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The Many Body Problem 

§1. Generalities 

a) The problem 

We shall consider a system of a large number N of identical, 

spinlessj non relatlvistlc particles. For convenience set h = 1 and 

2m = 1, where m is the mass of the particle. All quantities will be 
p 

then expressed in units of (length) y P being positive or negative; 

e.g. |E| = r 2 . 

The Schroedinger equation to be considered is: 

JL i : (-vf) +v 
1=1 ^ 

V'=EV' (1.1) 

where 

V = m V (r,.) (1.2) 
i > j ^̂  

and the v (r, .) are taken to be spherically symmetric for simplicity. 

Furthermore j we apply box normalization with periodic boundary condi­

tions (different boundary conditions could be taken, but the present 

choice is simplest). Denote by Ci the volume of the box. 

The following conditions are imposed on v(r,.): 

i) Short range; specifically v = 0 for r > r_-_. 

11) It has a repulsive core» Evidence for this exists in 

both atomic and nuclear cases: forces in the helium molecule, nuclear 

potentials deduced from high energy nucleon-nucleon scattering experi-



ments. Furthermore the absence of a repulsive core would lead to a 

collapse situation. This can be seen as follows: if the potential is 

of the form shown in fig. 1,1, 
v(r)4 

i.e. attractive at short dis­

tances, the particles tend to 

come together, since this low 

ers the energy. If we consider 

all particles confined to a 

small region of dimension d 

^^S* ^'^ within the box fl (Fig. 1.2)3 

and take the corresponding wave function as a trial wave function to 

compute the ground state energy of the system, we have, for a Bose 

l^Siem: 

< H > ~ - v̂  ^^f^ + N(-^)^ (1.3) 

as all particles can have the same k '̂^ -j- . Then, when N increases, 

the first term dominates and 
2 

we get E Q < ~ const, x N . The 

system collapses, the density 

increasing indefinitely which 

is clearly an unphyslcal sltiua 

Fig. 1.2 ^^°^* 

For a Fermi system* not all particles can have the same 

wave length d. However let P be the maximum momentum of the Fermi 

sea. Choose as a trial wave function one representing independent 

particles in the small box of dimensions d; then 



p3 ^ 3 ^ jj P ~ Vll 

3 

(1.4) 

We get now: 

< H > '̂^ - V, N(N-l) + N 
V ir2. 

(1.5) 

For large N, the first term is again predouiinat, and the system 

collapses. 

ill) The potential has a J.ovor boun'U 

Example: 
V 

(ev) . 

Fig. 1.3. Potential 

* •—-^r between two helium 

atoms. 
{London: "Superfluids 
7ol. II). 

^) Ground state energy for a Bose sys'-.Oi' or a Bolt7.mann sys­

tem. 

The wave function for a Bose systea is symmetric under ex­

change of any two particles. Denote it by >'̂... The wave fiinction 

for a Boltmann system has arbitrary syometry property. Denote it 

Theorem: y (ground state) = y'arb (ground state) 

g.s. 
Proof: Consider ^ , and interchange in it the coordinates 

of two particles; the resultant wave fimction is still a solution 



of the Schroedinger equation with the same energy B , and so is the 

sum of the two wave functions. If we construct then the wave func­

tion 

g.s 

*= ¥ f̂ arb' ''•l.---.'N> 

where the sum extends to all possible permutations of two particles j 

^ satisfies the Schroedinger equation with eigenvalue E and is 

symmetric. As it does not vanish identically, ( y^*f* has no nodes 

and therefore is everywhere positive) we conclude that T is the 

ground state wave function of the Bose system, q.e.d. 

We are interested in the ground state energy for large N. First 

consider the case for a fixed N. 

if V is purely repulsive 

if v also has an attractive part 

Fig. 1.4 - GrDafid state energy per particle vs. (density)" . 

Referring to Fig. 1.4, wt» can 5ndeed prove that the curve is analytic, 

as it is a solution of Laplace's eq. with fixed boundary conditions 

and well behaved potentials. Ihat the curve is monotonically decres-

ing is easily proved from the argument that an increase in volume 



implies a reduction of constraints. That the energy approaches 

+ 00 for small Q follows from the existence of the repulsive core. 

As •+ a> , the curve approaches 0 + for a repulsive inter­

action (no attraction, therefore E > 0 always). Since the curve 
lim /R \ 

is monotonic and is boxmded from below, y'^oo \ ^n) always exists. 

It is also easy to demonstrate that a lower bound B for E/N exists 

and B is independent of N. To see this we refer to Fig. 1.5. In 

the optimum arrangement of particles, i.e. corresponding to lowest 

Fig. 1.5 

energy, any given particle interacts only with a finite number < a 

of neighboring particles, and we have E ^ - v ct N . Therefore 

-2 \-
N / 

V 06 , independent of N. 

Next consider the limit N —* oo, taken in such a way that f remains 

constant; we obtain the curves in Fig. 1.6. Three types, (i), (ii) 

and (ill), are possible. Again the curve is monotonic. It must 
lim /E \ n 

concave upwards , and N-̂ oo C % ) ~ oo at ^p = 0. We distln-
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lim 5o 
N 

N-*oo 

N 
ij^ fixed) 

_1_ 
P 

Fig. 1.6 

guish three types of curves: 

type (1); lim f °/ii)>0 always. Example: v > 0, the energy is 

alvrays positive. The curve approaches zero because each individual 

curve (see Fig. 4) approaches zero uniformly in N. 

type (ii): the potential is partly attractive and allows bound states. 

As example, consider the case of nuclear matter. At -jj- '>-' 0 the nu­

clear matter is compressed, the energy being therefore very high. As 

the volume increases, the density decreases (and so the energy) until 

the natural density of nuclear matter is reached, say at the point A. 

Beyond this point, we expect, physically, the nuoleons to form a 

cluster which moves around as a single particle within the enlarged 

volume. The additional ejiergy of the nucleus due to Its motion is 

'v ^ ^ ("T") . The energy per particle is -^ ^ ^ ( T " ^ which tends 

to zero as N, L—»-oo, that is, the displacement of the nucleus as a 

whole does not contribute to the energy per nucleon. The curve (ii) 



is horizontal from the point A on. (Note: in any approximate 

theoretical calculation one usually gets a curve of the shape 

shown in Fig. 1.7. This is because one forces the particle to 

spread more than the natural density state, as if a negative pre^, 

sure is applied). 

type (iii); the curve 

approaches smoothly a 

negative limit. It 

corresponds, for exam­

ple, to a system in 

which two particles 

p^ , r, can be bound together, 

but not more. 

In other words, for a system in which 

(iiO 

0 >E(N=2,n.= oo) =E(N=3,0=oo) = ̂  E(N=4,n? oo) = ̂  E(H=5,n= oo) 

etc. 

The two body clusters repel each other and this repulsion effect 

decreases as the volume, and therefore the distance between clusters, 
E 

increases. That Z2. approaches a finite limit follows from the 
N 

fact that now the energy is simply proportional to the number of two 

body clusters, i.e. O 0 2 
E V 

Therefore o <yj -^ ^ 

c) Ground state energy for a Fermi system. 

The discussion is similar to the Bose or Boltzmann case. Only 

the ground state energy of the Fermi system is higher than the ground 
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state energy of the Bose or Boltzmann case. 

d) Examples of a few questions not solved. 

E 

i> ^°^s N^-S^co^ fixed)( % ) ^^^^^ ^ ^ " ^^ believed that 

one can prove it exists). 

11) Is this limit independent of the boundary conditions ? 

(Tentative answer: yes), 

iii) Construction of an explicit example giving rise to the 

type (iii) curve in Fig. 6, section 1-b. 

Iv) The pressure of the system at zero temperature is by 

definition 

Fig. 1.6: 

•6a/ Consider the three cui:*ves in 

type (i) 
lln 3 

type ̂ .ii) 

lim N 

Pf 

Ik 
N 



Can one prove that P = 0 as 4̂ - = (^) - 0 ? 

One can form a non rigorous proof by a variational argument near 

the point A. 

type (iii) 

P -

Ik 
N 

In this case p 

tem. 

represents the pressure of the two body bound sys-

v) For a hard sphere system, is the face-centered cubic 

packing the densest arrangement ? The answer is intui­

tively yes, but a mathematical proof is not yet known. 
E 

vi) Does the -jp vs. a 
N 

curve, for fixed K, concave upwards ? 

Does the lim "^ vs. ̂  curve, for II-•oo, concave tqpwards ? 

We can give an intuitive argument for answering yes to the 

second question. Referring 

to figure 1.8> construct a 

trial wave function which 

represents N, '|)articles in 

O , and Wp particles in ri^. 

Neglecting boundary effects 

at the intersurface of the 

N^ + N2 = N 

Fig. 1,8 
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two boxes, a variational calculation yields: 

E (Nj^,^^) + E(N2,n2) > E(N,DL) 

or 
N JL 
N 

E(Nj^,Q^) 
^ _ ^ ^^^2>^2> 

N, > 
E(H,n) 
• * — — i ^ 

N 
(1.6) 

E 
lim S- f 

N 
N-̂ oo 

lim 
E(Ni,n-L) 

left hand side of (1.6) 

S(N2,^2) 
lim 

N, 
right hand 
side of (1.6) 

I 

Xl2 
T 

Fig. 1.9 

It follows from eq. (1.6) that the point corresponding to the 

right hand side lies below the straight line joining the two points 

defined in the left hand side of eq. (1.6). The curve then conca­

ves upwards. 

e) Excited states 

The definition of the excited states is not well formulated. 

In our scheme (box normalization), the excited states are boundary 

dependent, the density of states increasing as the volume of the 

box grows larger. The exact positions of the states is not of pi:̂  

sical Interest. Instead certain boundary independent quasi-station 

ary states are of physical importance. 
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The questions of the definition of the quasi stationary states, 

of their collision mean free path, lifetime and of the number of 

quantum numbers needed to characterize them, are not well settled. 

The problem is usually tackled in a way similar to the case of 

elementary particles: the actual Hamiltonian is divided convenient 

ly into two parts, H = Ho + % j ^ ^ , (as the strong and weak inter­

action parts in elementary particles), in such a way that Ho yields 

the ground state and the quasi stationary excited states of a quan 

turn mechanical system, e.g. phonons and elementary particles, and 

Hj. . describes the residual (weak) interactions between the parti­

cles, which give the decay of the quasi stationary states. 

^) Physical problem^ 

We aim to obtain a qualitative understanding of the follow­

ing questions: 

i) Behaviour of He'̂ : A transition at 2.2*̂  K, superfluidity, 

infinite heat conductivity below Z*^ K, the two fluid problem (phe 

nomenon of second sound). 

ii) He^: obeying Fermi instead of Bose statistics, it does 
4 

not show the same phenomena as He . 

iii) Nuclear matter: how to obtain the binding energy per 

nucleon from the interaction between nucleons. 

iv) Superconductivity 

We shall not discuss iv) at all. 

Authors in this field: Schwinger, Martin, Brueckner, 

Bethe, Goldstone, Montroll, Van Hove, Watson, Bloch, de Dominicis, 

Luttinger, Klein, Ward, Galitzki, Beliaiev. 
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§2. Pseudopotentials for hard sphere interaction for two bodies. 

(Phys. Rev. 105, l&I (1957)) 

a) Motivation 

i) The hard sphere system constitutes a definite model 

in which we can estimate the accuracy of the approximations made. 

It has one obvious parameter, the diameter a of the hard sphere, 

ir terms of which we obtain a series expansion of the energy. 

11) Physical reasons: a repulsive core exists in fact 

I'A the actual interactions. 

iii) For a dilute system, which is the only system sub­

ject to relatively easy perturbation calculation, the important 

changes in the system brought about by the potentials is the cha^ 

ge of wave function afc large distances. This change is characte­

rised by the phaso nhiftj which for small energies, is in turn 

^peci'-'.ed by the scattering length. The hard sphere potential 

is cne i.n which the diameter a is precisely the scattering length. 

t-) The idea 

It cons'?-.-vs in replacing the interaction by suitable 

boundary conditions, and introducing a pseudopotential as an equi­

valent to the boundary conditions (Ref.: Fermi, Breit, Blatt and 

Vfei''>sK'"'pf ';» 

^ £. Fenaj.,, Hic^rca vSci. Z, 13 (1936)-

G. Breit J Phys. Rev. 22.» 215 (1947). 

J. H. B.i.f-tt and V, F, 'wsiss.<:opf. Theoretical Nuclear Physics, John Wil(^, 

New York, 1952, p. 74-. 



We shall treat first the two body problem. 

V(r) 

Fig. 2.1 Fig. E^Z 

For the potential of Pig. 2.1 the Schroedinger equation is, 

in relative coordinates: 

(V^ + k^) X r ) = 0 r > a 

(2.1) 

y(r) = 0 r ̂  a 

Let us consider for the moment only s waves. Expanding the 

wave function around the point a, we have 

r ^ 'v C(r - a) 

or 

i~ c(i-f) 
We extend this wave function up to the origin and look for the 

equation it satisfies: 

V ^ Y ~ - C a v ^ {J)= 47r Ca 6^(r) = 47r a 6^{T) ^ (0) (2.2) 

C is the value of ̂  for the unperturbed system. 

One can not carry this argument to higher order, because one 
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obtains divergences due to the b function interaction. 

c) Formulation 

Assume a hard sphere interaction only for s waves. Referr 

ing to fig. 2.3 we want to find a solution in the region limited by 

the sphere of radius a and 

any closed surface S. "^ 

vanishes at both boundaries. 

The s wave satisfies: 

Fig. 2.3 

(V^ + k2)^= 4Tr ̂ ^ 6^r) ^ (r^) 

(2.3) 

where k = E. This equation is equivalent to (2.2) for small k. 

We can prove it is an exact expression as follows: in the neigh­

bourhood of the sphere, expanding''i'", one can write 

'9"= ^s + Vp + y^ + ... 5 

then (V^ + k ^ ) ^ = ( V^ + k^) y^ as the other terms vanish. 

But 
V = A ^^^ ^i^ " ̂ ^ = A ̂ i S ^ cos ka - A ̂ ^ ^ sin ka ' s r r r 

Therefore 

(V^ + k^)y„ = A 4tr 6^(r) sin ka (2.4) 
w 

On the other hand 



3 3 ^^ 
4^ t a p a ^ (^j A (r-^) = 4^ t ^ ^^ (^j | . ^̂  ^̂ ^ ^ 

= A 47r tan ka cos ka 6 •̂  ( r ) . ( 2«5 ) 

i.e. we obtain the same result as in (2.4). 

d) Let us make a few remarks about this fornmlations 

(i) - Equation (2.3) is not in a most convenient forms 

you may write it 

2 
The operator Ixr is just the energy of the system: the laplacian 

is the kinetic energy, the pseudopotential is the potential energy 
2 

but this expression contains k by itself. One way is to solve 

it explicitly, but, if we are interested in an expression of the 

problem in terms of a, we may write: 

^ S ^ = a [ 1+ i k^a^] + ... 

the first term is independent of energy, the second is dependent 
2 

but we can go back to the above expression of k . We can substitu 
2 

te the k by the laplacian, up to higher order terms in a 

tan ka 
k 'v̂  a [ 1 - i â  v^ + ... ] 

5 

One has additional terms in a . If we restrict ourselves to the two 

first terms there are no more k in the pseudopotential. 

(11) - The operator TTT r is not hermitian. One must be very care 

ful about it - the operator has to be taken at the point r = 0, 
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If it operates on a function which is regular at the origin, then: 

^^ ^ r = 0 ^ r = 0 

which means that >;r r is just unity. 

If the function is not regular, this is not true: for example, if 

^ ~ r ^ 'Vp'L-o is infinite, but if you put ^ = J in the 

left hand side, you have 0. So, •^3:*^lr=o'^^lr=0 1^*^® 

function is not regular at the point r = 0, 

(iii) Higher harmonics. We follow the same procedure as for s 

waves 5 the details are discussed in the paper mentioned at the be­

ginning of this section. 

(iv) Let us mention an electrostatic analogue. This analogy is 

fundamental for the pseudopotential method. 

Consider an electrostatic problem v/ith a small conducting 

sphere at potential = 0 , It is well known that we can replace 

the charges on the sphere by a single charge and a set of multi-

poles at the center of the sphere. If we sum up the actions of 

the multipoles, the potenr.tal produced outside the sphere is iden 

tical to the original potential. Ordinarily, we solve electrosta 

tic problems this x̂ ray. The analogy can be carried out now: the 

first term, the single charge, is just the s-wave of the scattering, 

the dipole is the p-wave, etCo If we want to see how to generalize 

the pseudopotential to the many body problem, the concept of equi­

valent multipole distribution will become very handy. 
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§3* Example of a perturbation calculation 

Because of the fact that ^ r is a rather unfamiliar operator, 

we have to understand how it 

works, then we shall be able to 

apply it to more complicated 

problems. Let us take the very 

trivial problem of a wave func 

tlon vanishing on the surface 

•r,4„ -z -t of twc concentric spheres 
Fig. 3.1 

(figure 3.1). 

We can write out the exact normalized solution 

^ n = 
V27r (R - a) ^ 

s in k_(r - a ) 
3 ^ . (3 .1) 

where 

7m 
k = , n = 1 , 2 , 3 . . . - • (3 .2) 

^ R-a 

We want to expand this for small values of a: 

^ = y + y/ +... E =E*^ + E ' ^ + . . . = k ^ = —^^—^ n^ 
^ n 'n >̂ n n n n ^n (R-a)^ 

For example, from direct expansion we have 

E o = 2LLa£ , B ^ = 2 £ j £ £a g 2 ^ v£j£ , /av^ , , 3 ) 
^n j^2 » ^n jj2 R » ^n ^2 ^VRJ ^^'^^ 
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We know the exact solution and we can expand in terms of a. If 

we want to replace the boundary condition on the small sphere by a 

pseudopotential, can we make the perturbation calculation and derive 

the wave function and energy correction, and get the identical re-
2 

'..uit ? Let us treat only up to order a : 

Elf = [ - V ^ -̂  47r a 6 ^ (r) ^ ] ^ (3-5) 

Let us write: 

U = 4 TT a8(r) :^ r (3.6) 

In a perturbc-i!'.'n o-pc/iftion? the familiar matrix element is: 

IJ„ , =<'y'jn~ |tT>y,")>. Thi.. :'̂  Jitity is trivially calculable: 3̂ ^̂° 

is ..vgular at t'vd; ori,/i-"., -io t-' !-=• just a 6 function 

-, 2 r, rt ! - 4Tra 7rn Trm _ 2a7r „„ t -z n\ 

Sc we f;et the -l.i'fc order corraction to the energy: 

..ar: i , ^ 

aru-1 t/iis i''- the correct r̂-/•:-.: '-;V't.Hined in eq. (3*3). 

Let UH c .I'.-.uIut,. the £LC>>nd order energy. By a simple per­

turbation method: 

wTT - F - - ^ = r^ir V T ^ est. (3.8) 
n m 

which is divergent? we get infinities. The reason for this infin^ 

ty is an incorrect use of perturbation calculation. When one deri-
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ves this formula one uses the hermiticity of the hamiltonian, which 

is not legitimate here. So the correct way is to proceed step by 

step: 

h^ ^ = ;> • . — m — y^ > (3.9) 
l^n ^ rn^n gO gO \ m ^ \:>*yf 

n " m 

then we get the second order energy Ê^ " " ^ ^ 1 ^ 1 ^n ^ 

E. ^ =/yjO I TT I > \- U„„ ^., o J- =<^r, I u I - t - i r ^ %n y ° V (3.10) 

n m 

This formula is general. If you switch U with the summation, then 

you put out of the matrix element the constants and just have the 

expression (3.8). But you are not allowed to do it: D is acting 

on a sum which is not regular at the origin: 

"S ' U«« V- « 2an 'v ' m m TrrP 

'^^'^ E „ ° - B ° '̂ °> ^"" " r R / 2 ^ » ^ ^ m2. n 2 ^ ^ R n m ' 

This Fourier sum has a kink at the point r = 0; it may be explicit 

ly summed: 

2an TT r / 6 6 \ 1 s in n 6 7 
cos n G -

r R V 2jrR' 2 •- V [ej TT / 2 ir n 

irr 
where G = — 

R 

this is the same ^ as obtained from direct expansion of the 

exact solution (3.1). 
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e , 1 

For r = 0, 0 = 0 but = Ij f^ behaves then like — » 

Now if we use E^ - < Y^ \ U 1 ^^ y we get the correct 

expressions 

E 2 := 3 a^ S ^^ ^3.10) 
^ R^ R^ 

How the caclulation can be extend to higher orders? The 

pseudopotential is not exactly U = 47ra 6(r) ^ r . With the 

3? correction you get the right result in the next order. 

We have seen that the existence of infinity come from the 

incorrect switching of the summation with Uo 

We shall do the same for the many body problem, we shall be 

able to eliminate the divergence and obtain the correct result. 

§4. Pseudopotential for the many body problem. 

(Phys. Rev. 105? 767^ (1967)). 

For the many body problem, one is immediately led to write 

down the two body pseudopotentialss 

Vp3 = 1 ^ 8 TT a t\v^^) ^ r̂ ^ + higher order 

terms• 

The change of the factor 4 to 8 is because of the reduced 

mass: one has ^-^ + ^ ^ '^'V'^^ + ... = -4- V^ + 2 V^^ + V^^ +.. 

where R = -4- (r^ + rl) and T = r^ -"rl" ^̂ ® kinetic energy 
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2 

for the relative coordinate r is thus 2 VL • Hence the change 

from 4 to 8. 

Inaccuracies of pst 

We must go back to the electrostatic picture: the problem 

is 3N-dimensional. The system is in a 3N-dimensional box, the 

function has to vanish or to be periodic on the surface of this 

box. Let us draw a "superline" "r, - r^ (see fig. 4.1)j the 

boundary condition is | T-, -'r'p I <• a j so wo have to draw a 

small "cylinder" around this line: the dimension of the surface 

of this cylinder is 3N - 1, the boundary condition on this surface 

is ''l̂  = 0. Unfortunately, there are coraplications: There must 

be some point where the superline "r^ = "r̂  intersects with the 

superline ^i = ̂  > in 'this region, the intersection of the two 

cylinders will be a complicated one. 

We can make more higher order junctions5 three cylinders, 

four ... The wave function 

of the system has to vanish 

on the surface of all these 

cylinders. 

Based on the electros­

tatic analogue, we might 

think of some charge distribu 

tion that gives rise to induced 

charges on the surface of the 

cylinder. If we use the concept 

"̂ 5!̂  
\ \ \ ^ v\ 

\ \ \ v\ 
•Z^Jf\ 

'v 

/ / / 

W 

/ff 

/// 

w^--^ 
^^^^^^^^^"-*-.̂  

— ^ ^ ^ 

< ^ 
^3=^4 

1̂=̂ 2 

Fig. 4.1 
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of multipole expansion, we replace the charges on the surface by 

charge and multipoles at the origin, that is on the axis of the 

cylinders. We have a pseudopotential distribution. 

If we take the two body pseudopotentials, we can see that it 

does not properly take into account what is happening at the junc­

tions. However the total surface area of the junction is small 

compared with the surface of the cylinders: we can take into 

account the junction of cylinders by terms in which products of se 

veral S functions appear. For example, the junction of 2 cylinders 

may be written: ^i'v-, - r-,) 6(r-, - F^)» This term is of the order 

of a^. 

In the many body problem, nobody has taken into account these 

junctions properly. In the calculations below they can be neglected. 

Solving the €iquation is easier if one uses the language of se­

cond quantizationy br;eausG of the summations in the pseudopotential. 

With a sum ^ . V.. , with a symmetrical expression of V^ ., 
i>j ^^ Ĵ 

you always get an expression: 

, drj drg (4.2) 

where ^(,T) satisfias the commutation rules: 

[f(r), fCrOl^ = 0 , [1f(r), t(^')]+ = &5 (-.-,). (4,3) 
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4 P The number of particles is 

N = jfG) f (r) dr 

^5. First order energy for a aamr body system 

This is easy because there are no divergences* Let us take 

periodic boundary conditions, and let us discuss energy correction 

only for the ground state of the system. Let us stay In the first 

quantization formulation for a Bose system. The wave functiOB is 

r - ^ ««-̂ '; 
and the first ord«r ground itate onargy is 

?r" 'ij operating on |P - which is regular - glyes one) ve 

get 6(r) for each pair. The result is 

1 N(N.l) 1 N 
KT ' X 8ra TT = 4ira 77- (N-1). (6.3) 
6*̂  2 ii il 

If N is very large, the ground state energy is Just 4Trâ  , 

where p = N/CI is the density. 

We shall now do the energy calculation in the second quantisa­

tion formalism. The pseudopotential is defined by eq. (4*2). This 

has the cosplicatlon of the operator T T r. We stated before that 

for a function regular at the origin we can replace it by unity* We 
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shall then define the pseudopotential 

Vp3 ^ 4irajf*(l) f*(2) 6(1-2) f(2) f(l) dl d2 (6.4) 

We shall work with this operator until we get into difficulties, 

and then look back at the right expression. The advaoitage of V is 
ps 

that it has a much simpler form. 

Let us consider a periodic box. The simplest way to work in 

the second quantization formalism is to expand into plane waves: 

t(^) = 2 1 ^ ^ ' e^'^ ^ J (S.5) 

k is a simple cubic lattice of points: k = ̂  x integer; the a£ 

are amplitudes which are quantized quantities. The commutation ru­

les for them can be obtained from those for ^ , eq. (4.3): 

(5.6) 

If we substitute the development for yf into V' , we haves 

The double integral i s a t r i v i a l onej i t vanishes unless iHHj~k-£= Og 

in which case i t s value i s XX • The resul t i s then 
, 4 7 r a T̂ - r :|e * -z 

Ss = — tiki^l ^3 ^ *̂ « ^̂  * i - i - i ) (5.7) 
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where the 5 is now a discrete one. We have suppressed the arrows 

in the momenta for simplicity; this convention will be used from 

now on. 

The meaning of expression (5.7) is clear: it represents the 
—* —» -* -* 

scattering of two particles from k Z momentum state to 1 j, with 

conservation of momentum, summed over all possibilities of value 

and direction of momentum. 

Energy for a Bose system 

We label an arbitrary state by |n> , where n represents the 

occupation numbers of the various momentum states: n = n̂ ^ n-ĵ  n^ .•• 

Let us calculate the diagonal matrix element <n|V [n^. Consider 
ps 

any term of V ; unless k and i are respectively identical to 1 

and j we get zero. Then we are left with two cases: 
a) k =T = 1 = T . 

The operator â ^ when applied on the state |n> gives a factor 

{^ • 

Zl<n| â  4 aĵ  aĵ  I n> = Z 1 nj, (i^ - 1) 

b) J j^t 

The scattering is 1J —^ k ̂  or if — Tk". One term is of the 

form a^ a« a^ a,; the other has â , aĵ  but gives the same contri­

bution n» n„ . 

The total contribution is 
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4Tra 

< n l V ^ ^ > = T r [^^<°k-l) ̂ 2|=: nĵ n̂ .J (6.8) 
k ;« k« 

We can write it 

or finally 

<^ iV^ ̂ >= IT L 2 N^ " N - I n2 J (5.9) 

k ^ 0 In the case of the ground state n^ = 0 , '̂  and n = N. We 

get from eq. (5.9)s 

(IX 47ra p 
S„ : = --r- (N^ - N) (5,10) 

which is the expression (5.3) we got by the first quantization cal 

culation. 

(1) "̂ ^̂  2 When N is large, Ê î"' ^ —=-- N , i.e. the energy is propor-

tlonal to N/>. 

Discussion; The expression (5.10) was in essence obtained by Lenz and 

Heitler in 1929 for the particular case of the ground state. They 

considered a big box in which particles are scattering on each other. 

Let us suppose that all the particles are fixed scatterers and one 

is going in: it has a scattered s wave on each scatterer, the waves 

superpose to give a wave travelling through the medium: the change 

in the wave number gives us a sort of index of refraction. The 

change in energy of the particle is known to be proportional to the 

density, for a medium of low density. We obtain the above depend-
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ence on the density. A defect in such an argument is that the scatter 

ing centers are considered as fixed: it cannot be easily refined. 

The third term of the expression (6.9) is a pure quantum mechani 

cal tenn, due to Bose statistics. If we want to go to low energy 

states, we want to make the sum ^ T\r as large as possible; the 

best is to put all the particles in the same momentum state; that 

is Bose - Einstein condensation: the particles tend to condense 

into one momentum state. 

We can ask the question: which is the energy of the first 

excited state above the ground state ? 

4Tra r r, ol ^Tra 
A<n|Vpg|n> = - — [((N-l)2+i) - N̂ J = - - j ^ (-2N+2) 

47ra 
which, for very large N is -pr- x 2N = 87ra/>. 

The excited state has a finite energy difference from the groimd 

state. The difference is independent of the size of the box when 

density is fixed. This is completely different from the excitation 

X 2 

of a free particle: the kinetic energy difference^ ^T) S°®^ *° t>QTo 

as the box gets larger. 

In the many particle case, we get an energy gap between the 

ground state and the first excited state, which is not the case in 

the free particle problem. However a more elaborated calculation 

does not yield an energy gap, as we shall see later on. 

Energy for a Fermi system 

The procedure is exactly the same as in the Bose case. 
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Let us be a little more general and include the spin. Every 

particle will be labelled by its momentum and a parameter Sg iihich 

may take 2J + 1 values: - J , - J + i,., j, if there are two 

of these S, spin and isotopic spin, we can combine the two together. 

Thus S gives J = i for protons alone, J = 3/2 for neutrons and pro­

tons. S gives the total degree of internal freedom. 

It is well known that, v;hen the potential is independent of 

spin, we get exactly the same expression as in the spinless caseg 

the spins are not switched. 

V__ = -r- 2 . a^s a, a, a, -̂̂ (k̂ -S'kp-k̂ -k̂ JS 6 
P^ n, k3_k2k3k4 ^1^1 ^2^2 ^3 3 4^4 "̂  "^ ^ ^ ^iH ^.^3 

S2S2S3S^ 

47ra -s-

F i^^^ V l V 2 S^Z %^1 S'̂  W V ^ 4 ) 
^1^2 

47ra 
TT 2 » a. a, a^ a^ ^-(k.+k^-k^-k^) (5.11) 
^ k^k2k3k^ ^1^1 ^2^2 ^3 2 ^4^1 -L ̂  :> 4 

s^ / S2 

the terms s^ = s^ vanish because â ^̂ ^̂  aj^^^ + a^^^^ aj^^^^ = 0. 

In other words only for identical spins there can be no s-state 

interaction between Fermions. 

I.e diagonal element of v;, is easy to computes 

, 47ra .,-—, 

<°ks i^psKs>= -JT ^ ^isi^k2S2 ^^«^2) 

®1^2 ^1^^2 



29 

t h i s expression i s equal t o : 

~ [^ Vi V2"iJ5J Vi v J 
S1S2 

The first term is the product of two sums "̂ -1 n^ = N. In the 

second term there are two independent summations: ^ i^Ti^^) 
S Lr AiS 

Thus 
, 47ra r p XT-, 

<n|Vp3!n > = _ [ N2 . X : ( t o t a l number of p a r t i c l e s 

with spin S)^] 

In the ground state, all possible states S are equally occupied. 
N 

There are ̂ ĵ rj particles for a fixed spin S. 

Then / N \ ̂  / N \ ̂  

®1 ^ ^ 2 ̂ ^^^ ^^^^ 1̂ V̂ "̂*"̂  / \2J+1 J 

For the groimd s t a t e : 

J 
< g r . s . | V»„^ I g r . s . > = Sirap N (5.13) 
^ ps / / 2J+1 

Comparing with the Bose expression, we must exclude the pair of par­

ticles having the same spin state. There are N particles in the 

ground state and 2J + 1 possible spin states. We must have (N - 2j+a 

particles that may interact with one particle: 

S„"i = 47ra/) NTl J (5.14) 
gs 2J+1 



30 

§6. Higher order energies (Phys. Rev. 10§, 7(i7 (1967)) 

One can calculate the higher order terms. When we meet diver­

gences the method to get rid of them is exactly the same as the two 

body problem. The procedure is very simple: we use straightforward 

perturbation until divergences are met. Let us write down the re­

sults: 

Fermi system 

If Pp is the maximiM Fermi momentum: 

, G-rr^P K 
Pp^ = ; P = — 
^ 2J+1 ^ 

p ' z p T i - Pa ~\ 

- £ = — Pp + 87rap — - 1 + 6 (11 - 2en2) ^ + 0 (Pp2 ^) 

The calculation of the terms is in principle very simple but a 

little bit involved. Ue have to be careful about the question of the 

switching of the pseudopotential with the sums. 

Let us pay attemtion to the fact that each term gives a finite 

expression in the case of fixed p and a, as fl and N go to in­

finity. 

Bose system 

a v2 ^g 
—*- = 47ra/o 
N-1 

1 + (2,37) — + [—\ (2,37)^ + "^ (2N-5) 
L V L y i- ir^ -J 

+ o o e 

2,37 is the Madelung constant related to a lattice of positive point 
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charges with a negative constant charge d is t r ibut ion , 1/ - ^ and 

+ 00 1 

l,m ,n=-oo (I ^-^i^-krr) 
ZiSiiXi^ 0 

This sum can be shown to be convergent. In the Fermi case, the para 

meter A is; all absorbed in p or Pp. It is not the same for 

Bose system. One is very interested in systems where p is fixed? 

and XI, N go to infinity. We expect the calculated energy to be 

finite: 

-^ , (-̂ ) approach zero; but N goes to infinity like 1? and the 

term N (-^)^ is infinite like L. For a fixed p , we cannot get 

a larger box without a smaller a, otherwise we get divergences 

immediately. For a fixed N and a fixed Xl , ̂  has a very small re­

gion of validity. 

It can only be applied to cases in which we are considering a 

finite number of particles, but a very large box; e.g. in the virial 

expansion, one is expanding in power of p , that means that we are 

always dealing with systems at P = 0, and getting derivation of 

various physical quantities at zero density. Virial calculation 

has been successfully made for the hard sphere problem. 

§7. Energy for a Bose Einstein system at finite P 

(Phys. Rev. 106, 1135 (1957)) 

We have met two kind of divergendes: one is the infinite po­

tential of the hard sphere problem; we must be careful about the 
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expansion and the incorrect use of the pseudopotential* The other 

is that the number of pairs of interacting particles increases like 

o: 
2 

2 
N and we need only an increase of the order of N; for example. 
in the term (-̂ > the trouble is that the coefficient is (2N - 1). 

How can we get rid of these difficulties ? 

We are going to rearrange the sum in the energy and get finite 

results. There is no rigorous justification of it, since, if a series 

is divergent, there is always a way to rearrange it to get any fi­

nite result; but the rearrangement is a quite natural one and can be 

obtained by several different ways. 

We have a hamiltonian 

H = T + Vpg (7.1) 

where the kinetic energy T is given by 

Z * 2" = Z k aĵ  aĵ  (7»2) 

and the pseudopotential V is given by eq. (4.2) 
ps 

We shall deal first with 

H' = T + v' (7.3) 
ps 

until we meet some infinity. 

, 4 7 r a ^̂  , Hi ^ _ * . _ > . - ^ —V 

%s " "Q" 2 . ^ , ^P V \^ ^ ^^1 + 2̂ - k3 - k )̂ 
T r V b - V 1 2 3 4 

^1^2^3 4 
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The diagonal matrix elements of this operator are, as givai by 

eq. (5.9) 

I 47ra p p 

<n I Vpg I n > « - ^ (2N^ - N - Z n^^) (7.4) 

For the ground s t a t e : 

47ra p 

The essential of the physical idea we are going to use is the 

following: let us consider a state which is near the ground state; 

the occupation distribution in such a state is such that most of the 

particles are still in the ground state. If we start from the ground 

state, by an off-diagonal matrix element, we can only diminish the 

number of particles in the ground state by 2, and then again by 2; 

no matter how many times we excite through an off-diagonal matrix 

element of the interaction, we still have essentially the same 

occupation number of the ground state, since N is very large. Thus 

we are going to deal only with states such that the occupation number 

of the ground state is nQ̂ -̂- N and the occupation number of the other 

states is n. 'N̂  a finite number. We summarize this by 

-^ = 1 + 
N ^N °(7) 

N \ N / 

i7.6) 

This is not a mathematical statement, but it is clear what it 
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means phys ica l ly . 

Let us see vfeat is the diagonal matrix element for these s t a t e s : 

I . V "^^a p 47ra ^ P 

< n I Vpg I n > ^ _ (N2 - N) - - ^ (-21 n | + N^) 

i7.7) 

47ra • p p P 

== ~ C- f ^ - ô -̂  N̂ ) 

where the prime in the summation indicates that the term k = 0 

is to be excluded. n^ is slightly different from N; for the 

squares we have to be careful 

N^ - (N - 21* n^)^ = 211 l! n^' { z' n^)^ 

, 4iTa p 47ra r p , i p 1 
<n|Vj,3ln> . _ ( K 2 . N) = - ^ [- E n^ * 2N S n^ - ( z ^ ) 2 J 

(7.8) 

t 

These are drastically different orders of magnitude: 2 N H Uĵ  is 

the dominating term. The others are neglegible. Thus 

<n I Vpg t n> S 4 TT a p (N - 1) + 8 TT a p Z'HĴ  (7.9) 

Let us look a t the off-diagoriial matrix elements of the po t en t i a l 

1 47ra ^ 
V__ = -rr- Z l _ a * a • a , a. 6^(1 + 2 - 3 - 4 ) 

1234 -̂  ^ ^ ^ P^ " ^ 1234 

Let us remember that each term in the sum give us a contribution 

to a process which can be described as the scattering from momentum 
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states ^1^2 ^^ ^X^A* Each a, operator gives ae a factor -J^^o 

We are dealing with states which have the characteristics summarized 

in (7.6)5 their matrix elements are going to have drastically differ 

ent order of magnitude. 

What are the largest off-diagonal matrix elenents? as far as 

the order of N is concerned ? There are several classsis of ele"-

ments s 

(1) the four momenta involved are zero: this gives only diagonal 

matrix elements. 

(ii) the state k, = k^ = k̂ , = 0 and k^ j*̂  0 is not possible g be­

cause of momentum conservation. This is a very important state­

ment: with a boundary condition that '̂  vanishes on the wall 9 we 

get exactly the same procedure; the fact that the walls can reflect 

is equivalent to non conservation of momentum; at this last point 

we get into trouble, the calculations become much more complicated« 

This may be understood easily: the distribution of the density in 

the box with perfectly reflecting walls is rather unphysical, since 

it has a maximum at the center of the box. A periodic box gives 

us a constant density all over the box; the physical situation is 

a constant density Inside the box, with a rapidly decreasing 

density on the walls. The difficulties in the case of reflecting 

walls mean that we are taking a wrong way to calculate the fea­

tures of the system. For an easy calculation the unperturbed system 

must be very close to the real system. With a periodic box, we have 

a greater chance of success, 

(ill) Two momenta are zero: it must be the pair ^3X1 °r ̂ i ^p 
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otherwise it gives only diagonal matrix elements. There are two 

kinds of largest off-diagonal matrix elements: 

and 

kĵ  = k k2 = -k 

^1 =^2 " ° ^3 " 

k3 = k^ = 0 

+iE k^ = -5" 

'As far as N is concerned, the magnitude of these elements 

is easily calculated: 

4Tra 47ra 
T T ^ o ' ^ i r N -̂  4 IT a p 

these elements are finite when N, Q, go to infinity, 

(iv) There are smaller off-diagonal matrix elements: 

k^ = 0, k^ ;4 0 

^3 = -^2 "" ̂ 1 

it is obvious that they are smaller by a factor 7=; 
VN 

1 
(v) no momentum is zero. They are smaller by the factor 7=; . 

The elements of classes (iv) and (v) are infinitely smaller than 

the largest ones (class (ill)) but there are infinitely more of 

them e.g. there are man̂ ?' more elements of the fourth kind than 

of the third. 

We shall proceed to do a calculation by first neglecting 

elements of classes (iv) and (v) and then show that they can be 
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included perturbationwlse.to give corrections of the order^pa^. 

We remark that in recent years in the theory of superconduc­

tivity people have, in a very similar manner, neglected certain 

off-diagonal elements and kept some others. However, there has 

been no justification whatsoever of this procedure since no one 

has successfully estimated the error committed in making the 

approximation. Worse still, the magnitude of the off-diagonal 

elements kept is the same as those neglected, while there are 

infinitely more neglected ones than kept ones. 

Let us now calculate the energy of a Bose system. 

The off-diagonal matrix elements of V can be replaced by 

those of V defined by 

(^ps) °^^'^' = (^ps) °^^- ̂ -

„ 47ra , 4Tra 

V = — ^ *̂ *-̂  "* ~ f ^ -̂̂ '' '̂ '̂ "̂  

The factors a^ a„ or a* a^ give n̂ ru N. This hamiltonian 0 0 o o ** o 

clearly gives ua the off-diagonal matrix elements of the kind (ill). 

When we have accepted the approximation, we have a very simple 

calculation. The diagonal matrix elements are 8 TT a p ^ a^* a-̂ . 

We must not forget the kinetic energy and the ground state energy: 

H = 21 k^ ajj* aĵ  + 8 TT a p JL'a^* a^ + 4 TT ap (N-1) + 4 TT a p '>c 

X 2:'(â * a^* + ag' a^g) (7.11) 
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k summation ranges over all k / 0. This hamiltonian is quadratic 

in the operator a; it is obvious that by a correct transformation, 

we can completely diagonalize it: 

Let us replace z:' by 2 Zl where k ranges over the half 

^ i k space. 

H" = 47rap(N-l) + r:'(aj a^^-^ aĵ â ĵ ) (k̂ +8trap) + 2l87rap(aJ a^* \ ^j^) 

ik ik 

Let us define the operators: 

bfe = ^ ^ + Pa!^ b.3̂  = aa^^ + (3a* (7.12) 

the commutation rules are: 

(7.13) 

[ \ , bj] = <tH^> a*] - P̂ [a!j,, a y = P!̂  . ̂ 2 ^ 

We choose <=<»p such that this is 1. Then the b operators 

follow the same rules as the as they are creation and annihila­

tion operators. 

Let us substitute a in cerms of b into H« Let uss write the 

transformation inverse to (7»12). 

# 
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' ^ ^ - k - P ^ ^ ^ - k ^ -̂̂ ^^ 

The u n d e s i r a b l e (non d i a g o n a l ) terras a r e : 

(k^+ 87rap) [-2«-{3b_j^bj^- 2Qt(3b_j^bj^] ••• 87rap(o6^+p^)(bj^b_j^+bj^b,jj.) 

I f we pu t 

(k^+ 87rap) 2«:p = 87rap(Qc2+p2) ( 7 . 1 4 ) 

Then the crossed terms vanish identically. This may be accomplished 

choosing 

Strap 
p - sinh'^,o^= cosh 0̂ 4 tanhTẐ 'O * -5 . (7.14) 

k*̂ +8Trâ ^ 

It is seen that there is always a solution for « and (3 . 

Denoting 

kg = 8 IT a p. (7.16) 

the diagonal terms of the hamiltonian then give 

H" = 47rap(N-l) + > ' (kV.k^)[«^b^b^^+ ^ \ \ ^ "̂  
all k / 0 

all k >i 0 
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Using the commutation rules for the b's and expressing «: and 

p as functions of G (eq. (7.14)), 

H" = 47rap(N-l) + i:'[(k̂ + k^) cosh 2 0 - k| sinh 2 o] \ \ + 

+ 2:'f(k^+ k^) slnh^e - k^ i sinh 2 o] 
k 

Using (7.14) and (7.15) we get finally 

H" = 47rap(N-l) + Z:'̂ k'̂ + 2k^ k^ b̂ bĵ . - i ^'[k^+ k^ - Vfe^+2k^^J 

(7.16) 

* 
The second terra, because of the factor b^ h^j represents the 

excitation energies. The other two give the ground state energy. 

This expression diverges. To see this, we can write for 

large k: 

2k? ^ o o / k? k? 
k̂ + k̂  - -lA^Tacl? = k̂ + k̂  - k̂  Vl S«k^+ k^-k^(l+ -%- -%+-') 

O V O O ^ V^ ° ^ k2 Tlr^ / 

^o 

2k^ 

Then 

I k f 1 -• r 00 
H — * —V c o n s t . 1 -rg- dk = c o n s t . I dk = oo 
k 2k^ f l -• r oc 

—^ dk = c o n s t . I 
k̂  Jo 
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As in the two body case treated earlier, this divergence arises 

from using H , where — r has been replaced by unity, instead 

of the actual hamiltonian H; i.e. that ">r r is not interchangea 

ble with the summation. The correct calculation with the correct 

pseudopotential gives, instead of the expression 

Z'[ k^ + kf ̂  V̂ '̂  + 2k^ k^] , 

the following: 

[^ r Z'e^-^[k2+ k^- Vk̂ +2k2k2]] = z:'[k2+ j^2. ^^^^^y _ ^ 

y pa^ to the 

r=o ^ 

which converges to give a contribution 4iTap N 

ground state energy. 

128 

15 VTT 

Therefore 

H 
— = 4Fap 
N 

1 + 
128 

15 V^ ~f^]^li 
A 

(7.17) 

The excitation energy is 

CO 
k = •^'k^+ l67rapk^ kV k^+ l6ira|ff 

CO kA free particle case 

^^= k ^jk^l6mp 

> k 

We see that for small k 

"j^ 5 k Vl6irap 

i.e. linear function of 

k charactherlstic of pho 

non excitations: sound 

waves with velocity 
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V = •\jl6irap i n a medium of dens i ty p . 

Compression waves in the ground state 

The velocity of the compression waves can be obtained from the 

following. For a medium in the ground state, the pressure is given 

by 

Upon compression, waves are produced, the velocity of which is 

given by 

^ = V ^ ^ 
P : mass dens i ty . In t h i s case , as 2m = 1 , p'jg = i p . Therefore 

. ^P 
y = 

a(ip) 
•\j l6ir&pf 

as obtained before from w^ = \l^ l6Trapk in the limit of 

small k. 

Dependence on N of the energy 

Again,the ground state energy is given by: 

kf 
V ^"^^9^^^^^ ' ^' \^^* ̂ o • '\P^'^f^ - "^ ] (7.18) 

where k^ = "y Strap . We can expand in power series in terms of a 

smd compare with the pertiirbation expansion, section 6, for the 

Bose system: 

file://�/jl6irap


E : M . 4.«. = i H' p ^ w2 . L4. ̂ .2 ,.2 ^ 
N 

4Trap k'̂ * k. 
k 

- yk'+ 2k- k - . — » j 3 ' 
2k^ J N 
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const. , k« 
^ — - +, 
k k^ 

= const* '̂•*'"" ^ 
H k a 2+m2+n2)2 ^ ^ 

+ ... (7.19) 

This term is clearly recognizable In the expansion of Section 6. 

If we consider the additional terms in (7.19) we obtain 

^gd . 

H 
4 7 a p = const 

^aNv3 .aN>4 l 
/ — ) + const* j — J + . . . \ L 

Sucesslve terms differ by order of ^ as in the perturbation 

expansion. Let x = ̂  and write 

E . 1 
-** - 4 r a 0 *= const. — 5 f (x) 
H NL"̂  

If we assume f (x ) ^ x**ln the l im i t x —*• oo , l e t us deter­

mine what value of oc w i l l make the above expression f i n i t e , I . e . 

-aN N«̂  
= f i n i t e 

NL' 

then 

1 /aHN°^ 

ML̂  \ L / 

1 /aHx°^ . . , T2«+1 2 « + 1 = 6 

- a P - ; r ^ ••• cc=| 

suid 
1 / a » \ 

N ? \ L / 

6/2 5/2 3/2 
= a = a p Wpa 
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This is precisely the first order correction in eq. (7.17). 

If we consider the contribution of the terms of the type 

(0,kJ-^(k2>k^) which were neglected in the computation of (7.17) 

we can show that this contribution is of the form 

^ r a^H^ . „^„„^. a^^N^ . 1 _ -*• „ . x 
— w —-— + const. — T — + ••• - -T~p g (x; 
NL'̂  L L^ L^ J ^jf-

The requirement for convergence as x-*- oo is g(x) "^ xP with 

P = 4. The result is proportional now to &f (vpa^) and differs 

from the first order correction by the factor Vpa-^. 

These arguments illustrate that the perturbation expansion 

can be rearranged to yield a finite result if the expansion para­

meter is taken to be V pa-̂  instead of a, and that precisely we 

have found an expression for the energy C-eq. (7.17)) in which the 

successive terras dlf-i?er by order of \lpay . 

§8. Higher Order Calculations 

(Physical Rev. 1 ^ , 1419; 11§, 1390; ll6, 489, 1344; 

Soviet Phys. JETP £, 299). 

The ground state energy has been calculated to higher orders. 

The result is 

a 
- ^ = 4Trap 

laa 1—^ x4Tr ,—. 
1 + — - 'ypa^* 6 ^ — - •\/3 j pa^ in (pa^) 

+ Kpa^ + higher order terms 
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The excitation energy of a phonon has also been calculated 

to higher orders» 

The phonons were found to be unstable because of possible 

disintegrations into phonons of longer wave lengths. This was 

discussed in Phys, Rev. ii2, 1419 and in Soviet Phys. JETP 2i 299. 

§9<» Dense Hard Spheres 

Up to now we have considered the behaviour of a gas of very 

low densityo Now we like to study the behaviour for high density. 

We are interested only in the expression for the energy for low -g . 

It is to be noted that here the physical situation is completely 

different frpm that for low densities because here we are in the 

region of very close packing? the particles are very crowded and 

the collisions among them are very frequent* 

For N particles enclosed in a box we are faced with a 3N-di-

mensional problcmo For each configuration of this N particles 

there correspondes a point in this space. To each permutation of 

the particles there correspond also a point and thus, for a fixed 

relative position of the particles there are Nl different points 

in the configuration space« An interesting problem to consider is 

to determine what is the region in the configuration space whose 

points give an allowed configuration of the system in question. 

Consider first the case in which the box has such dimensions 

that the particles are in the situation of closest packing, e.g., 
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the particles are arranged in a closest packed face centred cubic 

latticeo The possible configurations of this arrangement are given 

by N i points in the 3N-'dimensional configuration space*, Increa^ 

ing the size of the box the particles acquire some freedom and the 

allowed region for the points of the system in the 3N-dimensional 

configuration space become small pockets around the N I points that 

represent the closest packing situa-

^^ tion as shown in figo 9»lo Enlarging 

(jj ^^ still the box, all these pockets 

O become connected by very narrow 

CI 
^̂  channelso For almost closest packing 

(j^ the channels are extremely narrow and 

their effect may be neglected» One 

Figo 9ol can give a semiquantitative argument 

to see under what conditions it is possible to neglect the effect of 

the channels 5 since the mean distance between the particles is of 
w 1 

the order of ^~9 ^ i where P is the density of the system, in order 

to interchange two particles it is necessary to move '̂  .^^ par­

ticles, a being the diameter of the hard spheres and i^ the value of 

I for closest packing» If this number is much larger than one, 

ioeo, if -2 ~ XQ it is justified to neglect the influence of the chan­

nels because they are very narrow and longo 

The Polyhedron Method 

For the present discussion, we consider that the particles are 
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arranged in a simple cubic lattice. 

The equations defining the allowed region in the configure-

tion space are of the form | "Jr̂  -"Tp \^ a, where r̂ ^ and 'r2 

represent the coordinates of the center of the spheres 1 and 2 

respectively. Writing in full detail this condition we get 

[Uj^ - x^)^ + (y^ - y^)^ + {z^ - ẑ )] > a (9.1) 

We can change somewhat this condition by considering smauLl de-

partiires from the simple cubic array, (see fig. 9.2)• Since in 

this case y^ - 7^ and ^i - Z2 

are very small compared with 

x^ " Xp9 we may replace the above 

condition by |xn - x-l ^ a , which 

is equivalent to replacing the 

spherical surface by its tangent 

plane at the point of contact of 

Figo 9o2 the two particles. If we do not 

permit interchange between the particles, the condition imposed 

for the X coordinates of the particles that are in the bottom row 

are 

Vl • ^ 1^ *» 2ĉ  - Xp^ a , 0 0 0 ' ^ -^m-l>*» ^m< ^-f 

(9o2) 
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For the other rows we have similar systems of equations. We must 

add also the system of equations corresponding to the y and z com 
2 

ponentso We obtain then a system of 3 m equations which define 

a polyhedron in the 3N«dimensional space. 

This polyhedron is further simplied by the follwoing displace 

ment transformations 

8 a 
x" = x^ + - - ja (9<.3) 

Then 

0 4 -T5̂3̂  < x^ ooo 4 x ^ < L - m a (9t.4) 

2 
The wave function is a product of 3 ^ wave functions Ibr the 

various rows and columns. The wave function for the first row, 

y (x,, «oo x^)» satisfies the condition that }̂ = 0 on the botmdary 

of the region defined by eqs. (9o4)o 

Now consider an antisyinmetrical wave function 4* of m free 

particles x. (J s 1,2, o.o m) in one dimension in a section of 

length L - ma. Clearly \f satisfies the same equations, and satisfy 

the same boundary conditions on the polyhedron defined by eqs. (9.4) 

One thus obtains the following theorems 

Theorems The energy levels of the m^ spheres near a simple cubic 

arrangement are approximately those of a collection of 

2 
3 m independent system each of which is a Fermi system of free one-
dimensional particles confined in a length L-ma. 
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For the calculation of the ground state energy, we first take 
2 

one of the J>m systems. For this system of Fermions, the momentum 

goes from - P to + ?<> This momentam is related to the length of 

the box and to the number of particles in the rov/ by 
2P(L-ma) 

m 
ZTT 

and so 
ma. IT 

p = = ^ (9.5) 
L - m a 3 ~ a m 

The energy for a row is thus given by 

•+P 

m 
o P^ dP I P^ m p 

zE = jn 2 = ^ p2 (9.5) 

."!p dP 2P 3 

2 
The total energy is equal to the energy of a roxsr multiplied by 3m . 

Total energy for the ground state of the system. 

2 TT^ 

E = 3m2 SP_ = NP^ = u (9.7) 

Since the total number of particles is equal to m^. 

V/e like now to compare this result v/lth that obtained by the 

cell theory. In the cell theory each particle is confined to be in 

a cube of side length L/m and is not allowed to be out of this 
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cube. The center of the sphere is then confined to a smaller cube 

6f side length ^ - a. For the x coordinate the wave function 

for the particle inside the cube is given by 

sin 
i - a 
m 

The energy for one particle, taking into account the three degrees 

of freedom is then 

^m ' 

The total energy for the system of N particles is 

It is to be noted that this energy is larger by a factor 3 than that 

obtained by the polyhedral method, eq. (9»7). The reason for this 

difference is that in the latter method we have more freedom to move 

the particles, since the only constraint imposed is that one is not 

allowed to interchange the particles in a row. 

Excited States; The theorem quoted above shows that the excited 

states near the ground state have the structure of that of a system 

of Fermions. This is qualitatively different from the case for a 

dilute system discussed previously. 

Face centred cubic arrangement. 

This situation is that of a closest packing. The simple cubic 

f 
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arrsuigement will decay through the channels into the face centred 

cubic lattice (see fig. 9.3). 

One can use in this case alse the polyhedron method although 

it is not easy to write down the equations as in the previous case. 

For the x coordinate of the 
simple cubic 

faoe centered 
cubic 

Fig. 9.3 

particles in the bottom row there 

exists the same kind of relations 

that were settled for the simple 

cubic lattice. One of the restri£ 

tions imposed upon the coordinates 

of particles 1 and m (see fig. 9.4) 

is given by 

1 
2 - x O + ̂  (y« - y^) > a 

'm 

The application of the polyhedral method to the simple cubic 

lattice was succesful because the method of images could be applied 

to obtain the wave function of the 

system. This is very useful if the 

hyper-planes defining the poly­

hedrons form angles that are integer 

divisors of dxTo 

For example, in the case of the simple 

cubic lattice, let us find the 

angles between two planes of the 

Fig. 9.4 

in terms of x^ by eq. (9»3). 

polyhedron where the x^ are defined 
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Equation of the 
plane in normal 

eoordiaatea 
Components of the normal to the plane 

9 I I 
Xnt X M X f 

' « » » » f" 

^ *̂3 - 4^ 0 ^ -^/;f^ 0 0 

0 0 Vv2 - V ^ 0 

The angle 6 formed by the two planes is such that cos d = - 1/Zi 

i.e., 9 - 60^ which is the sixth part of 2r. Then one can apply 

the image method in a straightforward way, as we dido 

In the present case we have 

Equation of the 
plane 

Components of the normal 
I t t I 

.•« 2 1 m ^m 1 

^ Kx^ - x^; -

fe(<-4>*f (̂ m-yi) =0 
Vs 

•• ""^ ''^<f2 0 0 0 

The angle formed by these two surfaces is such that cos 6 = 1/4< 

This angle is not submultiple of 2Tr. Here one can perhaps use the 

method of multiple images but the problem turns out to be extremely 

difficult to solve. Although there is not yet an answer to this 

problem, one may expect that the expression for the energy of the 

system has the form 

E = N T—2^ T-.— (9o9) 7 7 V 7 ^ 
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where P is the actual density of the system, p^ is the density 

of the closest packing and o6 is an unknown constant. 

Soft spheres 

The potential in this case is of the form given in fig. 9.5 a) 

suad h)o' 

V I 

Pig. 9.6 a) Fig. 9.5 b) 

The problem may be tackled using a variational method. It 
2 

can be shown that if the potential raises faster than 1/r , the 

energy per particle is asymptotically of the form 

where Ji is the distance between the atoms in a face centred cubic 

lattice. 

§10. Incomplete Macroacop3,e Occupation of Single-particle Ground 

In the computations we made, we started from the single-

particle wave functions, and by repeated applications of the off-

-dlagonal elements we got the true ground-state. Also, we replaced 
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* * / 2' for instance the term aQa^a^a. by I/HQ a^a. (or n^a^a^, simply) 

For our present purpose, we wauit to apply the approximation 

method used before to the states for which there is macroscopic 

but incomplete occupation of the single-particle ground state. 

Thus, we set the single-particle ground state occupation number 

n^ = N^ (lOol) 

where % denotes a finite fraction. It is also assumed that 

there are numerous other states occupied, yet none of them alone 

is occupied by a finite fraction of N. That is to say, we 

assume here n^ (i j^ 0) are all small but there are numerous i's, 

so that only the sum H I n^ gives a finite fraction of No 
i;̂ 0 ^ 

Let us take a particular state of this kind: 

I o o . , 
Z. n^ + n^ = N (10o2) 

where the prime over the summation sign means that i = 0 is 

excluded and where the superscripts "0" denotes our particular 

state. Next, we write down a small deviation of the occupations 

as 

Z.' n^ + i^ = 0 (10.3) 

where the superscripts "1" denotes the deviation from the state 
1 1 

"0". It is assumed here that both n̂ ^ and n^ are small. The 

actual state of interest is thus given by: 

o 1 
î« - n_ + n_ 
° ^ ° (10.4) 

0 ^ 1 
n^ = nj + n^ 
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i ) The diagonal elements; they are (see eq. (5.9)); 

- ^ [2N2 - H - Znf ] 

4ira 
W [2^^-»- y* «2 „2 

4#a 

IT 2N'^ - N - Z in^ + n^) 
,o 1 2 
(^o ^ ^o> 

4Fa 

'IT 2H^ - H - r n^^ - 2 H' n^ Ui - ^' n^^ o 2 
•^i 

I 1 • 1 
- ô -̂  2n^ f ^i - ( f %) 

the terms -N - C n̂^ are numerical constants much smaller than H^ 
i I o 1 I 12 • 1 ̂ 2 

They will be neglected. The terms - 2 Z n^ ni - C n^ -(E n̂ )̂ 
are also negligible. 

Thus we have 

4ira 
[diagonal elements |= -pr- [2N̂  - n̂  2 2 o -̂  22̂  5' î ] 

= - ^ [2H2 - (Hl)2 + 2(N|)£ (n^ - g )̂ ] 

47ra p r ? 1 ^̂ "̂̂  I 

= - ^ N̂  [2 - t - 2^(1 - I ) ] + - ^ 2N^i: n̂  

= 4irapN [l + (1 -%)2 J + 8irap^ E' n. 
i 
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obviously, if we put ̂  » 1 we shall get exactly the same result 

as we got for the case of complete occupation of the ground state 

(see eq» (7o9)). 

11) The off-diagonal eJ^ements; as before they are divided into 
* 

u and a. o o 
* 

classes according to the power of a and a . The largest off-

-dlagonal elements are those of 

% * 0 ®k*-k 

and 

o o a^a^^a^a. 

The off-diagonal elements, thus, will take the form 

Z a!!a*^ N | + S N% a^a^^ 
4Tra 

IT k " '̂  k 

* * 
where we have replaced a^a^ and a^a^ by N^ . 

i l l ) The to ta l Hamiltonian% wil l take the form 

H" = 4irapN [l + (1 -1)^ ] + n' (k^ + Sirapt) a^aj^ + 

+ 4irap| z: (ajj.^^^ •*• *k^-]s^ (10,5) 
•K. 

again, it is obvious, if we set ̂  = 1 the Hamiltonian will be 

reduced to the same one used before for the case of complete occu­

pation, eq. (7.11). 

By means of the same Canonical transformation we used before 

(eq. (7.12)) we caoi write the Hamiltonian in terms of operators 
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b^ and bĵ s 

H" = 4^apN 1 + (1 »%)2 4- (i28/15Vff) ^pa? t 
5/2 

(10.6) 

+ Z (k"* + I67rap%k2) b^ b. 
k 

where the l a s t term gives the e x c i t a t i o n s . 

The number of exc i t a t ion i s approximately given by 

Z' \ \ = N (1 -^) (10.7) 
A. 

and we may sepparate the total energy of the system into two parts, 

namely 

E (̂ , n^) = E^ i%) ^ Epj^^^^^ (̂ , m^) (10.8) 

where the ground state energy is given by 

EQ (̂ ) s 47rapN [ 1 + (1 -^)2 + (128/15\/5?) -/pi? ̂ ^^^ ] 

(10,9) 

and the total energy of the excited phonons is given by 

and '\/l6!rap%' is the phonon velocity (cf. the discussion after 

eq. (7.17)). Attention should be paid to the fact that the mjj.'s 

are subject always to the condition 

(1/N) Z' m^ = 1 -% (10.11) 
k ^ 
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It is easy to verĴ fy that the total momentum of the system 

in the state specified by ̂ , m^ is given by 

P (%, mĵ ) = E k'a^a^ *Z:^m^ (10,12) 

where m^ is the number of excited phonons with momentum k. 

Related Discussions: 

Concerning the previous calculation we would like to make 

the following remarksi 

a) The relationship between degenerate occupation of a sinele-

-particle grotmd state and the number of phonon excitations. 

Equation (10.11) says that the number of excited phonons 

is equal to the degeneracy of t|he occupation of the single-particle 

ground state, which is sm, important result since it establishes a 

relationship between the degeneracy of the occupation of the single-

-partlcle ground state, a concept already discussed by London, and 

the number of phonon excitations, a concept discussed by Landau. 

b) Order of AccTiracv of the Calculation 

For the ground state, 

EQ (̂ ) = 4TrapN [l + (1 -^)^ + (128/15\/F)yp2?^^/2] + 

+ 0 (pa%) (10.13) 

For the phonon state, 

phonon ^^'^^ = ^' ̂ ^^^ •*• l̂ rrapl k^)* + 0 (\/pâ N) (10.14) 
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4 z i 
Notice, however that the energy w^ = (k + l6ir&p% k ) of each 
phonon is accurate to the order of N^ and not N^. 

c) Computational Separation of the Hamiltonian into Different Re-

£iosg. 

One interesting aspect is the separation of the Hamiltonian 

into different regions for computational purpose. Such a separa­

tion is certainly not well-defined, therefore we might ask our­

selves what is the criterion. The situation is like that shown 

below: 

this bottom line is 
well defined (ground state) 

The different Hamiltoniam specified by different % s represent 

approximations to the true Hamiltonian in different regions of ener, 

gy. This is quite similar to the discussion of §9 where we saw that 

the approximate energy levels in different pockets (face centred 

cubic, simple cubic etc) collectively give the energy levels of 

the system. 
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§11<» Thermodynamic Properties of a Dilute Hard-sphere Bose system. 

Ref. Phys. Rev. 112, 1419 

According to statistical mechanics, all the thermodynamic 

functions can be obtained once we get the partition function of 

the system. This partition function Q is defined by 

Q = 2 Z e'-l̂ ^̂ ^̂ '̂ ^ (11.1) 

where P = l/KT and K is the Boltzmann constant and T the absolute 

temperature. Here "m" denotes the set m,, m2, ... for different 

combinations of occupations. The values of the m. s are subject 

always to the condition 

(1/N) ̂ ' i\ = 1 -"̂  ' (11.2) 

Now introduce the partial partition function< Q (̂ ) defined by 

Q (t) H g e-^'^^"'^^ (11.3) 

where the sum over m is subjected to condition (11.2). We have 

now, in partial partition sum 

Q = I Q (̂ ) (11.4) 

Substitution of the energy eigenvalue into the partial 

partition fimction leads to 

Q ( | ) =11 e - P V ^ ) e - ^ f V k 
ffl 

= e-PV^> §e-PfVk (ll.S) 
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where E^d) is given by eq. (10.9), the mjj.«s are subject to con­

dition (11.2) and o^y^ is defined by 

uy^ = (k^ + I6irap^k2)' (11.6) 

Next, let us introduce the function 

R (M)= Ee-Pl^hc'^k (11.7) 

m 

where m^ is subject to the condition 

r m. = M (11.8) 
k *̂  

We may introduce another function Q,the generating function 

for Q, defined by 

Q = H ^" R (M) (11.9) 
M=0 

where ̂  is a complex number. Now we can write 

Ci = n e-P̂ '̂ '̂ 'k l^^^i (11.10) 
m 

without condition on the m's, or 

a = TT (1 - ̂  e~^1c^' (11.11) 
k 

Now we shal l be interested only in inO. and especially in 

the l imit N-»-oo, In this case only one term in the sum (11.9) 

predominates the logarithm of the sum. Thus, we have the 

.asymptotic approximation of (11.9)J 
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ftn Q = fl Jb^ + fin R(fl) (11.12) 

where 55 denotes the value of M of the dominating term. 

Differentiation of (11.12) with respect to M yields immedi­

ately 
d 

in^ + — to(M) = 0 (11.13) 

dM 

On the other hand, with (11.11) into the left side of (11.12), 

we get 

- H ?n (1 -i'e'^ic) = H !ln^ + in R O ) (11.14) 
k 

Differentiating the last equation with respect to Hn^ we 

obtain 
^e~l^*^k r d -i dM 

i: = S + U n ^ +-T «n R(fl) 
k i.^e'/^'^'k ^^ ^^""^ 

which is simplified, by means of (11.I3), to 

Now we may list all the formulae 

i) Free energy F = - kT£n Q (II.I6) 

ii) Logarithm of the 

partition function: In Q = [i?n Q(^)lniax.w.r.t.^ 

ill) The partial partition (11.17.> 

function: Q(|) = e~^^o^^^ R[N(1-|)] 

(11.18) 

iv) fin R (iM) = -ZT ?n (1- ̂ e'P'^'k) - M ir^T (n.iq^ 
k 
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(here we dropped the bar over M for simplycity of notation) 

^e-t^^k 
v) 

where 

K - H 
k l-U-f^'k 

«»̂ĵ  e k (k^ + l6Tra9^)* 

(11.20) 

(11.21) 

and M (i.e. 5!) is obviously the most probably total number of 

excitations in the system. 

The above equations (11.16) - (11.21) allow for a computation 

of F« We are not going into the exposition of the detailed calcula 

tionsjinstead let us discuss some of the results of the calculation: 

i) The T - p Plot 

We find the transition curve as 

A ^ / k T « 1.342 + 2(2.612)^ (a/X) + o[ia/\)^^^] 

and 

A^p^ = 2.612 + 0 (a/A) 

where the subscript c denotes the transition point, and A the thermal 

De Broglie wavelength (4TrAT) , 

P ^ 1^^ 
Dilute Bose gas with 

hard-sphere interaction 

Free Bose gas 
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ii) The p - V diagram 

f^^ ^ru\ discontinuity: (^^ ^^^^ - (dpjgas " " ̂ ^^^ 

isotherm for the free Bose gag 

dilute Bose gas with hard sphere 
interaction 

(a/N) n/N 

§12. Two-Fluid Motion Ref.; Phys. Rev, 112, 1406 

a) Galilean Transformation 

Taking the system of a dilute Bose hard spheres and using 

a Galilean transformation to such a system we can get a new eigen-

state in which there is a macroscopic occupation of a single-parti­

cle state with k /̂  0, 

Let the transformation be defined by a relative velocity 

v̂ , and the primed stand for the system in which condensation occurs 

at k = 0 while the unprlmed notation stand for the system in 

which condensation occurs at k = k_ (/̂  0)o 

Thus 5 in the laboratory system (unprimed system) of 

coordinates k^ ;̂  Of the total momentum of the system is s 

P = (mass). V + P» (12.1) 

and the energy is 
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B « i (mass) v^ + i 2"v.P"« + 

..+•.energy in the moving system. (12.2) 

By previous conventions (particle mass) = ij thus 

P" * iNv"* Zl' m "q (12.3) 

q ^ 

where "q"is the momentum of the phonons with respect to the moving 

system, and the primed summation denotes the exclusion of "q = 0 

as before. 

Now, the energy from (12.2) cam be written as 

E 

+ 4TrapN [l + (1 -|)^] + H V (q'** l67raf^q^) . 
q 

(12.4) 

By setting (remember that the particle mass is taken to be 

i)s 

X = "Ĵ  v" (12.6) 

we can rewrite the expressions as 

T = Ite„ + IL m„~q (12.6) 

s q 'I ^ 
E = N k^ + z' Biq (2kg.q+w ) + 4TrapN [ l + (1-1)^ ] (12.7) 

(VN) n ' m„ = 1 - ^ (12.8) 
q ^ 

4 2 * 
oj « (q^ + l6irap|q '^) (12.9) 
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We can also write (12.6) as 

•p = N | l + N ( 1 - | ) ^ g + Zl' ra "q 
q 

« N | l „ + TI m„ ( q ' + E , ) (12.10) 
s q q s 

b) The Quantum Numbers ̂ < ° Q < s 

These parameters I , m , k are not absolute quantum 

numbers due to the fact that, for instance, phonons may decay or 

scatter among themselves. They are good quantum numbers only if 

these effects are small enough to be treated as small perturba­

tions. Among these three quantiun numbers, however, kg is most 

stable and in this sense we might consider it as a quasi-quantum 

number (though it is evidently physically not absolute), m is 

the most unstable one since it is affected easily by decays or 

collisions. I is rather stable, being subject to alterations 

only if a finite fraction of phonons suffer decays or recombi­

nations . 

c) Quasi equilibrium Distribution 

This calculations is based on the assumption that conden 

sation occurs at k ;̂  0. The previous results are summarized in 

(12.7) to (12.10). Now we are interested to know that if N, XI, 

?g, ?", T are fist given then what will be the values of i, f and 

F after a long time. 

First, we have 
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«n Q = [ te Q (1 , %.^)]^, „.r.t.| az.ll) 

where 

9(^,S,,-?)=Ee-P«|,m,?^) 
m 

(12.12) 

subject to the conditions: 

2̂  m^ » N (1-1) 

i: m^ q = P - N kg 

Next, we define 

R (M,S) = 1̂  e ' ^ ̂ 

(12.13) 

(12.14) 

where M and S are defined by 

E:m„ = M (12.15) 

and 

q ^ . 
= s (12.16) 

or 

Introduce the function k. defined by 

â ̂  ^ s.,? y z 

(12.17) 

) (12.18) Q = TT' (1 - i:. 
q 

- p (w - ̂,J) 

where u^ is defined by 

P̂ d s I (12.19) 
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Taking the logarithm of (12.17) and neglecting small contri­

butions except for the term maximized with respect to H and S (this 

will be denoted by K) one obtains 

JtnQ = [?n R (M,^) + M ^n? + pl.u] (12.20) 

which, under maximization, results in the following conditions 

In I + — In R(M,S) « 0 (12.21) 

and 

prT + -^ £n R(M,S) = 0 (12.22) 
^S 

By taking the logarithm of (12.18) and equating it to (12.20) 

we get 

t -p(co - u.q)T r - _̂  - -•J 
1 - ^ e ' ^ J = [ijn R(M,S) + M^n5-(3S.uJ 

(12.23) 

Partial differentiation of (12.23) with respect to in i 

l®*'̂ ^ *° -P(^q-u.q) 

^ ! \ -p^v^^t) - « = ^ ^̂ -̂ > 
^'^^ (12.24) 

which gives the most probable number of total phonons off fche 

condensation. 

On the other hand, a partial differentiation of (12.23) 

with respect to u* leads to 
_p(co^JS."q) 

^ -fi(co-^>?) q^s^'-p'-H^g 

^ ^ ® (12.25) 
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which gives the most probable total momentum of the phonon clouds. 

Obviously, now we are able to compute ^ and u" by means of (12,24) 

and (12,25) once 1| § T", T_ are giveno 

d) Physical Pictare of the distribution 

From (12o24) we can define the average value of excita­

tions as 
"•P(^„ 

^ e ^ 
u.q, 

\ 1 „7i»"P('^. u"."q) 
(12.26) 

1 »^e'--q 

where ^ and u" are determined by means of (12.24) and (12.25) 

while ̂  is in turn determined through a maximization of (12.20). 

The dependence of m on k = q + ^ gives the number of 

excitations with momentum Ic'in the laboratory system. This distri 

bution is spherically symmetrical around k = k if u = 0, 

k 
z 

•'-"'.'/iilY-••'-' "•• » 

asymmetrical due 
to the T5O'5' part 

point of condensation (k=kg) 

k. k - space in laboratory system 

Let us now look into a simple situation in which u and 

u are zeroj thus we can plot the following curves! 
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'^q-^-i „ = o 
Ugf-'"^ OtjimKfkw •((,<, 

/

very large u^ 

Ox 

The minimum of these curves gives the point at which m reaches 
q 

a maximum, whic^ should be at q = 0, The curve for very large 

u^ is thus unphysicalo The following restriction is necessary 

|uj < (I67rap^)^ (12o27) 

e) Two-Fluid Motion 

We have seen that for a quasi-stationary state there 

are two degrees of freedom d,escribed by'^'and'?"^ which are a-

nalogous to a two-fluid motiono For instance, "?"= 0, corre­

sponds to a liquid with no total momentum but for such a system 

k'g may not be equal to zero. The relationship with two fluid 

motion is as follows: 

Superfluid: p„ = (1/iX) N | 
s 

Normal fluid: p̂ ^ = (l/XI) N (1-^) 

(12o28 

(12o29) 

and 

PAl = P k + p k '•*'- rg s Ml n 
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vl = 2k^ 
s s 

v„ == v„ + u . n s 

Therefore the transport phenomena may also be studied through this 

defined system. 

f) Superfluidity 

Now, without a detailed description, two physical concepts 

can be derived from the two-fluid model. For instance, let us im­

agine that a particle is being dragged through the system originally 

at T = 0 with no phonon excitations. The liquid after excitation 

has a momentum and energy given by 

k ^ 
excited state 

E = 5: VL 
k ^ 

U). 

Now, this external particle 

suffers a loss of momentum and en 

ergy given by 

ground state 

Excitation due to 
dragging of a particle 

&P = - nm. k 
k ^ 

&B = - 21 m^*^ 

We have 

|8E| > 2:nJjj (I67rap)* Ik"! > (l6Trap)* |&P| 



or 6 E | i 
(l67rap)̂  

16 P1 

thus 

f'or excitation to become possible» Obviously? the siti.-et'on is 

analogous to Cerenkov radiation which is possible only v̂ neD the 

external particle has a velocity larger than a c-̂ ltlcal vel ocity. 

In our case? the fluid becomes frictlonless to the particle below 

the critical velocity (l67rap) . This argument was originally due 

to Landau. 

g) Infinite Heat Conductivity 

The concept of infinite heat conductivity means that heat 

transfer is possible even in the absence of a temperature differ­

ence. Experimentally this obtains for liquid He below the A-point. 

In the quasi-equilibrium state we are considering} if we set P = 0 

and k / 0, then we have a relative motion of the super and normax 

fluids. 

Evidently all the entropy is contained in the phonon 

cloud (normal fluid) thus giving rise to the possibility of a 

motionless (P = 0) isothermal entropy flux which offers a natural 

explanation of such a phenomenonc 

h) Second Sound 

The addition of orie more degree of freedom gives rise 

to the fact of two sound velocities: the first sound and the sec-
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ond sound. Mathematically, it is a consequence of the existence 

of two different roots of the quadratic equation determining the 

sound velocity. 

§13. General treatment of an interacting system with Bose sta­

tistics. Ref.: Phys. Rev. 112, H^S 

116t 26 

117» 12 

iri, 22 
117* 897 

a) Motivation 

He^ and He^ exhibit slightly different thermodynamical 

behaviours. Fig. I3.I represents schematically the phase diagram 

for He , showing the exist­

ence of two liquid phases. 

At the saturated vapour pre^ 

sure , the transition from liq­

uid helium I to liquid helium II 

occurs at approximately 2.17 K. 

Another feature is that at 0 K, 

He exists as a liquid. 

He^ does not exhibit a 

A transition though it has 

been investigated down to 

4 

T (OK) 

Fig. 13.1 

0.1 K. Other characteristics are similar to those of He Now, 

since the interatomic forces are almost the same for He-' as for 

He'*, the potential energy is practically the same for identical 

configurations. We would expect the difference in mass to intro-
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duce only quantitative but not qualitative differences in the be. 
X A. X 

havlours of He-' and He . The absence of A transition in He^ and 

the presence of it in He must then arise from the statistics. 

It is our aim to show this by dealing first with the problem 

of the thermodynamical behaviour of a system of interacting parti­

cles with Boltzmann statistics, i.e. arbitrary statistics, and 

trace afterwards the effect of imposing a definite statistics. In 

other words, the actual problem is to be split in a part independent 

of statistics and a part which depends on statistics. 

b) Details of the treatment 

Boltzmann statistics 

We shall follow the Ursell - Kahn - Uhlenbeck development. 

Introduce the density matrix: 

<l', 2', ... N'|WJJ|1, 2 ... N>~<1*, 2', ... N'|e"f^^|l, 2 ... N> 

(13.1) 

where 

1 = r^ = (x-ĵ j y^j Zj)} ©"tc. 

We define a sequence of functions Up , the arguments of 

which involve the coordinates of X particles and which have the 

property that they vanish rapidly when any interparticle distance 

in the group of i particles approaches infinity, by the follow­

ing relations: 

< I ' | W - L I I > = <I'|U3^|I> 

<l'2' |W2U 2>= <l'|U^!l> <2' |Uil2>+<l '2 '(U2|l 2 > 

<l '2 '3 ' |W3|l 2 3>=<l ' | l l i l l> <^'|Ui|2> <3'|lTil3> 
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+ <l'|Ui|l> <2'3'|U2l2 3> + <2'|UJ2> <l'3'|U2l 13> 

+ <3'!U;ĵ |3> <l'2'|U2|l2> + <^1'Z3\'U^\ 1 2 3> 

and so on. <;̂1 |Ŵ |l)> is clearly the free particle distribution 

functlono Consider now <(l 2 jŴ ll 2)> : if the two particles 

are very far apart, we are left with the product of free particle 

distribution functions, hence J]p approaches zero. The U functions 

exhibit explicitly the effect of the interactions. 

The general expression can be seen to be 

^N= 5,? K ••• "̂ 1̂  ^""Z '" '̂ 2̂  ••• "̂"N̂  ]• 
-^ • ' (̂  
m-, mo m N 

Hmjg i= N 

^ relates to all possible ways of assigning particle coordinates 

to the arguments of the U functions. 

The partition function is by definition: 

%= SpW^ . (13.4) 

Introducing the grand partition function 

Q = £ (l/Nl) Z^ QT. (13.5) 
N=0 ^̂  

it is well known that 

pH/kT = i n Q (13.6) 

T dfinQ 
N/il = XI'-^ (13.7) 

d^nZ 

One can eliminate the parameter Z between these two equations 

and obtain the pressure as a function of the density. 



In terms of the U functions: 

Q.. = S M : 1 fsp(Up)l®i (13.8) 

The coefficient N!/(:?!)°̂ t m^ 1 gives the statistical weight of 

any particular arrangement of the N particles in m^ clusters of 

X. particles each. We have then: 

^" S ^ \ e"?! (SP up^?/(£i)^^ M^l 

SlJmj = N 

or °° - 00 

00 

Ẑ l [̂^ ̂^ V^']""^ (Vm̂ l) 

and switching sum and products 

Q= fr exp [ Ẑ Sp tĴ /£!] 

oo 

i=l 

= exp 2Z Z^SpU«/£l (13.9) 
x.=l ''• 

i t follows from t h i s , (13.6) and (13*7) 

PQ 00 . 
— = m Z^ Sp Un/£1 (13.10) 
kT £ =̂ 1 ^ 

P=N/A = (VIX) I e z ' ' S p U o / £ l (13.11) 
£=1 *̂  
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The above mathematical development is not entirely rigor 

ous, mainly in the interchange of sum and product. However, we can 

assert that these equations are coi^^ct for small positive values 

of Z, which represent the case of low density, i.e. the gaseous 

state. In a more rigorous treatment, we have to confine the sys­

tem in a box of volume Xi , carry out the calculations and then 

pass to limit n->00. Note that, as Uĵ  is a function of the rela 

tive coordinates of 1̂  particles, when we perform all but one of 

the integrals in 

I =[%* (1 ... £ ) Ug 7/(1 ... i ) dT d2 ... diT 

all variables in the integrand are exhausted, and the last inte­

gral yields only the volume Xl , i.e. 

I =a|'y'*(i ...nu^ v̂ d ... n d2... df 
(13.12) 

Substituting in eqs. (I3.IO) and (I3.ll) above, p and p are seen 

to be independent of iX and finite in the limit Xi.-+oo if 2 is small. 

c) Bose statistics 

The development is the same as in the Boltzmann 

case, except that the partition function is defined now as: 

Q^ - N! Yl e~P^ (13.13) 

S.S 

The factor N! is introduced for convenience, and S.S. means that 

Lhe sum is performed over the symmetrical states only. Then 

http://I3.ll
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<l', 2*, ... N'IW^I 1, 2, ... N>E 

= N! :EZ y, d ' , 2 ' . . . N ' ) e"P^ Y-! (1 ,2 , . . . N) 

(13.14) 

Taking the diagonal element and integrating over all coordinates, 

we get: 

Sp W| = Q^ (13.15) 

The grand partition function is: 

Also 

p^n/kT = In Q^ (13.17) 

-1 - i> "̂^̂  
g 

Again we can define some functions U by: 

( I3 . I8) 

< l ' jW^̂ I l > = <l'|tr3_S| i > 

< l ' 2 ' | w / | l 2>= <:i'|03^S|l> <2*| tJ3^^l2>-h<i '2 ' |u/ | l 2 > - ^ ' -
(13.19) 

etc. and proceed to obtain results analogous to the Boltzmann 

case. 

Schematically our procedtire has been the following: 

Wj —>• U« —*" p Boltzmann statistics 

Wi^-^Ui^-*P® Bose statistics 

Wt^—•Ui^^.-p^ Fermi statistics 
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The problemg that arise now are how to compute the Ua fxins, 

tions from the interactions and how to relate to each other the 

different W's. We shall consider the second question. 

d) Relationship between Bose statistics and Boltzmann 

statistics. 

We have 

< l ' , 2 ' , . . . N ' | W / | 1 , 2 , . . N > ST ]sr l |^ y '^(l ' , . . .N*:)^e-F 1f'*(l...N) 

and 

< l ' , 2 ' , . . .N ' jW«j l ,2 . . . N > « > V' ( l ' . . .N ' ) e " l '® 'y ' * ( l . . .N ) 
" a l l St . ^ ^ 

In the second equation, permute the primed coordinates and sum 

over all permutations: 

H P'<I',2'...N'|W„| 1,2 ... N > = 
p I " 

From the sum, separate out the symmetrical states. Clearly we 

have :• 

for symmetrical states H p''y'- NlV 
P» 

for the other states ^ P V - 0 
pi 

and we get: 

i: P'<l', ...N'IWJJI 1 ... N> =<I'.,.N'|WJJ^| 1...N> 

(13.20) 

The program to follow is then: 
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The Fermi case can be related to the Boltzmann case in the 
A A 

same way, with a convenient definition of the Wj and Un , and 

the program would be 

U. —• W. ̂ y W. ̂ —>Uo ^—* P^ 

The U^ contain all dynamical features without involving 

statistics. For the computation of the Uo we refer to the first 

papers quoted at the begining of this section: 

Examples: 

^1 * ̂ 1 * ̂ 1^ " ̂ 1^ ^^°°^ *^® definitions. 

In momentum representation: 

<k'|uJk> = <k'|e-P^^|k> 
^ P (13.21) 

•^kk' ® ^ 

and in coordinate representation: 

<x'|ujx> ^ (Vn)Ze-P^^e^-(^-^'> 

aZ^ ^ ^ e -"^W^ (13.22) 

where A = (47r(3) . This is a Gaussian distribution. For |3= 0, 

the width of the distribution is zero, and as p increases it 

spreads out. One can think of it as a diffusion problem (keep in 

mind that p = 0 means T = oo ). 

§14. Diagram representation of the grand partition function 

a) Numbered Primary Diagrams 

We want to express the U^ in terms of the U. 
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Recall that : 

<l' |W^| 1> = < l ' | U ^ | 1> 

< l ' 2 ' | W 2 l l 2 > ' ^ <l ' |U3^| l><2' l ir i[2> + <:i'z\JJ^\l zy 
> (14.1) 

< l ' 2 . . . ^jW^^ll 2 . . .8> = f-, P' < 1 * 2 ' . . . £'|W^|1 2 . . .£>(14.2) 

and 

<l ' |WiS | l> =: < l ' | U i S | l > 

< 1 ' 2 ' | W / | 1 2 > - <l'|U3L^|l><:2'|U3^^l2> + < l ' 2 ' | u / | l 2> 
.(14.3) 

Using (14.2) we can write; 

<1 '2 ' |W/ |12> = < l ' j U i | l > < 2 ' | U i | 2 > + < l ' 2 ' | U 2 | l 2 > 

+ <2 ' |U3^ | l>< l ' |U i | 2> ••• <2'l*|U2l 1 2 > 

Comparing with (14.3), w^ conclude, as <l'|Uj^|l> = <l'|U^^|l> , 

etc. that: 

< 1 ' 2 ' | U / | 1 2 > = < 2 ' | U i | l > < l ' | U i | 2 > + < l ' 2 ' | U 2 | l 2 > + 

+ < 2 ' l ' | U 2 | l 2> 

In the same way the other U® are found in terms of the U's. The 

computation is simplified by introducing a diagi'am representation 

e.g.! -t 

< l ' ! U i l l > -.̂  > 

I t < 1 2 ' | U 2 | 1 2 > ^ X 
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and so on. 

Then every W« is a sum of groups of such diagrams. For instance 

W-

l'2'3' l' i 3' 1' 2*3' 

I n ^ I A "" A I 
1' 2'3' 

W. 

+ 4 ¥ + ¥ • + .... + 

123 123 123 123 

contains all terms in W^ plus the ones obtained by permuta-

tions of the primed numbers. 

Compauring the W^® thus obtained with the corresponding 

expression as given by eq. (14.3), we obtain the graphical ex­

pression of U-,̂ . The rule is to strike out from W,^ all terms 

in which, when we make 1 = 1 , 2 = 2 , etc., the dependence on 

some of the coordinates is completely factored out. For slmplic^ 

ty we omit the arrows from now on. 

1'2'3' 3'l'2' 1'2'3' 

We will strike out " | | 

2' 3'1' 12 3 

I pA, , e t c . Then: 

but not I ' I 5 ' X ^̂ * ̂ °* 
123 123 

I I I c»l 3 ' r 2 
. I - . I - . r 2'3' 1' 2*3' 1' 2*1' 3' 3' 1' 2' 3*2' 1' 

U. s » 

12 3 12 3 
H ^ III ^ IX^ IX ^ * 

1 2 3 1 2 3 1 2 3 1 2 3 
+ ^ + 5 Other terms obtained by permutations 

123 
Let us introduce 

T« o » - ' 

e.g. 1 2 

< l ' 2 ' . . . j ' lT j I l 2 . . . Jl>= E : P '< l*2 ' . . . j e ' |U |^ | l 2 . . . 5 > (14.4) 

1^-3 circle 

*6 0thers=<l"2'3'lTll2 3>= A ^-JSlS"" °^ 
123 123 
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With • hese new graphs, we have: 
2' 3 1 

m 8 ^ 9 9 0 

1 2 • 

2' r 3' 

3' 1' 2' 

V 9 9 

• 9 

1 2 3 

2 3 

1 2 3 

3' 1' 2' 

2 3 1 

1' 2' 3' 

•*- 9 

2 3 1 3 1 2 3 1 2 

i 2' 3' 

1 2 3 

As we are inte*ested i n the case 1 = 1 , 2 = 2 , . . . , w e indica te 

t h i s by connec ing l i n e s with same ind ices : 

""3 1 

1 i*' 
These are the numbered primary diagrams. 

b) Unnumbered primary diagrams 

As we are going to integrate over all coordinates, 

it is clear that several graphs give the same contributions, 

such as iQr and < 0 ^ • Since in the expression f6r inQ. , 

we are summing over all diagrams, the total contribution of such 
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similar diagrams can be represented by a diagram without indices 

with an appropriate factor. These will be called the unnumbered 

primary diagrams. It can be proved that: 

Theorem 
^S 

m (4 = ZKall unnumbered primary diagrams) (14.5) 

In the computations, an unnumbered primary diagram is 

defined to contain 

i) a factor z for each linej i lines =»z^, 

ii) a factorT for each junction, 

iii) a factor 1/S where S is the symmetry number 

known from the theory of graphs). 

S is the number of identical graphs within the totality 

obtained by all possible permutations of the indices in the origia 

al one. 

To acquaint ourselves with the above statements, we write 

the first few diagram explicitly: 

^^^ (b) (c) 

( f ) 

(a)—v(2/l)[<llTi | l> dl 



(b)—>(22/2) J < 2 | T i l l > < l | T i l 2 > dl d2 

(c)—^ ( 2 ^ / 3 ) / <2 |T i l l> <3lTil2> < l | T i l 3 > dl d2 d3 

(d)—> ( 2 ^ / 2 ) / < 1 2 iTgll 2> dl d2 

(e)—> (2^ /1 ) / <2 |T |3> <1 3IT2I2 3> dl d2 d3 

(f)—> {7^/6) [ <1 2 3 l T | l 2 3 > dl d2 d3 

c) Contracted diagrams 

Since (cf. eq. ( I 3 . 2 I ) ) . 

< k ' i T l k > = &j^, e-P^^ (14.7) 

it is simpler to carry out the computations in momentum space, 

and we shall do so. Consider (14.6): the contribution of the 

first row diagrams is: 

JLZe'P^^ ^Z (2^/2) e-2p^^ + 2(2^/5) e'^pk^...^ 

= - m (1 - 2 e P^ ) 

To represent more schematically the following rows of 
diagrams, we define: 

I 

Bi(k) = I H I + 

2 2 
= 2 + 2^ e"P^ + 2^ e"2^^ « (14.8) 

2 
= 2/(1 - 2 e"P^ ) 

The motivation of this is that, for any given row, successive 

diagrams are obtained from the first just by interpolating 
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Junctions T ^ in any of the lines. The set of diagram? of the 

second row is represented now by 

the set of the third by 

< o 
Qy^ } and so on. 

These are the contracted diagrams. To each of these is 

attached a symmetry factor, to be computed in the same way as 

before, now with respect to the dotted lines. It can be checked 

that the symmetry factor takes into account correctly the individa 

al symmetry factors attached to the previous diagrams. 

The introduction of the contracted diagrams is equivalent 

to having summed all Tj^ terms, so that only the 1^,T^, ... re­

main. 

§15. Formulation in terms of average occupation numbers 

The motivation of this is an extension of the previous de­

velopment. Further sums can be performed. For instance, consider 

the following graph with the cut indicated: 

^^_ /-f-l- k 

'X > 
" k 
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On the right of the cut, because of momentum conservation one has 

the same momentum on the two lines that cross the cut. This right 

side can be thought as a sort of a propagator. ^ 

We can sum over all such portions, i.e. portions which 

yield an outgoing momentum equal to the ingoing. To indicate this, 

we define: i 

M(k) = ? = f + ? /̂ + i''> + r̂ ^̂ -̂  + ^v 
' (15.1) 

with the eor'respending synaâ try factor (same definition). Some 

example of contributions are (for the definition of m(k) see eq. 

(14.8)). 

I 
k| -*»(k) 

> 

ir^>k' -Ĥ ltt̂ Ck) Z:<kk»{Tp|kk'> 

"^^""^ ^ * fe-3 ^̂ ^̂ ^ < V 3 ^ 2 i ^ 2 > <J^2l^2l^lJ^3> 

^ ^k+kg-kj^-kj 

It can be proved that M(k) has a direct physical meaning: 

Theorem: 

If <njj.̂  is the average occupation number in momentum 

state k in the grand canonical ensemble, then 

< V ' ^ (UVti)T^ ...fe,-<̂  ̂ 1 V--̂ £-l'̂ £̂ î  H-'^l-l> 
k fixed (16.2) 
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Summing over k, both sides yield the total number of particles. 

One can further prove the 

Theorem: 

<nj^> = M(k)/2 - 1 (15.3) 

where Z = e ' '̂  j ji z chemical potential. 

Steps to express fctiQ^ in terms of M(k) 

(i) 

1 
I I 
I I 

where 

Explicitly: 

K(k) = X) * {fj (15.4) 

* i^2<'' VslTjIk ki k2> M(k;L)M(k2: 

which is only the summation of the proper part of the diagram. 

Then: 

M = m + mKM (16.5) 

which gives the expansion 

M = m + mKm + mKinK̂  + 

+ all irreducible diagrams with i lines I 

# 
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I 

IS 

m + T + M= I + Lf -̂  X "̂  (16.6) 

Irreducible diagrams: diagrams which, when two different lines 

are cut, do not split themselves into disconnected fragments. 

: this figure shows a reducible diagram. 

(ii) Define 

TP - Zl ( a l l irreducible diagrams with i l ines without 

external l ines) = 

•" • • • • ( 1 6 . 7 ) 

(c) 

( a ) - ^ i2:<k k'lTgjk k'> M(k) M(k') 

( b ) - * (V8)i:<k3 k^lTglki k2> <k3̂  k2lT2lk3 k^y 

X Kik^) yi{k^) M(k^) FKk^) 

( c ) - ^ (V6) 21 < 1 2 3IT3I1 2 3 > M(1)'M(2) M(3) 

It can be proved the 

Lemma 

- 5 - ^ = K(k) (15.8) 

6M(k) 

Theorem 

]b Q^ = E [ £n [M(k)/2 ] - M(k)/m(k) + l] + ]P 
(15.9) 
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where «^2 
m(k) = 2/(1 - 2 e~P^ ) (16.10) 

and TP is given by (15.7). 

Main point for the proof of this theorem: if we differen­

tiate both sides of the equation with respect to 8n2, we obtain 

2<nj^> = Z [M(k)/2 - l ] 

which i s c l ea r ly co r r ec t . 

Use i s made of eq. ( 15 .6 ) . 

This theorem can be generalized into a variational princi­

ple: 

Theorem (Variational Principle) 

Consider 

'i' = ̂ {in[M(k)/z] - M(k)/Z + M(k)e"*P^ + l} +TP 

as a functional of M (for fixed 2). We seek the maximtim of ^ 

with respect to variations of M. 

- ^ = 1/M - V 2 + e-P^ + K (16.11) 
8M 

where use is made of eq. (16.8). 

Equating to zero, we get M = m + m K M. Therefore the 

grand partition function is a stationnary value of ^ . It can 

be proved that it is in fact a maximum by taking the second varia 

tion. 

In this way the thermodynamical problem is formulated in 



91 

terms of a variational principle. 

§16. Comparison with the physical situation 

The grand partition function is expressed in terms of M, 2 

and TP (eq. (16.9)). TP , as given by eq. (15.7), involves the 

T" functions which contain no statistics: it depends only on 

the dynamics of the system. 

For certain T and 2, M(k) has singularities in its de­

pendence on k, i.e. at k = 0 M—3-oo . Bose-Einstein transition 

obtains when the variational principle leads to a M(k) that becomes 

singular at k = 0. 

For the real He system the phase diagram is as illustrated. 

The results above lead to the expecta­

tion that 

Along AB M(k) = finite on both sides 

Along AC M(0) = infinite on both sides 

'= infinite on liquid side 
Along OA M(0) 

= finite on gas side 

<• 




