let us f i r s t  consider llsrnodhed uniform11 charge dis- 

tr ibutions,  for  which the charge density is ro.ughly uniform i n  the centre1 

regions, with a smoothed-out, surface. S,Te have used the following 

functional forms: 

F e d :  p( r )  = P , / ( ~ x P  [(r-c)/z, ) + 1); (1 

Modified ~nuss i an :  22 ( r  ) = p2/{eq [(r2-c2)/zz2] + 1) ;' (2) 

Trapezoidal: , . &I n P3, o < r C c-z3, 

= p,(c+z3-r)/2z,, c-z 3 C r < c + z ,  ( 3 )  

E 0, r > c+z3, 

Experience has.shown us tha t  a t  energies up t o  183-N3v d i f f e ren t i a l  cross 

sections depend essent ia l ly  on only two porcmeters, a meqn radius md a 

surface thickness, and are  almost independent of the par t icular  analyt ic  

form used for p, Roughly speaking, the rcdius determines the angular 

posit ion of the diffract ion dips, a$ the surface thickness t h e i r  depth, 

Of course, for each of the above shapes the parmeter c adjusts the radics,  

while the  surface thickness i s  related t o  z , ,  z2, and e3  i n  (l), (2), an2 

(3), respectively. But the exact relationship among the parmeters  of 

equivalent shapes ( i e . ,  par t icular  ekmples of (I), (2), ard (3)  which i 

~ i e l d  a,Lnost ident ical  d i f f e ren t i a l  cross sec t iu~ i s )  is  known t o  us only 

numerically. Approximate relationships can be obtained by using the fact 



t ha t  the electron wave functions i n  the neighborhood of the nucleus are  

approximately plane waves with modified amplitude and argument-. 21 A 

simple analysis. on the l ines  of t h e  Born approximation then shows tha t  the  

scattering depends, t o  lowest order i n  ( s / c ~ ) ~ ,  on the  quant i t ies  if and 

s defined by the relat ions - 

c t  i s  the distance a t  which p has dropped t o  half  of i t s  value a t  the - 
. center, and g i s  proportional t o  the nns thickness of the  surface,. (The 

l a s t  two statements a r e  t r u e  s t r i c t l y  for  only (1) and (3)) where p obeys 

the additional condition tha t  p(cl  + 6) = p(0) - p(c1 - 6) , )  Since the 

value of s i s  found t o  vary appreciahly with the  functional form of p, we 

quote in  .our r e su l t s  a l so  t,, the distance over which p drops from 0.9 t o  

0.1 of i t s  centra.1 value. It turns out tha t  i s  l e s s  dependent on the 

form of p than s. Since the rms radius has been used ex tens ive ly in  the 

l i t e r a t u r e  a s  a measure ,of nuclear radius, we quote also R, whicb is '. 
\ 

proportiona,l t o  it: 

= A* c. We sha l l  a l so  use ro = A+ R and r, 
\ 

The quant i t ies  2, 3 and 

are  connected by the approximate relat ion 

The surface parameters a and t ara.re1ated to':.the quantities-occilring. 

in ( I ) ,  ( a ) ,  and (3) as  follows: ( l ) ,  the Fermi shape, s = 2 w z 1 ~ / 3 -  3~,63z,, 

t = (4 loge 3)al = 4.40 2,; (2), the modified Gaussian shape, 

t = (c2 + 2 ~ ~ ~ 1 0 ~ ~ 3 ) ~  - (c2 - 2zZ2 lcg,3)+ 2.20 zZ2/c, (the exprission 



for  s i s  only knom t o  us numerically f o r  special  cases);. (3), the 
a 

trapezoidal shape, s = 2z3/ iK = 1.15 s3, t = 1.60 s,. In terms of 

these quantit ies the central  charge density i s  @'ven by 

The ef fec t  of a var iat ion i n  the  cent ra l  charge density has been 

examined in gold by wing the  functional form 

Since t h i s  var iat ion turns out t o  have l i t t l e  influence on the cross 

sections, we  ha.ve used only two-parameter charge dis t r ibut ions in our . 

exmination of t h e  other nuclei. Such an ef fec t ,  i f  present, w i l l  . . \ 

probably show up more c lear ly  when experiments a t  higher energies include 

several of t he  d.if f ract ion dips. 

C,  Analysis of the  Experiments - 
The present procedure for finding the nuclear charge dis t r ibut ions 

'% 

i .  
predicted by the experimental cross sections i s  necessarily one of 

successive t r i a l s .  For any assumed charge dis t r ibut ion the cross section 

obtained by means of the phase sh i f t  analysis is  folded over a small 

a.ngular rmge t o  allow fo r  the f i n i t e  experimental resolution. We 

..I 
assumed a gaussian folding dis t r ibut ion,  

and for  .Ll have used the  fixed va lue  of 2'. This ' is intended t o  represeni " 

approximately a spread i n  incident beam energy, multiple scat ter ing i n  the 

ta.rget 'ad f i n i t e  beam size, besides the acceptance angle of the spectro- 

0 meter. (usually 1.5 10 



Comparison with experiment is made by l eas t  squares. The probabili ty 

tha t  theory and experiment are.in.agreement is 

where ai is the  theoret ical  cross section a t  .ei, ard E and Ni a r e  

respectively the  experimental value and the  number of counts. The 

parameter A i s  required because the  experimental cross sec t ion  is not 

known absolutely, and we therefore medximirte P with respect t o  A. The 
7- maximum occurs when h = M~/M,, where N, L ( oi ' ~ ~ 1 % ~ ;  for t h i s  
i - 

value of X the  logarithm of the  probabili ty i s  given by 

1 - log P 0.5  (MOM, - M, ')/M2* 
Thus f o r  each theoret ical  cross section we calculate (11) and then look 

f o r  the  values of ro and s which make it a minimum. This is then the best 

fit fo r  tha t  par t icu lar  shape. We can thus compare the r e l a t ive  merits of 

various shapes, and a lso  have an idea of the  e r r o r  i n  our r e su l t s  due t o  

s t a t i s t i c s .  A comparison of r e su l t s  f o r  various experimental runs 'in 

gold shows us the error.due t o  any s l igh t  lack of repeatabi l i ty  in the 

experiments. We discuss t h i s  more f i l l y  in the next section. 

D. Other Effects 

For simplicity we ignore radiative'  corrections t o  scat ter ing in  the 

above analysis. ~ u u r a ~ ~  has shown tha t ,  independently of 2, the re la t ive  

correction t o  the cross section i s  t o  a good approximation the  same a,s 

was calculated by ~ c h t d n ~ e r ~ ~  using the Born approximation. For typical 

experimental conditions (E = .183 Mev, AE/E = 0.5 percent) Schwinger's 

analysis predicts a r e l a t ive  change i n  t h e  theore t ica l  cross sections between 

35' and 120' of 4.3 percent. Since the radiat ive correction varies  s m o t h u  

with angle, however, 'its ,inclusion would make the  theoret ical  cross section 
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a l i t t l e  steeper while not a l te r ing  i t s  detai led shape. This would 

decraase the  surface thickness of the predicted charge d is t r ibut ion  .' 

l i t t l e  ( -- 0.4 percent), and, would not a l t e r  the radius appreciably. 

In view of possible uncertninties in the theore t ica l  analysis, and of 

t h e i r  small and eas i ly  predicted effect ,  it seemed be t t e r  t o  omit 

ra.dia t i v e  corrections altogether. 

For those nuclei  of group ( a )  having non-zero spin values and 

magnetic moments, there should be a magnetic dipole contribution t o  the 

e l a s t i c  scattering. Sipce the  magnetic momen-l; (p) a r i se s  in the surface 

region. of the  nucleus, t h i s  contribution can be expected t o  show about the 

same dependence on the f i n i t e  nuclear s ize as the charge scnttering. The 

r a t i o  of these two contributions w i l l  thus vary approximately a s  ( p / ~ ) ~ ,  

so tha t  although the mgnet ic  e f fec t  i s  nppreciabie f o r  hydrogen, 25,26 
l 

it i s  negligible a t  this energy fo r  the  nuclei examined here. 

The analysis of the  e l a s t i c  scattering i n  terms of s t a t i c  charge 

dis t r ibut ions i s  qui t s  general, but the connection between this charge 

d is t r ibut ion  and the nuclear wave functions not be so direct .  Altholgh 

the major par t  of p(r) comes from !yground ( r )  1 2 ,  there w i l l  also occur, 

i n  higher orders of the  perturbing interact ion between the electron and 

the  nucleus, contributions involving nuclear excited s t a t e s  a r i s ing  from 

v i r tua l  excitation. For l i g h t  nuclei  ~ c h i f f , ~ ' I  using' the Born approxima-!, 

tion, ha,s estimated t h a t  t h i s  tldispersion scatteringll i s  only about 1/13;' 

of the  scattering from the ground s t a t e  alone. In our analysis t h i s  e f fec t  

would show up as  a contribution t o  the  charge d is t r ibut ion  which might be 

energy dependent, because of the energy denominators i n  t h e  perturbation 

theosy. In  ~Acti.an IV we have analyzed t he  scattering from ~i a t  both 153 

and 183 Mev, bu t .  t he  r e s u l t s  a t  t he  two energies are probably not s ignif i -  

cantly d i f fe rent  . 



Our calculations assume the Coulomb law of force  between the 

electron and each element of the nuulear charge. Any a l te ra t ion  i n  the  

law of force a t  small distances would modify the relationship between the  

charge dis t r ibut ions and the potentials used i n  the  Dirac equation. 

Correction of our resu l t s  t o  allow fo r  t h i s  e f fec t  would not involve much 

recalcula.tion. From the potent ia .1~  corresponding t o  our quoted best f i ts  

the al tered relationship between potent ial  force law would immediately 

give us the modified charge dis t r ibut ions,  There is  a t  present no strong 

evidence for  such an al tered force law, 

IV. RESULTS 

G.)ld. In gold 197 there a r e  f ive  experimental runs a t  183 Mev, - 
The average of these runs i s  shown in Fig. 3 together with the theore t ica l  , 

best fit using shape ( I ) ,  which has been folded t o  allow for  f i n i t e  

experimental resolution. Inset  i n  tha t  figure a re  points indicating the 

values of ro and s fo r  the best  f i t s  t o  the individual runs a t  183 Mev. 

Corresponding t o  each of these points, fo r  which P, the probabili ty of 

azrcement between theory and experiment, is  a maximum, there i s  a curve 

describing charge dis t r ibut ions fo r  which P i s  a  half  of i ts  maximum ~a . l ' - l 6~  

Since we a re  close t o  the best  f i t ,  t h i s  curve i s  of only second degree :.1 

r and s, i.e., it i s  an e l l ipse ,  It t e l l s  us the e r ror  due t o  s t d i s t i o s ,  
0 

The sca t te r  of these points about t h e i r  rnea.n (measured by using a s  weigh+...- 

ing factor  IN^, the t o t r l  nanber of counts in the run) a r i se s  both fro;; 

s t a t i s t i c s  and from a s l ight  lack of repeaatabili ty of the runs. Our 

analysis indicates tha t  the l a t t e r  i s  only about half a s  importa.nt a s  

the former, The e l l ip se  shown i n  the inse t  f igure combines both sources 

of error ,  In Fig. 4. we compare d . t h  experbent  the cross sectigns of two 

sha.pes whose ,parameters d i f f e r  from those of the  best f i t  by about two 

probabl* errors,  (They correspond t o  the crosses in the . i n s e t  t o  Fig, 3.); . . 
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We f e e l  t ha t  these a r e  a s ignif icant ly poorer f i t  t o  experiment than the  

shape chosen in Fig, 3; t h i s  shows tha t  the e s t i m t e s  of error  given by 

the l e a s t  squares analysis a r e  i n  rough agreement with in tu i t ive  ideas 

obtained from inspection, 

A feature of our r e su l t s  which is not too  marked fo r  gold, but 

which is  very noticeable f o r , t h e  l igh te r  elements, is tha t  the  major axis 

of the e l l i p se  corresponds t o  shapes with the same value of the r ad ia l  

prameter c, This means t h a t  c i s  the parameter t h a t  can be specified 

most accixately, a resul t  which agrees 'with 'om experience t h a t  the angular 

of the d i f f rac t ion  dips, t he  most prominent feature of the  cross 

section, i s  determined mainly by Ca  The eccentr ic i ty  of the e l l i p ses  

increases for the  ligh2er elements, implying t h a t  for  these elements the 

accuracy of s decreases r e l a t ive  t o  the  accuracy of c. This i s  linked 

with the f ac t  t ha t  i n  the d i f f rac t ion  dips, the angular region where the 

surface thickness i s  mas% evident, the agreement between theore t ica l  and 

experimental cross sections i s  poorer f o r  the l i g h t  elements than fo r  the 

heavy elements, The errors  i n  the r e su l t s  on the  other elements a re  i n  

any case somewhat larger  than those for  gold, since the r e su l t s  a re  l e s s  . 

numerous (usually only two runs f o r  each element), For a l l  of the  above \ 

reasons, the  e r rors  quoted a t  the beginning of Sec. V should be regarded 

a s  orders of magnitude rather  than precisely known qyantit ies,  

To examine the experiments on gold for  dependence on surface shape,. 

the same procedure a s  t h a t  just  described for  shape (1) was followed for . 
shapes (2 )  and (3). The maximum values of P for  the three cases were 

. , 

found a l l  t o  l i e  within a fac tor  1.3 of each other, i .e.,  the agreement i 

with experiment i s  not s igni f icant ly  different  for  the three shapes, The 

values 'of the parameters for the  best f i ts  are presei.ited in Table I. The 



variat ion in the r ad ia l  parameters quoted i s  very ' s m ~ l l i  i n  c (the 

parameter occuring in  the  defini t ions ( l ) ,  (2), and (3)) it is 1.6 per- 

cent, while i n  o '  [defined by the in tegra l  re lat ion (411 and i n  R 

[proportional t o  the  rms radius, a s  defined by ( 6 ) j  it is 3.3 percent. 

There i s  a much larger  variation i n  the  parameters describing the surface 

thickness, a s  is to be expected, although i, the distance over which p 

drops from 009 t o  0.1 of i t s  central  value, var ies  l e s s  (10 percent) 

than s, defined by the in tegra l  re la t ion  (5)  (17 percent ). It should 

be possible t o  define a rad ia l  and a surface pcrameter so tha t  t h e i r  

values a re  independent of shape, but as these r e su l t s  show, we have beer. 

able t o  do t h i s  only in an approximate way. Tine charge dis t r ibut ions 

corresponding t o  the best f i t s  for  shapes ( I ) ,  (2), and (3) a re  shown 

'in Fig. 5. It i s  remarkable how closely they agree over the surface 

region, especially a t  the  two outermost points of intersection. Needless 

t o  say, the  cross sections corresponding t o  these charge d i s t r i b ~ t i o n s  

d i f f e r  so l i t t l e  t ha t  Fig. 3 can be taken t o  represent a lso shapes (2) 

and (3) ,  with a s l igh t  s h i f t  in the ve r t i ca l  scale. 

We have used shape (8) t o  detect any dependence of the  cross ~ec-~?:.ox 

on the central  charge density. The precedure i s  closely similar t o  the 

preceding ones: for chosen values of w, the parameter f ixing the varia- 

t i o n  i n  central  charge density, the best  f i t  f o r  varying z8 and c i s  

obtained. We then minimize (11) with.respect t o  w, The llbestll value of 

w corresponds t o  a r a t i o  P (~) /P , ,  of 0,$0; the  value of P is  1'5 times 

i t s  value for  the Fermi smoothed uniform shape (I), a difference which 

l i e s  within the probable error.  The charge. dis t r ibut ion i s  shown i n  m, 6, 

and the cross section i s  almost indistinguishable from tha t  shown i n  Fig, 3, 

It turns out tha t  the cross sectiorls are . ra ther  insensit ive t o  w so tha t  

the limits t h a t  can be put on w are  rather wide. The reason for t h i s  weak 
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dependence on,w i s  clear from Fig. 6, i n  the plot  of r2p(r) ,  the amount of 

charge a t  a distance r from the  center, 2 r, Me see t h a t  what looks from 

the plot  p ( r  ) g r t o  be an important a l t e r a t  ion i n  shape actual ly  involves 

the sh i f t ing  of only a sma.ll amount of charge. This is, of course, why 

our analysis predicts most accurately the  positiion of the nuclear surface - 
t ha t  is  the.  place where most of the charge resides,  

To summarize, the analysis of gold 197 yields  the resu l t s  t h a t  

f i r s t l y ,  there  i s  no discernible dependence on the  d e t a i l s  of the shape of 

the surface of the  charge dis t r ibut ion,  althotgh the re la t ion  between para- 

meters of equivalent charge dis t r ibut ions i s  known only numerically; 

secondly, there i s  only a weak dependence on the  variation i n  the cent ra l  

density, and the  best f i t  has charge density almost uniform i n  the center* 

Hence, i n  our analysis of tho other elements, which we do i n  order of 

increasing 2, we have used only shape (I), kJith the assumption tha t  t h e  

relat ions between parameters of equivalent shapes is  the same f o r  the other 

elements a s  those found in gold (Table, I), the numerical resul ts ,  prese1it;ed 

i n  Table 111, .ccm be reinterpreted i n  terms of sha,pes (2)  and (3 )  

respectively by scaling 'the parameters therein a s  follows: c, by factor.8 , \. 

1,00 and 0.98; R, by factors  0.99 and 0,97; and t, by factors  1.U and 1032, 

The experimental angular dis t r ibut ions for  the nuclei  CA, V, CoI 12, 

Sb, and B i  together with t h e i r  best theoret ical  fits (using Fermi smoothed 

uniform charge dis t r ibut ions)  '?re shown i n  Figs. 7-12e The errors  quoted '. 
. . 

i n  these figures a re  due only t o  counting s t a t i s t i c s .  For small angles, ': 

where no error  is  indicated, t h i s  error  is smaller than 10 percent. All 

nuclei  i n  t h i s  group, except Sb, have an isotopic puri ty  greater than 95 

percent. The ta rge t  thicknesses, measured in mila, were 120 ( ~ a ) ,  26 (v), 

42 (Co), 10 (In), 15 (Sb), and 10 ( ~ i ) ,  The r e su l t s  for the individual 

nuclei  will now be discussed br ie f ly ,  



. . 
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Ca (Fig. 7) A natural Ca ta rge t  containing 96.9 percent of doubly 
-.I.* 

magic ca40 was used. Besides the  e l a s t i c  scattering peak a strong ine las t ic  

p r7k has a l so  been found, which is  probably due t o  excitation of the known 

leve ls  in Ca a t  3.73 and 3.90 Mev. There seems to. be no evidence for  the .' 

lowest known l e v e l  i n  Ca a t  3.35' Mev (o*) from t h i s  experiment. The angular 

dis t r ibut ion of t h e  ine la s t i c  scattering i s  indicated by the dashed l i n e  in 

Fig. 7. A s  can be seen from Fig. 1, the ine la s t i c  scat ter ing in  Ca was 

eas i ly  separated from e l a s t i c  soa.ttering. Between 70' and 80' there appears, 

approximately 1 Mev down from the e l a s t i c  peak, an additional small 

i ne la s t i c  peak, the or igin of which is  unknown t o  uso 

51  V, (~ig. 8.) 99.75 percent of natural  V i s  V . This nucleus ilas - 
a leve l  a t  320 kev, which, i f  excited i n  our experiment, should show up ao 

a broadening of the e l a s t i c  peak. No evidence for  such an e f fec t  was seen, 

and there i s  probably no more than 10 percent ine la s t i c  contribution t o  t h e  

measured cross section a t  any angle. Such an ine la s t i c  contribution would 

not a l t e r  the values of the charge' d i s t r ibut ion  parameters by more than 

the quoted errors.  

Co. ( ~ i g .  9.) ~o~~ (natural Co) i s  known t o  have excited s t a t e s  - 
a t  approi$nately 1.1 and 1.3 Mev. Some evidence has been found i n  t h i s  

experiment for  exci ta t ion of several levels  'above 1 Mev, the  r ela,tive 

cross section wi th  respect t o  the  e l a s t i c  cross section being la rges t  a t  

about 65' and amounting t o  approximately 20 percent. This e l a s t i c  s c a t t w -  ' 

ing has been resolved experimentally. 

In. ( ~ i g .  10.) Natural 1; contains 95.8 percent and 402 - 
peroent 1n113. In d high resolution run 0.8 Mev f u l l  width a t  half max2-num 

of the  e l a s t i c  poak, no ine la s t i c  peaks have been found. The charge d k t r l -  

bution parameters obtained frgm a, l e a s t  square f i t  t o  the 183 Mev data have 



been used t o  calculate the theoret ical  angular dis t r ibut ion a t  153 Mev, 

yielding a curve which i s  in good agreement with the experimeelltal data. 

Sb (Fig. 11.) Natural Sb contains approximately half and half 
-re 

s b l 2 l  and s b 1 2 4  ha.s a knom leve l  st 0.15 MBV.. Th i s  level, if 

excited i n  our experiment, could not be resolved from e l a s t i c  scattering, 

The measwed cross section therefore may include some inela.stic contribu- 

t ion,  We lmow however from our ine la s t i c  scattering work t h a t  t he  

re la t ive  ine la s t i c  scat ter ing contribution becones i n  general smaller by 

going t o  large nuclei, with the possible exciption of nuclei  with large 

dis tor t ions from. spherical symmetry ( l ike  H f ,  Ta, W, etc.  ) . 
All.  (I?ig. 3.) The low-lying leve ls  i n  Au a t  77 and 268 kev, which - 

ha.ve been excited in Coulomb excitation experiments,. are believed t o  give 

no appreciable contribution t o  the measured cross sections. According to 

calculations by Downs e t  a . ~ . ~  such a contribution becomes important only -- 
a t  very large szzt ter ing angles, amounting t o  about 10 percent a t  the 

th i rd  diffract ion dip a t  115'. A line-shape study of the Au peaks did 

not reveal any broadening of the  peaks by going t o  large angles. The 

theoret ical  Au curve a,t 153 Nev is obtained by using the same charge 

dis t r ibut ion parnmeters as  gave the  best f i t  a t  183 Mev. 

B i .  (Fig. 12. ) The lowest known levels  i n  ~i~~~ (natural ~ i )  l i e  - 
a t  0.91 and 1.63 Mev, No experiment a1 evidence has been found for the 

excita.tion of these leve ls  b y  183-Mev electrons. The angular d i s t r i b u t i o ~ s  

a t  183 and 153 Mev have each been analyzed theore t ica l ly  and t h e  bes t  f i t s  

are  plotted i n  Fig. 12. The values of the parameters a re  ro = 1.201, 

s = 2.25, and ro = 1.214, s = 2.03 respectively. ,These values agree t o  

within the  errors quoted in Section V. 



A valuable check on the  cobsistency of the  t heo re t i c a l  r e s u l t s  has 

been obtained by comparing the  e&rimenta,l c ross  sect ion r a t i o s  (with 

respect  t o  AU) with t he  corresponding t heo re t i c a l  r a t i o s .  An average 

cross  sect ion r a t i o  over the f ive;smal les t  angles measured has been chosen, 

The experimental r a t i o s  divided by the  theoretica.1 r a t i o s  a re  l i s t e d  i n  

Ta.ble 11. In view of t he  f ac t  t h a t  cross sect ions  vary by l a rge  f ac to r s  

with changes i n  angle n.nd fram element t o  element, these  r a t i o s  a r e  

remarkably close t o  unity,  

I n  Fig. 13 angular d i s t r i bu t i ons  a.t 183 Mev f o r  the  nuc le i  Hf, Ta, 

W, Th, and U a r e  plot ted,  The f ac t  t ha t  these  curves show almost no 

d i f f r ac t i on  s t ruc ture  i s  believed t o  be connected with d i s t o r t i on  of 

nuclear matter  from spher ical  symmetry. A l l  of these nucle i  have low- 
% 

lying nuclear l eve l s  which a r e  strongly excited by Cou101ilb excitat ion,  \. 

indicat ing high i n t r i n s i c  quadrupole moments, The averages for  na tu r a l  

H f ,  Ta, and W of the i n t r i n s i c  quadrupole moments deduced from measure- 

ments of t he  y-ray y ie ld  i n  Coulomb exc i ta t ion  a r e  a,pproxima.tely 10, 4, 

and 7 barns The quadrupole moments of Th and U a r e  not  

known t o  us. There are,  however, l eve l s  a t  50 and W( kev f o r  U, found by 

Coulomb excitakion, suggesting la rge  nuclear d i s to r t ion .  An analysis  of 

e lect ron scat ter ing '  from such nucle i  w i l l ,  a s  mentioned i n  Section 111, 

be presented in another report .  21 

V. DISCUSSION 

Results of t h e  ana.lysis of gold, t he  nucleus studied most i n t ens iv s iy  

i n  t h i s  investigation,  a r e  presented i n  Table I and Fig, 3, and have been 

commented on f u l l y  i n  sect ion IV. Briefly, the  following information has . 

heen oht,a.ined. about t he  charge d i s t r ibu t ion :  while not too much can be 

sa id  about the  cen t ra l  region, except t h a t  p i s  probably f a i r l y  f l a t ,  the  
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surface region i s  now knohn with t he  following precision: the  radius  c - 
(tha dis tance t o  t he  half-point ) i s  6.4 X 10-l3 an, accurate t o  about 

2 one percent., and the  surface thickness t ( t he  0.9 t o  0.1 d i s tance)  is  

2.4 X 10-l3 cm, accurate t o  about * 5 percent, although t h e  

values depend s l i g h t l y  on t h e  par t i cu la r  shape chosen, These values a r e  

i n  agreement with t h e  preliminary predic t ion of Ravenhall and ~ e n n i e , ~  and 

7 with analyses of our e a r l i e r  data by Brown and Elton and by H i l l  &, 
8 

The charge d i s t r ibu t ions  f o r  a l l  of t he  nucle i  examined a r e  plot.ted 

i n  Fig. 14, and t he  values of t h e  various parameters a r e  given i n  Table 111, 

.The choize of t he  Fermi smoothed uniform sha,pe has no specia l  significance,  

a,nd t he  formulae fo r  converting the  r e s u l t s  t o  apply t o  the  hther two- 

para.meker shapes, assumed t o  be the same as  f o r  gold, a r e  given i n  Section 

I V .  A s  regards t h e  a,ccuracy of t h e  en t r ies  in Table 111, we f e e l  t h a t  

a s  an order of magnitude the. e r ro r s  can be sa id  t o  be about twice those 

quoted fo r  gold, i ,e . ,  2 percent f o r  r od i a l  pa.rameters, arid 2 10  percent 

fo r  the  surface thicknesses. These e r rors  are ,  however, d i f f i c u l t  t o  
r 

estimate'and, a.s mentioned i n  Section I V ,  t h e  e r r o r  in s f o r  the  l i g h t e r  

elements may be a l i t t ls  larger.  Not included i s  a possible e r ro r  due 

t o  uncertn.inty i n  t h e  ener&y o f t h e  p r b r y  e lect ron beam, e s t i m t e d  t o  
\ 

be smaller tha,n 1 percent. This uncertainty would affect '  a l l  data  by 

t h e  same ,mount, '2nd in the  same direct ion.  

To emmine t h e  dependence of t h e  r a d i a l  parameters c and R 

3 J. [defined by (4) and (6) ]  on A and Z, t h e  quan t i t i es  rO = R/A , r, = 6/~j, 

3 and r2 = R / ( ~ z )  ore  a l so  given i n  Table 111. ro va r i e s  appreciably with 

A, but  both r ,  and r2 a re  remarkably const.nnt from element t o  element, 

the  t o t a l  var ia t ions  being only 4 percent and 5 percent respectively,  

Our r e s u l t  t h a t  r, i s  constant means t h a t  f o r  t h e  nuc le i  we have 



. investigated the mid-point of t h e  surface of the  char.ge d i s t r i b u t i o n  

.5 var ies  a s  A t o  within 2 percent. These r e s u l t s  a re  t o  be compared. with 

those of Fi tch and ~ a i n w a t e r ,  who measured l e v e l  s p l i t t i n g  i n  the  mu- 

mesonic atoms of Ti, Cu, .Sb, and Pb, The analysis  of t h e  experiments by 

10 these authors and by Cooper and Henley assumes a uniform charge dis-  

t r i bu t i on  (zero surface thickness),  but  it appears tha,t a t  l e a s t  f o r  t h e  

l i g h t  nuc le i  t h e  .only parameter t h a t  ca.n be determhed i s  t h e  r m s  radius,  
. . 

i.e., R. They f i nd  t h a t  t h e  radius  o f t h e  uniform d i s t r i bu t i on  i s  given 

3 roughly by 1.10 A X 10-l3 cm fo r  T i  and Cu (assuming a mu-meson mass c f  
, 

207 elect ron masses), A more ela.borate analysis  of t h e i r  experiments i n  

Pb by H l l l  and ~ o r d , "  using charge d i s t r ibu t ions  with f i n i t e  surface 

thicknesses, y i e l d s  the  value f o r  ro of 1.18 X 10-l3 cm, i n  goad agree-. 

m t n t  with our r e su l t s .  There remains, however, a discrepancy between t h e  

values of rr, obtained f r o m t h e  mu-mesonic atom experiments and from our 

e lect ron sca t te r ing  experiments f o r  t he  l i g h t e r  nuclei ,  e spec ia l ly  Cu and 

T i ;  we should expect r e s u l t s  f o r  these elements t o  agree with our resu_lrta 

on Co, V, and Ca. The or ig in  of t h i s  discrepancy i s  not  known t o  us. 

As regards the  other quan t i t i e s  l i s t e d  i n  Table 111, we note 

f i r s t  t h a t  the  surface thickness t i s  approximately constant, t o  w i t h b  

t he  quoted e r rors ,  and e q u a l t o  about 2.4 X 10-13 cm. W r e s s e d  i n  t e r m  

of s bef ined by t h e  i n t e g r a l  r e l a t i on  ( 5 )  1 t h i s  i s  2.0 X 10-l3 cm. Tke 

cen t ra l  charge densi ty  p ( ~ ) ,  calculated from c and t by means of Eq. (7 j, 

i s  given in un i t s  of 1019 Coulomb per cm3. For gold, fo r  example, it 

corresponds t o  0.068 protons per ( 1 0 - l ~  It shows a s ign i f ican t  

decrease fo r  t h e  heavy elements. It seems worth noting t h a t  i f ,  on t h e  

assumption t h a t  the  d i s t r i bu t i on  of matter i n  t he  nucleus i s  the  same a s  



t h e  d i s t r i bu t i on  of charge, we calcula te  ( A / z ) ~ ( ~ ) ,  a s  in Fig. 14b, t he  , 
C 

cen t ra l  value of t h i s  "nucleon density" remains roughly constant ' from 

element t o  element. In t h e  l a s t  column of Table I11 we give t he  e lect ro-  

s t a t i c  Coulomb energy of the  nuclear charge d i s t r i bu t i ons  

E = 2 r ) ~ ( r ) d )  This tu rns  out t o  be approximately the  same 

a s  t he  Coulomb energy of a uniformly charged sphere of radius R, 

These r e s u l t s  may be m a r i z e d  a s  follows: f o r  seven elements 

between calcium 40 and bismuth 209 t h e  nuclear charge d i s t r i bu t i on  i s  

fbund Cc have a radius c ( t o  t he  dd-po in t  of ?.he surface) of 

(1,37 .02) A+ X 10-l3 cm, and a swfacc? thickness t (0.9 t o  0.1 

dis tance)  of (2.4 2 0.3) X 10-l3 cm. 

The work described in t h i s  paper was mater ia l ly  a,ided by many 

people, t o  'whom we wodd l i k e  t o  express our sppreciat ion.  On the  

experimental s ide  we wish t o  thank Mrs. Phyl l is  Hansen, Messrs. T, 0. 
. . 

McKinney, K ,  H. Sherwin, R. E. Steele ,  R. M. Friedman, R. H, Helm, 
. . 

R.' W. McAllister, and G. W. Ta'utfest f o r  opera,tion of t h e  accelerator;  

Dl-. 11. Nhrk and Professor C, Gnndman fo r  the loan of some hafnium metal; 

Messrs. B. R. Chambers and B. G. S tuar t  f o r  t he  machining of some of tha  

t a r g e t  f o i l s ,  and M r .  A ,  W. Knudsen, D r .  J ,  A. WcIntyre, and Professor 
. . 

J. F. St re ib ,  Jr., fo r  useful  discussions,  On t h e  t heo re t i c a l  s ide  we 

would l i k e  t o  thank t he  au tho r i t i e s  of t h e  University of California 

Radiation Laboratory a t  Livermore, pa r t i cu l a r l y  D r .  S. Fernbach,' f o r  

t he  use of t h e  computer Univac, and D r .  G. J. Lasher f o r  ass i s tance  i n  
n .  

i t s  opera.tion; 'the s t a f f  of t he  Stanford Computation Center f o r  advice , 

and a.ssistance i n  the use of the  Card-Programmed Calculator; D r .  D. L. Hill 

fo r  an account of h i s  calcula t ions  on e lect ron s ca t t e r i ng  before t h e i r  
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T A B U  I 

Shape c z w c I R s t 
1 Po 

(2) Modified , . 

Gaussian 6.36 2-72 - 6.17 6.85 2.04 2.61 1.13 

(3) Trapezoidal 6,28 1,49 - 6.28 6,66 1.72 2-39 1-15  

Ta.ble I.--Results of the a.na1ysi.s of the  gold experiments a t  183 M C J ,  

The f i r s t  three shapes a,rc two-para.met er shapes of the  smoothed uniform 

type, while the fourth contains. an additional parameter which allows aY~era- 
-13 

t i o n  of p i n  the central  region. A l l  lengths a.re in  uni t s  of 10 cm, 

and the  charge density i n  units of 1019 ~~u lom5/cm~.  The accuracy of the 

r ad ia l  parc!meters c, cr,  and R i s  about + 1 percent; for  the surface 

thickness parmeter  t it is about 2 5 percent. 

TABLE I1 

In B i  Element Ca V Co 3b 

Table 11.-~xperimental cross section ra,tios with respect t o  AU 

qivided by, theore t ica l  cross section ra t ios  with respect t o  Au fo r  grocp 

(a) nuclei. , !a average cross section r a t i o  over the  f ive  smallest 

angles measured has been chosen. 



TABU I11 

Table 111.--Results of the  analysis of the group (a) nuclei  i n  terms of charge distribu- 

t i o n  (I) ,  the Fermi smoothed uniform shape. A l l  lengths are i n  units of cm, charge dens i t ies  

in 1019 ~oulombs/crn~, and energies in Mev. The accuracy of these resu l t s  (except for  gold, for.  

which the  accuracy is  given i n  the caption of Table I )  i s  estimated as follows: r ad ia l  para- 

meters, f 2 percent; surface thickness parmeter ,  f 10 percent, although the  l a s t  f igure may 

be perhaps a l i t t l e  larger f o r t h e  l ighter  nuclei. m e  cpant5-ty p, i s  the normalization 

parameter occuring i n  the defini t ion (I), and physically is  probably an average value of p 

for  the  cectral  regions, It, i s  not the a,c-Lwl ce:&ral density, which cannot be determined 

accurately from these expsri~c;t?i;s. 



FIGURE CAPTIONS 

Fig. 1 A t y p i c a l  curve of counting r a t e  e lec t ron  energy f o r  calcium 

a t  183 Mev and 8 = 50'. 

Fig. 2 Experimental r e s u l t s  f o r  several  r:.u.uclei. The d i f f e r e n t i a l  

cross sections,  divided by (cos ~ , ' 2 ) ~ / ( s i n  @/2)'. t o  displng 

d i f f r ac t i on  s t ruc ture ,  a r e  plot tad - vs A+ sin 8/2. The so l i d  

l i n e s  a r e  snooth curves drawn t'r20ugh the  experimenta,l points. 

They have been sh i f t ed  arbj.traril .3 in t h e  y-direction, The 

d a h e d  v e r t i c a l  l i n e s  ind ica te  appro:cimat e ly .  the  lor; a t lon  of 

t h e  f i r s t ,  second a,nd t h i r d  d i f  fre.ct ion dips. 

Fig. 3 .Angular d i s t r i bu t i ons  f o r  gold, The. experimental p o i i t s  a t  

183 Mev a r e  t h e  average of f i v e  runs. The s o l i d  clwve a t  

183 Mev i s  the  t h e o r e t i c d  best  f i t  obtained by using the  Fermi 

smoothed uniform charge d i s t r i bu t i on  (1). . It corresponds t o  t he  

open c i r c l e  i n  the i n se t  f igure  of s roe Its coordinates z r e  

t h e  weighted average of those  corresponding t o .  the  be s t  f i t s  f o r  

t h e  individual  runs, represented by the  points.  The e l l i p s e  

i n  t he  i n s e t  f igure  corresponds t o  charge d i s t r i bu t i ons  f o r  

which t n e  probabi l i ty  of a.greement with experiment i s  half  of 

i t s  ~nnximum value, a t t a ined  fo r  t h e  be s t  f i t ,  The crosses  ( a )  

and (b)  correspond t o  charge d i s t r ibu t ions  whose parameters d i f f e r  

from those  of t h e  b e s t  f i t  by about two probable e r rors .  Their 

cross sect ions  a r e  shown i n  Fig. 4, The so l i d  curve a t  153Mev 

i s  f o r  t he  same po,rameters as the  bes t  fit a t  183 Mev. Numerical 

values o f .  t h e  parameters f o r  a l l  of the  nuc le i  a re  given in 

Table 111, 

Fig, 4 Comparison with experimint a t  183 Mev of cross  sect ions  fo r  
%.. 

charge d i s t r i bu t i ons  whose parameters d i f f e r  by about two 

probable e r ro r s  from those of t he  bes t  f i t .  They, correspond 

t o  t h e  crosses (2) 'and (b )  in t h e  i n s e t  i n  Fig. 3, In 

v e r t i c a l  scale  one of t he  cross sec t ions  has been sh i f t ed  by 

a factor 10 for  cla.rity. 

Fig. 5 Three charge . d i s t r i bu t i ons  i n  gold, t h e  bes t  f i t s  t o  the 

experimental r e s u l t s  a t  183 Nev fo r  the  Fermi, modified Gaussiar, 

and tra,pezoidal shapes ( l ) ,  (2), and (3); t he  charge d i s t r ibu-  

t i o n  parnmeters a r e  l i s t e d  i n  Table I. The cross 'section for  t h e  

Fermi best  f i t  i s  shown in Fig, 3; those for hhe other two 

shapes d i f f e r  from it only, slightly. 374 8 3 1  



FIGURE CAPTIONS-, (Continued) 

Fig. 6 

Fig, 7 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12  

Fig. 13 

( a )  Charge dis t r ibut i ,ons  i n  gold obtained using shape (8), 

which allows variationsi: in t h e  charge density near the  center. 

The full curve i s  the best  fit t o  the experimental data a t  

183 Mev, and the  two dotted curves give cross sections f o r  which 

the  probabili ty of agreement between theory and experiment (10) 

i s  a half  of i t s  value fo r  the best  f i t ,  The dashed curve, 

drawn for  comparison, i s  the  best  f i t  using shape (1). 

(b)  The charge d i s t r ibu t ions  represented by the f u l l  and 

dashed curves i n  ( a )  have been multiplied by r2, t o  show the 

d i s t r ibu t ion  of the ac tua l  amount of charge with radius. 

Experimental and theore t ica l  cross sections f o r  the  sca t te r ing  . . 

of 183 Mev electrons by calcium. The f u l l  l i n e  i n  t h i s  figure, 

and i n  Figs. 8 - 12, i s  the theore t ica l  best  f i t  a t  183 Mev 

obtained by using shape (1).  The dashed l i n e  i n  t h i s  f igure  i s  

the  experimental cross section f o r  t he  i ne l a s t i c  sca t te r ing  

corresponding t o  exci ta t ion of nuclear l eve ls  a t  about 3.7 Mev, 

Experimental and theore t ica l  cross sections f o r  the scat ter ing 

of 183-Mev electrons by vanadium. 

Experimental and theore t ica l  cross sections f o r  t he  sca t te r ing  

of 183-Mev electrons by cobalt. 

Ekperimental and theore t ica l  cross sect ions  fo r  the  scat ter ing 

of 183- and 153-Mev electrons by indium, The theore t ica l  cross 

section a t  153. Mev i s  calculated for  the same parameters a s  the  

183-Mev resu l t  . 
Ekperimental and theo re t i ca l  cross sect ions  fo r  the sca t te r ing  

of 183-Mev electrons by antimony. 

Experimental and theo re t i ca l  cross sect ions  fo r  the sca t te r ing  

of 183- and 153-Mev electrons by bismuth. The experiments a t  

the  two energies were analyzed separately. 

Experimental cross sections a t  183 &lev fo r  the  nuclei  Hf, Ta, . 
W, Th, and U. Absolute cross sections have been obtained from 

the counting r a t e  r a t i o  with respect t o  gold, and from the  

absolute cross section f o r  gold given in Fig. 3. The dashed 

l i nes  are  smooth curves connecting the experimental points, an4 

a re  not theoret ical ,  The curves have been sh i f ted  v e r t i c a l l y  by 

fac tors  of ten a s  indicated. 



FIGURE CAPTIONS ( ~ o n t  inued ) 

Fig, 14 (a) Charge dis t r ibut ions p ( r )  f o r  Ca, V, Co, In, Sb, Au, and 

Bi .  They are  Fermi smoothed uniform shapes, with the parameters 

given i n  Table 111, and yield the cross sections shown i n  

Figs. 3 and 8 - 12, 

(b) A plot of ( ~ / 2 ~ ) ~ ( r )  f o r  the above nuclei. On the assumption 

t h a t  the d is t r ibut ion  of matter i n  the nucleus i s  the same as  the 

dis t r ibut ion of charge, t h i s  represents the "nucleon densityv. 
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