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The Many Body Problem

§1. Generalities

a) The problem

We shall consider a system of a large number N of identical,
spinlessy non relativistic particles. For convenience set h = 1 and
2m = 1, where m is the mass of the particle. All quantities will be

then expressed in units of (length)P, P being positive or negative;j
e.g. |E| = 172,

The Schroedinger equation to be considered is:

N
[Z (-v§> +V] Y=Y (1.1)
i=1
where
v= E , v (ri.) (102)
i>3 J

and the v (rij) are taken to be spherically symmetric for simplicity.
Furthermore; we apply box normalization with periodic boundary condi-
tions (different boundary conditions could be taken, but the present

choice is siaxplest). Denote by ). the volume of the box.
The following conditions are imposed on v(rij):

1) Short range; specifically v =0 for r > T ...

ii) It has a repulsive core. Evidence for this exists in
both atomic and nuclear cases: forces in the helium molecule, nuclear

potentials deduced from high energy nucleon-nucleon scattering experi-
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ments. Furthermore the absence of a repulsive core would lead to a
collapse situation. This can be seen as follows: 1f the potential is
of the form shown in fig. 1.1, -

v(r)1l i.e. attractive at short dis~

tancesy the particles tend to

d
_ l"— /\/—/ come together, since this low
| T
I
|

ers the energy. If we consider

all particles confined to a

small region of dimension d

Fige 1.1 within the box () (Fig. 1.2),

and take the corresponding wave function as a trial wave function to

compute the ground state energy of the system, we have, for a Bose
Sygtem: )
2
oy XN-1) & .
<HE> ~ -y BE=LL 4+ §(3) (1.3)

as all particles can have the same k ~ %— + Then,y when N increases,

the first term dominates and

we get Eo<- const. x NZ. The

@ system collapses, the density
1
_ﬁd"— increasing indefinitely which -
9% is clearly an unphysical situa
Figo 1.2 tion.

For a Ferml gystem, not all particles can have the same
wave length d. However let P be the maximum momentum of the Fermi
sea. Choose as a itrial wave function one representing independent

particles in the small box of dimensions d; then ‘



o N
Pevn . opo Y (1.4)
We get now:
z
- o ’\} 2
<H>~-vy L 4 oy ZE (1.5)

For large N, the first term is again predouinat, and the system

collapsese

1ii) The potential has a lowe>™ bound,

Examples
v
(ev)
Fige. 143, Potential
between two helium
atomns .
« London: "Superfluids"
vol. II).
10‘3..
b) Ground state energy for a Zosc svshes n~r a Boltsmann sys-

teme.

The wave function for a Bose systen 1s symmetric under ex-
change of any two particles. Denote it by 9%. The wave function
for a Boltmann system has arbltrary sywmetry property. Denote it

Theorem: ¥ (ground state) = Yarb (ground state)

BeSe
Proof: Consider -warb and interchange in it the coordinates

. of two particles; the resultant wave function is still a solution
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cf the Schroedinger equation with the same energy Eo’ and so 1s the
sum of the two wave functions. If we construct then the wave func-

tion

BoSoe
\P= ZP: P"/’arb (I‘l,..., rN>

where the sum extends to all possible permutations of two particles;

v satisfies the Schroedinger equation with eigenvalue E0 and is

goSe
arb

and therefore is everywhere positive) we conclude that ¥ is the

symmetric. As it does not vanish identically, (¥ has no nodes

ground state wave function of the Bose system, q.e.d.

We are interested in the ground state energy for large N. First

consider the case for 2 fixed N.

04
N if v is purely repulsive
if v also has an attractive part
a1l
N P
Bpbr—-rrr———— —— ;

Fige le4 = Groand state cnergy per particle vs. (density)';.
Referring to Fig. 1.4, we can indeed prove that the curve is analytic,
as it is a sclution of Laplace's eq. with fixed boundary conditions

and well behaved potentials. That the curve is monotonically decres-

ing is easlly prcved from the argument that an increase in volume .



implies a reduction of constraints. That the energy approaches

+ 00 for small () follows from the existence of the repulsive core.
As -;3;r —=+ o 4 the curve approaches 0 + for a repulsive inter-

action (no attraction, therefore E > 0 always). Since the curve

is monotonic and 1s bounded from below, %"—L?;oo (E/N) always exists.

It is also easy to demonstrate that a lower bound B for E/N exists

and B 1s independent of N. To see this we refer to Flg. 1.5. 1In

the optimum arrangement of particles, i.e. corresponding to lowest

a
\\.i/ N | .\6{.

|
b /

Figo 1.5

energy, any given particle interacts only with a finite number < «

of neighboring particles, and we have E°> -v. N . Therefore

s
+ > = Vo, © independent of N.

o)

Next consider the limit N— oo, taken in such a way that f remains
constant; we obtain the curves in Fig. 1.6. Three types, (1), (ii)

and (iii), are possible. Again the curve is monotonic. It must
1lim E Q

concave upwards 3 and N-o00 ( %I)= oo at ¥ = 0. We distin-
S fixed



1im =2 4 -
N—-oo N
(& £ixed) )
(1)
(iii)
R 3
(ii) N P
A
. —_
Fig. 1.6

guish three types of curves:
type (1): 1im (EO/N>:>O always. Example: v > 0, the energy is -
always positive. The curve approaches zero because each individual

curve (see Fig. 4) approaches zero uniformly in N.

type (11): the potential is partly attractive and allows bound states.
As example, consider the case of nuclear matter. At %%-fv 0 the nu-
clear matter is compressed, the energy being therefore very high. As
the volume increases, the density decreases (and so the energy) until
the natural density of nuclear matter is reached, say at the point A.
Beyond this point, we expect, physically, the nualeons to form a -
cluster which moves around as a single particle within the enlarged
volume. The additional energy of the nucleus due to 1ts motion is

o -2%-25 (-%-)2 « The energy per particle 1s '%'q" E%;(—Il‘—)z which tends
to zero as Ny L-»>00, that 1s, the displacement of the nucleus as a

whole does not contribute to the energy per nucleon. The curve (1i) ‘



is horizontal from the point A on. (Note: in any approximate
theoretical calculation one usually gets a curve of the shape
shown in FPig. 1.7. This is because one forces the particle to

spread more than the natural density state, as if a negative preg

. sure is applied).

o
1lim T i type (4ii): the curve

approaches smoothly a
negative limit. It

- 1 corresponds, for exam-
\/_(ii') 5
ple, to a system in

which two particles

Fige 1.7 can be bound together,
but not moree.

In other words, for a system in which

0 >E(N=2, Q=00) = E(N=3,Q=00) = £ E(N=4,{15 00) = 3 E(N=5, 0= o0)
ete.

The two body clusters repel each other and this repulsion effect

decreases as the volume, and therefore the distance between clusters,

increases. That Eg approaches a finite 1limit follows from the

fact that now the gLergy 1s simply proportional to the number of two

body clusters, i.e. Eo AV S % o Therefore Eo ~ oz :‘}_ .

2

¢) Ground state energy for a Fermi system.

The discussion is similar to the Bose or Boltzmann case. Only

the ground state energy of the Fermi system is higher than the ground
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state energy of the Bose or Boltzmann case.

d) Exsmples of a few guestions not solved.

lim Eo
1) Does yloQ rixea)( /y) exist ? (It is believed that
one can prove it exists).
ii) 1Is this limit independent of the boundary conditions ?
(Tentative answer: yes).
iii) Construction of an explicit example giving rise to the
type (iii) curve in Fig. 6, section 1-b.
iv) The precsure of the sgstem at zero temperature is by
definitinn ?P = -(%§% Consider the three curves in
Fige 1le6:

type (i)

1im Zoy Pi
R
£ L
N N
type (1ii)
1im Zo 4 P
N
1 1
o) Q
\L__ T N

e e — —— ——— ——




Can one prove that P = 0 as %% = (%%) -0 ?
A

One can form a non rigorous proof by a variational argument near

the point A.

type (4iii)

:

lim EQ
N

~—— & o
N

e et e . — — — ——

In this case p represents the pressure of the two body bound sys-

tem.

v) For a hard sphere system, is the face-centered cubic
packing the densest arrangement ? The answer is intui-
tively yes, but a mathematical proof is not yet known.

vi) Does the T% VS, %% curve, for fixed N, concave upwards ?

9}

E
Does the lim 3? VS Jj curve, for ¥ —00, concave upwards ?

We can give an intuitive argument for answering yes to the

second gquestion. Referring

to figure 1.8, construct a

trial wave function which

represents N, particles in
Q,+0,=0 P 1P

(11 and N, particles in flz.
Nl + NZ = N

Neglecting boundary effects

at the intersurface of the
Figo 108
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two boxes, a variational calculation yields:

E(N,€) + BN, 0,) > E(N,Q)

or

5, [ E(NN2 20,) ] . N, [ E(NNZ’Qa) ]}[ E(N,Q) ] (1.6)

N 1 N 2 N
E E(Nq 4@
lin -2 | ,//lim ___%i_il
N-oo 1
AN left hand side of (1.6)
| *
: o i E( NZ”QZ)

S lim NZ

| right hand
| side of (1.6) }
N l -
Q1 Qp 0
Bl ~ B3

Figo 1.9

It follows from eq. (l.6) that the point corresponding to the
right hand side lies below the stralght line joining the two points
defined in the left hand side of eq. (1l+6). The curve then conca-

ves upwards.

e) Excited states
The definition of the excited states 1s not well formulated.
In our scheme (box normalization), the exclited states are boundary
dependent, the density of states increasing as the volume of the
box grows larger. The exact positiong of the states 1s not of phy
sical interest. Instead certain boundary independent quasi-station

ary states are of physical importance.
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The questions of the definition of the quasi stationary states,

of their collision mean free path, lifetime and of the number of
quantum numbers needed to characterize them, are not well settled.
The problem is usually tackled in a way similar to the case of
elementary particles: the actual Hamiltonian is divided convenient
ly into two partsy H = Ho + Hint’ (as the strong and weak inter-
action parts in elementary particles), in such a way that Ho yields
the ground state and the quasl stationary excited states of a quan
tum mechanical system, e.g. phonons and elementary particles, and
H, 4 describes the residual (weak) interactions between the parti-
clesy which give the decay of the quasl stationary states.

f) Physical problems
We aim to obtain a gualitative understanding of the follow-

ing questions:

i) Behaviour of He4: A transition at 2.2° K, superfluidity,
infinite heat conductivity below 2.2° K, the two fluid problem (phe
nomenon of second sound).

ii) He3: obeying Fermi instead of Bose statistics, it does
not show the same phenomena as He4.

iii) Nuclear matter: how to obtaln the binding energy per
nucleon from the interaction between nucleons.

iv) Superconductivity

We shall not discuss iv) at all.
Authors in this field: Schwinger, Martin, Brueckner,
Bethe, Goldstone, Montroll, Van Hove, Watson, Bloch, de Dominicis,

Luttinger, Klein, Ward, Galitzki, Beliaiev.
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§2. Pseudopotentials for hard sphere interaction for two bodies.
(Phys. Rev. 105, 767 (1957))
a) Motivation
i) The hard sphere system constitutes a definite model
in which we can estimate the accuracy of the approximations made.
1t has one obvious parameter, the diameter a of the hard sphere,

ir terms of which we obtain a series expansion of the energy.

ii1) Physical reasons: a repulsive core exists in fact
in the sctual interactions.

iii) For a dilu*e system, which is the only system sub-
ject to relatively easy perturbation calculation, the important
changes in the system brought about by the potentials is the chan
ge of wave function at large distances. This change is characte-
rized by ithe phasz2 shift, which for small energies, is in turn

gci fed by the scattering length. The hard sphere potential

e

5

is ¢ne in which the diameter a 1s precisely the scattering length.

Ly the idea

w4

t eonstsos in replacing the interaction by suitable

boundary conditicns,y, and introducing a pseudopotential as an equi-

vaient to the bhoundary conditions (Ref.: Fermi, Breit, Blatt and

43
Veigshepd e

-

% B, Fermi, Ricarca Sei. 7, 13 (1936)-
G. Breit, Phys. Rev. 71, 215 (1947).
Je He Bueth and Vo F, Waiss<opl, Theoretical Nuclear Physics, John Wiley,
New York, 1952, p. 74.

i
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We shall treat first the two body problem.

V(r) r¥
! |
a T a T
Figo 2.1 Figo Le2

For the potential of Fig. 2.1l the Schroedinger equation is,

in relative coordinates:

(v2 +x%) ¥(@) =0 r>a
(2.1)

¥(T) =0 r¢oa

Let us consider for the moment only s waves. BExpanding the

wave function around the point a, we have

r Y~ C(r-a)
or
a
\}f ~ C(l - r)
We extend this wave function up to the origin and look for the

equation it satisfies:

VP~ -Cav?(F)=4rCa o(r) ¥ 4ra s3(x) Y (0) (2.2)

C is the value of ¥ for the unperturbed system.

One can not carry this argument to higher order, because one
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obtains divergences due to the & function interaction.

¢) Formulation
Assume a hard sphere interaction only for s waves. Referr
ing to fig. 2.3 we want to find a solution in the region limited by

the sphere of radius a and

S
any closed surface S.
<E> vanishes at both boundaries.
The s wave satisfles:
Figo 203

3
(2 + k2P = gr 28R K2 57() 2 (+ 1)

(2+3)

where k% = E. This equation is equivalent to (2.2) for small k.
We can prove it is an exact expression as follows: in the neigh-

bourhood of the sphere, expandingqf, one can write
\P‘: v)s"'YJp"'y’d"'“' )

then (V% + kZ)FP = (V2 + kZ)‘WS as the other terms vanish.

But

yxs=A.s_LrA.Is§.:__-_.@_l=A_S.i_n?k_1; cos ka As@.g.i,k.x; sin ka

?herefore

(V2 + x%) Yo = A 4m 53(r) sin ka (2.4)

On the other hand
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3 3
T Eéﬁhgé 5 (r) é% (rP) = 4n 33%—32 6 (r) é%- (r ¥s) =

A 4 tan ka cos ka §2 (r)e(25)
i.e. we obtain the same result as in (2.4).

d) Let us make a few remarks about this formualations:

(1) = Equation (2.3) is not in a most convenient form:

you may write it

kY = [ PP an BRI () 2]V .

The operator k2 is Jjust the energy of the system: the laplacian
is the kinetic energy, the pseudopotential is the potential energy,
but this expression contains kZ by itself. One way is to solve

it explicitly, but, if we are interested in an expression of the

problem in terms of a, we may write:

Eia.‘_n_}?l.{_a.za[l-i%kzaz]"' cos

the first term 1s independent of energy, the second is dependent
but we can go back to the above expression of k. We can substi tu

te the k2 by the laplacian, up to higher order terms in a

2

32%%Jﬁi o [ 1 - a §72 + .o ]

o V-

One has additional terms in a“. If we restrict ourselves to the two
first terms there are no more k in the pseudopotential.

(ii) - The operator %% r is not hermitian. One must be very carg
ful about it - the operator has to be taken at the point r = O.
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If it operates on a function which is regular at the origin, then:

d
s;r‘i’l

i 1¥llr =0

r=0

which means that %% r 1is just unity.
If the function is not regular, this is not true: for example, if
V= % 5 QIlr = o 1s infinite, but if you put N % in the
?
left hand side, you have 0. S0, > r\ylr =0 # 1P’r = o 1f the

function is not regular at the point r = 0.

(1i1) Higher harmonics. We follow the same procedure as for s
waves; the details are discussed in the paper mentioned at the be-

ginning of this section.

(iv) Le* us mention on electrostatic analogue. This analogy 1is
fundamental for the pseudopotential method.

Consider an electrostatic problem with a small conducting
sphere at potential = 0. It is well known that we can replace
the charges on the sphere by & single charge and a set of multi-
poles at the center of the sphere. If we sum up the actions of
the multipoles, the potential produced outside the sphere is iden
tical to the original potential. Ordinarily, we solve electrosta
tic problems this way. The analogy can be carried out now: the -
first term, the single charge, is just the s-wave of the scattering,
the dipole is the p-wave, etc. If we want to see how to generalize
the pseudopotential to the many body problem, the concept of equi~

valent multipole distribution will become very handy.
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‘ §3. Example of a perturbation calculation

Because of the fact that %% r 1s a rather unfamiliar operator,

we have to understand how it
works, then weshall be able to
apply it to more complicated
problemg., Let us take the very
trivial problem of a wave func
tlion vanishing on the surface
Fige 3.1 of twc concentric spheres

(figure 3.1).

We can write out the exact normalized solution

1 sin k (r -a).
lP’n - k}-"p S (301)
) Var (R - a) d
. where
mTm L
kn = m— ] n= l, 2, 3 oo PR (302)
R-a
We want to expand this for small values of a:
o] 1 2
= - O 1 -y - __rT~ 2
Yo=Y, + ¥, +ee. B =E°+E+ .=k i
- For example, from direct expansion we have
2 .2 2 .2 2 .2 2
o _ 7_n 1_ o n~ 2a 2 _. non a
By = =% By = T % 2 By > 3(R) (3.3
R R R
sin ZHL 1l
¥O = i (3.4)
r V 2R
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We know the exact solution and we can expand in terms of a. If

we want to replace the houndary condition on the small sphere by a
pseudopotential,y can we make the perturbation calculation and derive

the wave function and energy correction, and get the identical re-

suit ? Let us treat only up to order aZ:

Bp= | -ySraras’ ) %]V (3.5)
Let ux write:

U=47ra8(?)%; r (3.6)

In a perturtat. . ~reoasiors the familiar matrix element is:
-7 — D N4 : 1. 2 € A PO 4 - Ao o o
U =< ¥ 1Py e Thi. osisity is trivially caleulable: ¥

is cepular at the origing 30 U die just a & function

2
= T - R = 4ma mn | TR - 23T pp (3,7)
Umn = 4 7 g 30 I 30_"‘ 53‘ = 0 2R R R R3

Sc we ged the 120 c¢rder corrzction to the energy:

4 ’-\,‘T_-l'. s
0, - = wila e e
dend .
n
RS
and talg ie the correet r-.-<2: obtained in eqe (363).

Let 15 ¢ loules . the sunonud order energy. By a simple per-

turbation uwethod:

§ u. E 2 2
SOmomn o m n_
m AN 0 _gO mEgn 22 Cst. (3.8)
n~%mn

wvhich 1s divergent: we get infinitles., The reason for this infini

ty is an incorrect use of perturbation calculation. When one deri- ‘
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ves this formula one uses the hermiticity of the hamiltonian, which
is not legitimate here. So the correct way is to proceed step by
step: )

1 U o
- —-—L
y'n > g% g° - E° -wm > (3.9)
n

m

then we get the second order energy En2 =<Vn° | U | an >

En2 =<}0n° | U | Zm%{ Umn }Umo> (3.10)

This formula is general. If you switch U with the summation, then
you put out of the matrix element the constants and just have the
expression (3.8). But you are not allowed to do it: U is acting
on a sum which is not regular at the origin:

S ’ U 2an ;“_’ m mmwir
: <%BEO 1¥,° >= - ' ‘ z sin
m

n7n En° r RV2rR ©® Fn m&= n R

This Fourier sum has a kink at the point r = 0; 1t may be explicit

ly summed:
zan i g [ e e ) 1 sinnéo ]
- — — — o — cos N O =
rRV2mR 2 le] T 2 Tn
mr
where € = —
R

this is the same ﬁknl as obtained from direct expansion of the
exact solution (3.1l). ‘
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1
Forr =0, © =0 but i 13  %," behaves then like — .
r
Now if we use En2 = <§Un° | 0| Wnl > we get the correct

expression:

EC=3& L 2 (3.10)

How the caclulation can be extend to higher orders: The
pseudopotential is not exactly U= 4 7 a 8(T) 5% r . With the
ad correction you get the right result in the next order.

We have seen that the existence of infinity come from the

incorrect switching of the summation with U,

We shall do the same for the many body problemj we shall be

able to eliminate the divergence and obtain the correct result.

§4. Pseudopotential for the many body problem.
(Phys. Rev. 105, 767, (1657)).

For the many body problem, one is immediately led to write
down the two body pseudopotentials:

= 3 0
Vps E;;% 87a § (rij) TP ryy * higher order

terms.
The change of the factor 4 to 8 is because of the reduced
mass: one has ‘—’ + VZZ "'—V}Z + 600 = -%- VRZ + Zer +V32 $ous

- 1 ~— — —_— —

where R = = (r1 + rz) and »r = ry -'Fé. The kinetic energy



21
for the relative coordinate r is thus 2‘0}2. Hence the change

1

from 4 to 8.

Inaccuracies of vps:
We must go back to the electrostatic picture: the problem

is 3N-dimensional. The system is in a 3N-dimensional box, the
function has to vanish or to be periodic on the surface of this
box. Let us draw a "superline" '?i 2'52 (see Tige 4.1); the
boundary condition is | 7 -'?é | € a, so we have to draw a
small "cylinder" around this line: the dimension of the surface
of this cylinder is 3N =~ 1, the boundary condition on this surface
is Q? = 0. Unfortunately, there are complications: There must
be some point where the superlins —?5 =’F; intersects with the
superline 'Fi ='?E 3 in this region, the intersection of the two

cylinders will be a complicated one.

3

We can make more higher order junctions: three cylinders,

four ... The wave function
of the system has to vanish
on the surface of all these
cylinders.

Based on the electros-

tatic analogue, we might

think of some charge distribu

tion that gives rise to induced T1=T>
charges on the surface of the Fig. 4.1

eylinder. If we use the concept
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of multipole expansion, we replace the charges on the surface by

charge and multipoles at the origin, that is on the axis of the
cylinders. We have a pseudopotential distribution,

If we take the two body pseudopotentials, we can see that it
does not properly take into account what is happening at the junc-
tions. However the total surface area of the junction is small
compared with the surface of the cylinders: we can take into
account the junction of cylinders by terms in which products of se
veral & functions apvear. For example, the junction of 2 cylinders
may be written: 8(F, - Fé) 5(?3 - ¥,)e This term is of the order

of a4.

In the many body problem, nobody has taken into account these

junctions properly. In the calculations below they can be neglected.

Solving the squation is easier if one uses the language of se-

cond quantization, brcausc of the summations in the pseudopotential.

With a sum E , V., s with a symmetrical expression of V, .,
Y 1] 13
you always get an expression:

L S — - - — —_
Vos = %'//@ (T,) ‘H’*(rl) 8rma 63(1'1-1‘2) 3-1%2 o ‘H’(rl) \H'(rz).

where () satisfiss the commutation rules:

*
[WH, YED1, =0, [P@, WFl, =5 G0, (4.3)
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The number of particles is

vo= [F@ ¢ aF

§5. First order emergy for a many body system

This is easy because there are no divergences. Let us take
periodic boundary conditions, and let us discuss energy correction
only for the ground state of the system. Let us stay in the first
quantization formulation for a Bose system. The wave function is

1

o _ A1)
\[/ W (&6 l):

and the first order ground state energy is

1 o °
B, =Y° 1V, 1¥°). (842)
3-2; ryy operating on {° - vhich 1s regular - gives onej we

get §(T) for each pair. The result is

Egr = -—2——' x 8ra T = 4mwa N (N=-1). © (543)

If N is very large, the ground state energy is just 4map
where = R/A. 1is the density. '

We shall now do the energy calculation in the' second quanti‘za-
tion formalism. The pseudopotential is defined by eq. (4.2). This
has the complication of the operator % r. We stated before that
for a function regular at the origin we can replace it by unity. We
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shall then define the pseudopotential

* . 3 - —_—
vos ama [P §@ 8GD P2 W) o o2 (5.4)
ps

We shall work with this operator until we get into difficulties,

and then look back at the right expression. The advantage of v;S is
that it has a much simpler form.

Let us consider a periodic box. The simplest way to work in

the second quantization formalism 1s to expand into plane waves:

1

W =2 = KT ap 3 (5.5)

k is a simple cublc lattice of points: k = %% X integer; the a7
are amplitudes which are quantized quantities. The commutation ru-

les for them can be obtained from those for Y, eq. (4.3):

[ai{”ak"]i‘ = 0
(5.6)
Logoag™ly = g

If we substitute the development for 4P into V! _, we have:

Ps
ma
2 a
13ke

pPs o2

"N

ei( -1 ;1"‘-3.0 ;2"'?0?2"'?0?1 )

.l.

* — — —t
a3 & ay G(rl-rz)drldr2

He) %

The double integral is a trivial onej it vanishes unless.§+3;ﬁ¥?= 0,
in which case its value is () « The result is then

' 477'& Za .

3 -k -
Vos = P j 8 8, i+ J-k-¢) (5.7)
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where the § 1s now a discrete one. We have suppressed the arrows
in the momenta for simpllicity; this convention will be used from

now on.

The meaning of expression (5.7) is clear: it represents the
scattering of two particles from T:’TQ) momentum state to I 3’, with
conservation of momentum, summed over all possibilities of value

and direction of momentum.

Energy for a Bose system
We label an arbitrary state by |n)> , where n represents the

occupation numbers of the various momentum states: n = N, Ny Ny e..

Let us calculate the dlagonal matrix element <n|V£, s|n> o« Consider

. -
ps’
and _fwe get zero. Then we are left with two cases:

any term of V unless k and ? are respectively ldentical to T

=7 .

B

T =

a) k¥
The operator ay, when applied on the state |n> gives a factor
\}nk’ .
* %
2ol o agam Ind> =3 nm (-1

—

p) 1 #73

The scattering is 1J — k£ or ij — £k. One term is of the
*
form a; ag 3y ae; the other has ae oy, but gives the same contri-
bution o ny .

The total contribution is
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' 4ra )
G IVl m>= - [Smme-) v 2 32 ] (5.8)
k # k' i
We can write it
4ra
it = [ -ne e ga-e po]
or finally
' _ 4ra 2 2 .
<nlvpsln>—-—5_— [ZN -N-%nk] (5.9
In the case of the ground state n = o, k#0 and n, = N. We
get from eq. (5.9):
4ra
() = 2 8. (5.10)

geSe 0

which is the expression (5.3) we got by the first quantization cal

culation.
(1) _..f. 2
When N is large, Eg 5. ol N=y 1.e. the energy is propor-

tional to Np.

Discussions: The expression (5.10) was in essence obtained by Lenz and
Heitler in 1929 for the particular case of the ground state. They
considered a big box in which particles are scattering on each other.
Let us suppose that all the particles are flxed scatterers and one

is going in: 1t has a scattered s wave on each scatterer; the waves
superpose to give a wave travclling through the medium: the change

in the wave number gives us a sort of index of refraction. The

change in energy of the particle 1s known to be proportionail to the

density, for a medium of low density. We obtain the above depend-
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ence on the density. A defect in such an argument is that the scatter

ing centers are considered as fixed: 1t cannot be easily refined.

The third term of the expression (5.9) is a pure quantum mechani
cal term, due to Bose statistics. If we want to go to low energy
states, we want to make the sum Eilnkz as large as possible; the
best is to put all the particles in the same momentum state; that
is Bose ~ Einstein condensation: the particles tend to condense

into one momentum state.

We can ask the question: which is the energy of the first
excited state above the ground state ?

4rra 2 > 4ma
Al > = - = [(w-1)21) - ¥2] = - aw2)

4ra
whichy for very large N is -E:-X 2N = 8mrap.

The excited state has a finite energy difference from the ground
state. The difference is independent of the size of the box when
density is fixed. This is completely different from the excitation
1.2
T)

of a free particle: the kineétic energy difference: ( goes to gero

as the box gets larger.

In the many particle case, we get an energy gap between the
ground state and the first exclted state, which is not the case in
the free particle problem. However a more elaborated calculation

does not yield an energy gap, as we shall see later on.

Energy for a Fermi system

The procedure is exactly the same as in the Bose case.
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Let us be a little more general and include the spin. Every .
particle will be labelled by its momentum and a parameter S, which i
may take 2J + 1 valuest =J, =J + 1 .co Jo If there are two
of these Sy spin and isotopic spin, we can combine the two together.,
Thus S gives J = % for protons aloney J = 3/2 for neutrons and pro-

tons. S gives the total degree of internal freedom.

It is well known that, when the potential 1s independent of
spin, we get exactly the same expression as in the spinless case,

the spins are not switched.

' 4tra, % 3
V., = — (R, +k =k =k, }§ 8
ps Q EE%;;;;Z aklsl ak252 ak3s3 ak4s4 U R A A $184 553
$18,525,
ira * * 3k =k, =k, )
- S—— . a =y .
Q kR, "kysy “kpsp Pkgs, kgsy 87125 “
$182
ire * * Bk tkokok,)  (5.11)
= e a - - e}l °
Q kERE, ®rysy Pos, Mg, Ykysy BT
S # S5

the terms s; = s, vanish because S5y Pkgsy * 8xysy %kzsy T 0.

In other words oaly for identical spins there can be no s-state

interaction between Fermionse.

§

The diagonal element of V s is easy to compute:

P
4mra,
1v! | = —= 2>
<nks ps nks> Q. klkzl nlel 1:1kZSZ (5.12) ‘

5185 sl#s2
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this expression is equal to:

= (= OIS ]
QL "ysy s, 181 nkzsx
8182
The first term is the product of two sums 5:; Ny = N. In the

second term there are two independent summations: %—1 (Zi{: nks)2
Thus

41T
[ 2 . Xs" (total number of particles

|
(alVpglnd = 4
with spin S)Z]

In the ground state, all possible states S are equally occupied.
There are v particles for a fixed spin S.

Then
= (2J+1)
Z]: %{ZZ kysp Tkps, N ( J+1 > <2J+1 >

For the ground state:

<gr.s.l Vs | gres.> = 8map N (5.13)

2J+1

Comparing with the Bose expression, we must exclude the pailr of par-
ticles having the same spin state. There are N particles in the
ground state and 2J + 1 possible spin states. We must have (N =~ -Z%-I)
particles that may interact with one particle: |

g1 N ! (5.14)
= 4ra A - 5.
gs P 2J+1
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§6. Higher order energies (Phys. Rev. 105, 767 (1957))

One can calculate the higher order terms. When we meet diver-
gences the method to get rid of them is exactly the same as the two
body problem. The procedure is very simple: we use straightforward
perturbation until divergences are met. Let us write down the re-

sults:

Fermi system
If PF is the maximum Ferml momentum:

3 5W;P N
Pp” = 3 p= =
27+1 Q
E 3 2 Ppa 2 2
£ == Pp + 8rmap [1+6(11-29n2)35w+0(Fa)}
2 5 2J+1

The calculation ¢of the terms is in principle very simple but a

little blt involved. e have to be careful about the question of the

switching of the pseudopotential with the sums,.

Let us pay attemtion to the fact that each fterm gives a finite
expression in the case of fixed p and a; as (. and N go to in=-
finity'o

Bose gystem

ﬁ—%—- = 4map [l + (2437) — + Q"""\ [(2937)2 :_é (ZN“5)} * 000 ]

2337 1s the Madelung constant related to a lattice of positive point
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charges with a negative constant charge distribution, L3 = and

+ 00 1

g = —
bmyn=-00  (§Z+m%4n<)?

£2om ,mﬁ 0

This sum can be shown to be convergent. In the Fermi case, the para
meter {1 is: all absorbed in p or Pg. It is not the same for
Bose system. One 1s very interested in systems whare p 1is fixed,
and (09 N go to infinity. We expect the calculated energy to be
finite:

<, (%%)Z approach zeroj but N goes to infinity like L° and the
tern N (€)% 1is infinite like L. For a fixed p ; we cannot get
a larger box withéut a smaller a, otherwise we get divergences
immediately. For a fixed N and a fixed {L , a has a very small re=
gion of validity.

It can only be applied to cases in which we are considering a
finite number of particles, but a very large box; e.g. in the virial
expansiony one is expanding in power of p , that means that we are
always dealing with systems at P = 0, and getting derivation of
various physical quantities at zero demsity. Virial calculation

has been successfully made for the hard sphere problem.

§7. Energy for a Bose Einstein svstem at finite
(Phys. Rev. 106, 1135 (1957))
We have met two kind of divergenées: one is the infinite po-

tential of the hard sphere problem; we must be careful about the
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expansion and the incorrect use of the pseudopotential. The other
1s that the number of pairs of interacting particles increases like
2
N

and we need only an increase of the order of N; for example,
o 2
in the term ($-) the trouble is that the coefficient is (2N - 1).

How can we get rid of these difficulties ?

We are going to rearrange the sum in the energy and get finite
results. There is no rigorous justification of it, since, if a series
is divergent, there is always a way to rearrange it to get any fi-
nite result; but the rearrangement is a quite natural one and can be

obtained by several different wayse.
We have a hamiltonian

H = T + Vps (7.1)

where the kinetic energy T is given by
2 *
T = Z k ak &k (702)
k

and the pseudopotential V__ is given by eg. (4.2).

ps
We shall deal first with

g '
H = T + Vps (7.3)

until we meet some infinity.

. 4ma * * — — —
A A Y R a2
klk2k3k4
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The diagonal matrix elements of this operator are, as given by

€qe. (509)

' dra > 2
<n|Vps|n> = (2N -N-Znu) (7.4)
For the ground state:
4ra 2
Eg.s. = 0 (N® - N) (7.5)

The essential of the physical idea we are going to use is the
following: 1let us consider a state which is near the ground statej)
the occupation distribution in such a state is such that most of the
particles are still in the ground state. If we start from the ground
state, by an off-diagonal matrix element, we can only diminish the
number of particles in the ground state by 2, and then again by 2;
no matter how many times we excite through an off-diagonal matrix
element of the interaction, we still have essentially the same
occupation number of the ground state, since N 1s very large. Thus
we are going to deal only with states such that the occupation number
of the ground state is n, e~ N and the occupation number of the other

states 1s n, ~ a finite number. We summarize this by

o)

= |
"

(7.6)

]

X
N

 (3)

This is not a mathematical statement, but it is clear what it
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means physically.

Let us see vwhat is the diagonal matrix element for these states:

' ‘ 4ra 5 _ 4rra 2 2
<n|VpS|n> - 'h—'(N - N) = o (-i m. + N
(7.7)
4ra

'
2 2 2
‘—(T(-fnkwno'*ﬂ)

]

where the prime in the summation indicates that the term k = 0
is to be excluded. n, 1s slightly different from N§ for the

squares we have to be careful

Ne - (N - 2’ n)? = 2N r' o, - (2’ n)?

. 41a > 4ma 2 t 1 2
<nlVgglnd - o= e ) = = |- = af e an s’y - (2'n? |

(7.8)

These are drastically different orders of magnitude: 2 N Z' n is
the dominating term. The others are neglegible. Thus

<nlvgsln> ¥ 4map (N=-1)+8map Z'nk (7.9)

Let us look at the off-diagonal matrix elements of the potential

' 4ra
= * * 3 -3 -
Vps = 122 a* 8yt aza, ¢ (L+2 -3 -~4)

Iet us remember that each term in the sum give us a contribution

to a process which can be described as the scattering from momentum
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states ?1 —EZ to —E3 ?4. Each 8 operator gives mg a factor \/_n;{'
We are dealing with states which have the characteristics summarized
in (7.6); their matrix elements are going to have drastically differ
ent order of magnitude.

What are the largest off-diagonal matrix elements; as far ss
the order of N is concerned ? There are several classeg of gle-=

ments:

(1) the four momenta involved are zero: this gives only diagonal
matrix elements.

(ii) the state ky =k, = k3 =0 and k, # 0 is not possible, be=
cause of momentum conservation. This is a very important state~
ment: with a boundary condition that ‘% vanishes on the wally we
get exactly the same procedure; the fact that the walls can reflect
is equivalent to non conservation of momentum; at this last point
we get into troubley the calculations become much more complicated.
This may be understood easily: the distribution of the density in
the box with perfectly reflecting walls is rather unphysical, since
it has a maximum at the center of the box. A periodic box gives
us a constant density all over the box; the physical situation is

a constant density inside the box, with a rapidly decreasing
density on the walls. The difficulties in the case of reflecting
walls mean that we are taking a wrong way to calculate the fea-
tures of the system. For an easy calculation the unperturbed system
must be very close to the real system. With a periodic box, we have
a greater chance of success.

—pm

(111) Two momenta are zero: it must be the pair -ﬁé'ﬁé orlﬁi k
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otherwise 1t gives only diagonal matrix elements. There are two

kinds of largest off-diagonal matrix elements:

kl =k kZ = =k k3 = k4 =0
and

_— = — — — —

kl = kZ =0 k3 = +k k4 = =K

" "As far as N 1is concerned, the magnitude of these elements

is easily calculated:

dira 4ma

RV Ny amace

these elements are finite when N, (L go to infinity.

(iv) There are smaller off-diagonal matrix elements:

k4 = 0, k3 2O
k3 = "'kZ + kl
1
it is obvious that they are smaller by a factor J%? .

(v) no momentum is zero. They are smaller by the factor v;:..
The elements of classes (iv) and (v) are infinitely smallerllhan
the largest ones (class (1ii)) but there are infinitely more of
them e.g. there are manrr more elements of the fourth kind than

of the third.

We shall proceed to do a calculation by first neglecting

elements of classes (iv) and (v) and then show that they can be
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included perturbationwise to give corrections of the order \/Pas.

We remark that in recent years in the theory of superconduc-
tivity people have, in a very similar manner, neglected certain
off-diagonal elements and kept some others. However, there has
been no justificatlon whatsoever of this procedure since no one
has successfully estimated the error commnitted in making the
approximation, Worse still, the magnitude of the off-diagcnal
elements kept is the same as those neglected, while there are

infinitely more neglected ones than kept ones.

Let us now calculate the energy of a Bose system.

t

The off-diagonal matrix elements of Vps can be replaced by

1"

those of V s defined by

p
! - 1]
(vps) off.d. (vps) off. d.
" 4ra = . . 417a 5
Vps o " ap* agp N+ ol " ap agp N (7.10)
* & .
The factors a, a, or a; a, give n,o N. This hamiltonian

clearly gives us the off-diagonal matrix elements of the kind (4i1).
When we have accepted the approximation, we have a very simple

=, %
calculation. The diagonal matrix elements are 8 map " a* a.
We must not forget the kinetic energy and the ground state energy:

H":Z’kza.k*ak+81rap );;’ak*ak+41rap(N-l)+4vap*x

x Z'(apg* a,* + ag a_p) (7.11)
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k summation ranges over all k # 0. This hamiltonian is quadratic
in the operator aj; it is obvious that by a correct transformation,

we can completely diagonalize it:

Let us replace ﬁ' by 2 3.  where k ranges over the half
space. tk

g = 4rap(N=-1) + Z’(a}"; at a¥ a,) (k2+81rap) + 2 8raplaf at+o, a,)
£33 $x
Let us define the operators:
b = da + faly b, = aa_ + Ba} (7.12)
the commutation rules are:
[bk’ b_k] =0 [bk’ b’-"'k]= 0 (bﬁ, b* ] =0
(7.13)

[bys b2 = d®lay, af] - ?[a%,, a%] = «% - g2 .

We choose <,@8 such that this is 1. Then the b operators
follow the same rulez as the a: they are creation and annihila-

tion operators.

Let us substitute a in cerms of b into H. Let us write the

transformation inverse to (7.12).

aby = Pdby* = oy
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Xb_y = BbE = a_y (7.14)

-

The undesirable (non diagonal) terms are:
(k%+ 8rap) [-2otpb_y by~ 2¢pbyby] + Brap(@Z+62)(byb_ +biby )
If we put
(k%+ 8rap) 2§ = Brap(xZ+p®) (7.14)

Then the crossed terms vanish identically. This may be accomplished

choosing
_ L 8ma p
B = sinhq, X= cosh @4 tanH: 20 = —3 . (7.14)
- ‘ k™ +8map-
It is seen that there is always a solution for « and @ .
Denoting
2 _
k;, = 8map. . (7.15)

the diagonal terms of the hamiltonian then give

B = amap(v-1) + S ' (Pea) oy 670y) +

allk #0

t * *
# > xg [-orydy sy
allk #0
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Using the commutation rules for the b's and expressing « and

B as functions of © (eq. (7.14)),

*
H' = arap(N-1) + Z'[(k%+ k2) cosh 2 6 - k5 sinh 2 6] by, b, +
k

+ 2'[(1®+ ¥2) sinh®e - Kk ¥ sinh 2 )
k ° ° '

Using (7.14) and (7.15) we get finally

H = 4rap(N-1) + E'\ﬁc‘h 22 k2 byb, - ¥ = (1 k7 - Yitez®?]
(7.16)

*
The second term, because of the factor bk bk’ represents the

excitation energies. The other two give the ground state energy.

This expression diverges. To see thls, we can write for

large k:
z 2 .2
2 k¥ k
1%+ k2 - it 2P = 1P k2 - 6?1 —ZexBs kg-ka(h' 524,
X K° 2k
4
~ So_
22
Then
= K t S $ *
—> 20NsSTe — = Cconsve. =
K 2K K& jo
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As in the two body case treated earlier, this divergence arises

from using H", where %% r has been replaced by unity, instead

of the actual hamiltonian H; 1l.e. that %% r 1is not interchangea

ble with the summation. The correct calculation with the correct

pseudopotential gives,; instead of the expression

] k% + k5 - \/k4+2k§ké] ’

the following:

4
R K
2 5 BT 2, 12 it m@i) ] = ke )Be Afkteml - 2
[Brrze [k%+ 13- Ve*+aulx ]] -§[k+k° K*+21 Kk Zka]
=0

128 ’

which converges to gilve a contribution 4mrap N pa3 to the
15 Vmr

ground state energy.

Therefore
;0 128 \/—— T %
— = 4rap |1 + as ] + X fx*s K8 k8 (7.17)
N P [ 15 V7 P k‘/ ° Pk Pk

The excitation energy is

wp = K 6rapk? = x\ Ko+ 16rep
(dk¢ _ free particle case We see that for small k
/I ©pet K e Tk \/1611'8.9

[ o= k\kP+16map i.e, linear function of
k charactheristic of pho

non excitations: sound

waves with velocity
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v = \/16map in a medium of density p.

Compresgsion waves in the ground state
The velocity of the compression waves can be obtained from the

following. For a medium in the ground state, the pressure is given

by
P = 30 >a [ 41T a a N ] 4 7ma PY: 4map

Upon compression, waves are produced,; the velocity of which is

given by
QP
bpm

p, t mass density. In this case, as 2m = 1, @ = %o . Therefore

?P
V=, ——— = 16ma
d(%p) P

as obtained before from w, = \/k4+ 16vapk2 in the 1limit of
small k.

Dependence on N of the energy
Againythe ground state energy 1s given by:

4
X
Eyq= 4map(N-1) - %’ [k2+ x5 - \/;44» k& k% - i—z] (7.18)

where ko = \/8vap . We can expand in power serlesg in terms of a
and compare with the perturbation expansionssection 6, for the

Bose system:


file://�/jl6irap
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E 6

4
k const. k
&Y _ gppo =42 Z'[kz-s-k \/k4+2k K2 - °]= o2 ...
N PTF | 2%2 N k k?

203 , 1
= L ] &- Z [ ¥ 2 3 *
const - . m @4- (7.19)

This term is clearly recognizable in the expansion of Section 6.
If we consider the additional terms in (7.19) we obtain

E 1 aN\3 aN .4
£ _4q7a P = const. —s (-—-) + const. (-—-) t .. }
N , NL L L

Sucessive terms differ by order of %‘E as in the perturbation

expansion. lLet x = Qf?- and write

BE 1
—&d 4 7 a

- p = conste —s f (x)
N NL

If we assume f(x)~ x*1n the 1limit x —» 00, let us deter-

mine what value of o« will make the above expression finite, i.e.

-3 fini
NL ( L >

then

1 aN 2%+1 2x+1 = 6

o
%
R
I
Nk

1 aN
— = a = a
= (7) : P Vs
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This is precisely the first order correction in eg. (7.17).

If we consider the contribution of the terms of the type
(O,;ﬂ-’(kz,kB) which were neglected in the computation of (7.17)

we can show that this contribution is of the form

1 Ba3 4.3 1
aN +* to aN <+ coo ] - —;s—- )
NLZ [ 13 eons i A

The requirement for convergence as x— ® 1is g(x) ~ xP with
B = 4., The result is proportional now to ap (‘\}paB)2 and differs
from the first order correction by the factor w&;az.

These arguments 11lustrate that the perturbation expansiocn
can be rearranged to yleld a finite result if the expansion para-
meter 1s taken to be J:;;? instead of a, and that precisely we
have found an expression for the energy (eq. (7.17)) in which the
succassive terms diftver by order of Uc;gg .

§8. Higher Order Calculations
" (Physical Rev. 112, 14193 115, 1390; 116, 489, 1344;
Soviet Phys. JETP 7, 299).

The ground state energy has been calculated to higher orders.

The result is

128
15V

z!gj

4rap [ 1+ + 6(—-' - \/3) pa3 In (pa3)

+ Kpa3 + higher order terms ] o
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The excitation energy of a phonon has also been calculated

to higher orders.

The phonons were found to be unstable because of possible
disintegrations into phonons of longer wave lengths. This was
discussed in Phys. Rev. 112, 1419 and in Soviet Phys. JETP Z, 299.

§9. Denge Hard Spheres

Up to now we have considered the behaviour of a gas of very
low density. Now we like to study the behaviour for high density.
We are interested only in the expression for the energy for low % .
It is to be noted that here the physical situation is comple tely
different from that for low densities because here we are in the
region of very close packing, the particles are very crowded and

the collisions among them are very frequent.

For N particles enclosed in a box we are faced with a 3N-di-
mensional problem. For each configuration of this N particles
";here correspondes a point in this space. To each permutation of
the particles there correspond also a point and thus, for a fixed
relative position of the particles there are Ni¢ different points
in the configuration space. An interesting problem to consider is
to determine what is the region in the configuration space whose
points give an allowed configuration of the system in question.

Consider first the case in which the box has such dimensions
that the particles are in the situation of closest packing, e.g.,
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the particles are arranged in a closest packed face centred cubic
lattice. The possible configurations of this arrangement are given
by N l points in the 3N-dimensional e¢onfiguration space. Increag
ing the size of the box the particies acquire some freedom and the
allowed region for the points of the system in the 3N-dimensional
configuration space become small pockets around the N l points that
represent the closest packing situa-

tion as shown in fig. 9.1. Enlarging

<:> <:> still the box, all these pockets
(7 (} v become connected by very narrow
channels. For almost closest packing
(:) the channels are extremely narrow and

their effect may be neglected. One

Fig. 9.1 can give a semiquantitative argument
to see under what conditions it is possible to neglect the effect of
the channels; since the mear distance between the particles is of
the order of 1= f;" i s where P 1s the density of the system, in order
to interchange two particles it is necegsary to move - -rfFT; par- -
ticles, a being the diameter of the hard spheres and !, the value of
f for closest packing. If this number is much larger than one,
i.e., if £ “’!o it is justified to neglect the influence of the chan-

nels because they are very narrow and long.

The Polyhedron Method .
For the present discussion, we consider that the particles are



47

arranged in a simple cubic lattice.

The equations defining the allowed region in the configura-
tion space are of the form I'r’l -'r’z | a, where ¥, and _r'z
represent the coordinates of the center of the spheres 1 and 2

respectively. Writing in full detail this condition we get

2 2 )]i
[(xy = 2,02 + (77 = 5,)° + (27 = 2,)] »a  (9.1)

We can change somewhat this condition by considering small de-
partures from the simple cubic array, (see fig. 9.2). Since in
this case Y1 =7, and Zq = 2
are very small compared with

Xp = Xpy We may replace the above
condition by le - le > a, which
is equivalent to replacing the

spherical surface by its tangent

plane at the point of contact of

Fig. 9.2 the two particles. If we do not

permit interchange between the particles, the condition imposed
for the X coordinates of the particles that are in the bottom row

are

x1>% ’ Xa - Xl>/ & x3 -X2>,a., cooc 9 Jcm - xm_]_)/a" xm< L-%

(9.2)
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For the other rows we have similar systems of equations. We must
add also the system of equations corresponding to the y and z com
ponents. We obtain then a system of 3 mZ equations which define
a polyhedron in the 3N-dimensional space.

This polyhedron is further simplied by the follwoing displace

nent transformation:

had ja (903)

[}
mﬁ
+
|

Then

] g

OSXI (JC; ogo .éxm<L‘=’ma (904)

The wave function is a product of 3 m2 wave functions for the

various rows and columns. The wave function for the first row,
¥ (Xyy 000 X, )y satisfies the condition that ¥ = O on the boundary
of the region defined by egs. (9.4).

Now consider an antisymmetrical wave function Y of m free
particles xs (j =152y 000 m) 1in one dimension in a section of
length L - ma., Clearly Y satisfiss the same equations, and satisfy
the same boundary conditions on the polyhedron defined by eqs. (9.4)
One thus obtains the following theorem:

Theorem: The energy 1~vel§ of the m3 spheres near a simple cubic
arrangement are approximately those of a collection of
3 mz independent system each of which is a Fermi system of free one-

dimensional particles confined in a length L-ma.
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For the calculation of the ground state energy, we first take
one of the 3m2 systems. For this system of Fermions, the momentum
goes from - P to + P. This momentum is related to the length of

the box and to the number of particles in the row by

2P(L -~ ma)
i —————_——— :m
ar
and so
™ 1
P = = T (9.5)
L - ma = - 3
m
The energy for a row is thus given by
+p
|5 2 53
P~ 4P = P m
m —§%~———- = m 32— = — P% (9.6)
2P 3
™ e

The total energy is equal to the energy of a row multiplied by Bmz.

Total energy for the ground state of the system.

2 mP2 2 "
B r = 3m = = NP = N =5 (9.7)
g 3 (ﬁ - )

Since the total number of particles is equal to mB.

We like now to compare this result with that obtained by the
cell theory. In the cell theory each particle is confined to be in

a cube of side length L/m and is not allowed to be out of this
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cube. The center of the sphere is then confined to a smaller cube ‘
o6f side length % - a. For the x coordinate the wave function R
for the particle inside the cube is given by

The energy for one particle, taking into account the three degrees

of freedom is then

e

3 T3
(E - a)

The total energy for the system of N particles is

3#2
Egr N zf————-z (9.8) -

2 -a)

It 1s to be noted that this energy is larger by a factor 3 than that
obtained by the polyhedral method, eq. (9.7). The reason for this
difference is that in the latter method we have more freedom to move
the particles, since the only constraint imposed is that one is not

allowed to interchange the particles in a row.

Excited States: The theorem quoted above shows that the excited

states near the ground state have the structure of that of a system

of Fermions. This is gualitatively different from the case for a

dilute system discussed previously.

e ce ed cub rangement. .
This situation is that of a closest packing. The simple cubic
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arrangement will decay through the channels into the face centred

cubic lattice (see fig. 9.3).

One can use in this case alsc the prolyhedron method although
it is not eaéy to write down the eéuations as in the previous case.
For the x coordinate of the
simple cuble particles in the bottom row there
exists the same kind of relations
face contered iat were settled for the simple
cubic lattice. One of the restrig
tions imposed upon the coordinates
of particles 1 and m (see fig. 9.4)

Fig. 9.3 is given by
%(xm-xl)+g(ym'yl)>a

The application of the polyhedral method to the simple cubic
lattice was suqcesful because the method of images could be applied
to obtain the wave function of the
system. This is very useful if the
hyper-planes defining the poly-
hedrons form angles that are integer
divisors of 2r.
) For example, in the case of the simple
cubic lattice, let us find the

N\V

angles between two planes of the
Fig. 9.4 polyhedron where the x5 are defined
in terms of Xy by eq. (9.3).



k2 ¢

Equation of the
plane in normal Components ?r the eormul'to the plane »
coordinates . x, X
] ] -1 _
'{/{';_‘"‘3"‘2"" c 0 Yz Yz o o ..
> = Xy L. 1
#% (x = x;) =0 c o o WE =hE O e

The angle 6 formed by the two planes is such that cos & = - 1/2,
1.6,y 8 = 60° which is the sixth part of 2r. Then one can apply
the image method in a straightforward way, as we did.

In the present case we have

Equation of the Components of the normal
plane v oo xZ l xm ym i™ ..
- 1 1 )
vi;-_\ -xl) 0 v o000 /“IE‘ -4—2\ 0 0 0 000

1 v NB L 1 !
ﬁ(;&nuxl)-&g(ym-yl) 20| o00o O -]/Jg‘ 4’8‘%@80000

The angle formed by these two surfaces is such that cos 8 = 1/4.
This angle 1is not submultiple of 27. Here one can perhaps use the

{

method of multiple images but the problem turns out to be extremely
difficult to solve. Although there is not yet an .answer to this

problem, one may expect that the expression for the energy of the

(9.9) ®

system has the form
E = K

o
- - L
(P75 e )
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where P is the actual density of the system, p, 1s the density

of the closest packing and o. is an unknown constant.

Soft spheres

The potential in this case is of the form given in fig. 9.5 a)
and b))

VA vT

Y

T
Pig. 9.5 a) Fig. 9.5 b)
The problem may be tackled using a variational method. It

can be shown that if the potential raises faster than l/rZ’ the
energy per particle is asymptotically of the form

6V(1)

where Q1 1is the distance between the atoms in a face centred cubic

lattice.

§10. comple 0 0 tion of 8 e~ cle Ground
gtate.
In the computations we made, we started from the single-
particle wave functions, and by repeated applications of the off-
-diagonal elements we got the iruye ground-state. Also, we replaced
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for instance the term a a 0242 j by'd g asa j (or n o218 j? simply).

For our present purpose, we want to apply the approximation
method used before to the states for which there is macroscopic
but incomplete occupation of the single-particle ground state.

Thus, we set the single-particle ground state occupation number

n, = N§ (10,1)

where € denotes a finite fraction. It is also assumed that

there are numerous other states occupled, yet none of them alone

is occupled by a finite fraction of N. That 1is to say, we
assume here ny (1 #0) are all small but there are numerous 1i's,

so that only the sum Z;: n; gives a finite fraction of N,
1#0

Let us take a particular state of this kind:

o 0 :
r ng + n, = N (10.2)

where the prime over the summation sign means that 1 = 0 is
excluded and where the superscripts "O" denotes our particular
state. Next, we write down a small deviation of the occupations

as

A, + & = o0 (10.3)

where the superscripts "1" denotes the deviation from the state
1

"o"., It 1s assumed here that both ny and %o are small. The

actual state of interest is thus given by:

n = 9+ B
° o 1° (10.4)

_ o
ny = ng+ ny
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1) The diagonal elements; they are (see eq. (5.9)):

4ra 2

ol [ZN -N-Zni]

'—ST [ZN -N-}:;l‘.'nf-ng]

ara [ 2

_ 2 1,0 1 o 1

=0 2N -N-Zé(n1+ni) -(n°+n°) ]
ara |

- 2 ‘o 2 1 0 1 t 12
o | -F-Z A -2k omyn -2 on

2
2 0 s 1 v 1
-n°+2n°§:ni-()i::ni)]

the terms -N - Z::l:' ?112 are numerical constants much smaller than HZ.

1 1
They will be neglected. The terms - 2z’ ?11 gii - nia -(Z," ni)

are also negligible.

Thus we have

41a
|diagonal elements |= N [Z.NZ - goz + ch 2;’..' lJii ]
_ 4Ta an 2 Z'. o
=g [2® - 0?20 (g -8 ]

4ra 4ra
el ]
= Fl2-s%-250-8)] + 2Ny’ ng

arapN [1 + (1 =5)% ] + 8raps i*:' ny
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obviously, if we put % = 1 we shall get exactly the same result
as we got for the case of complete occupation of the ground state
(see eq. (7.9)).

11) The off-diagonal elements; as before they are divided into

. *
classes according to the power of a, and a, o The largest off-

~diagonal elements are those of

*k %

802 o B®.x
and

*® ¥k

881 %%

The off-diagonel elements, thus, will take the form

4rra * %
Sl AUV LI o]
* %
where we have replaced a,8, and G by N& .

111) The total Hamiltonian, will take the form

= amapd [1+ (1 -9 ] 4 = 6 + arapw) Byl +
] * ok
+ 4mrapg 1}5. (a8 + apa_) (10.5)

again, it is obvious, if we set $ = 1 the Hamiltonian will be
reduced to the same one used before for the case of complete occu-

pation,y eq. (7.11).

By means of the same Canonical transformation we used before

(eqo (7.12)) we can write the Hamiltonian in terms of operators
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* E-3
bk and bk“

H" = 4rapN |1 + (1 -%)° + (128/15v7) +pa” ¥

(10.6)
' 4 2 LA
+ % (k* + 16rap%k™) by b,
where the last term gives the excitations.
The number of excitation is approximately given by
%*
Z oehy = F (1 -%) (10.7)

and we may sepparate the total energy of the system into two parts,

namely

E (5, m) = E, (§)+ E honon (%) m) (10.8)
where the ground state energy is glven by

B, (8) = avapN [ 1+ (1 -9) + (128/157) Ypad %2 |

(10.9)
and the total energy of the excited phonons 1is given by

Epnonon & » B0 = T me F + 16mapncdy? (10.10)

and '\/5:61!'8.9? is the phonon velocity (ef. the discussion after
eqo (7.17)). Attention should be paid to the fact that the m, 's
are subject always to the condition

(1/N) i:' m = 1-% (10.11)
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It is easy to verify that the total momentum of the system
in the state specified by &, m, is given by

— * — -
P(s,m) =LK a8 =Zkm (10.12)
where my is the number of excited phonons with momentum k.

Related Digcussions:
Concerning the previous calculation we would like to make

the following remarks:

a) e relationshi tween degenerate occupation of a le=~

-particle ground state and the number of phonon excitations.

Equation (10.11) says that the number of excited phonons
is equal to the degeneracy of the® occupation of the single~particle
ground state, which 1s an important result sincé it establishes a
relationship between the degeneracy of the occupation of the single-
-particle ground state, a concept already discussed by London, and

the number of phonon excitations, a concept discussed by Landau.

b) Order of Accuracy of the Calgulation

For the ground state,

E, (§) = 4mapN {1 + (1 -E)2 + (128/15y7) Pa'3§5/2] +

+0 (padK)  (10.13)

For the phonon state,

3

E honon (% ym ) = }; mk(k4 + lémapk k)% + o0 ( paBN) (10.14)
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of each

Notice, however that the energy w) = (x? + 16mraps ka)%

phonoﬁ is accurate to the order of NO and not Nl.

¢) Computational Separation of the Hamiltonian into Different Re-~
glons.

One interesting aspéct is the separation of the Hamiltonlan
into different regions for computational purpose. Such a separa-
tion is certainly not well-defined, therefore we might ask our-
selves what is the criterion. The situation is like that shown
below:

only "rough" edges

this bottom line is
well defined (ground state)

The different Hamiltonians specified by different § 's represent
approximations to the true Hamiltonian in different regions of ener
gy. This is quite similar to the discussion of §9 where we saw that
the approximate energy levels in different pockets (face centred
cubiec, simple cubiec etec.) collectively give the energy levels of
the system.
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§11. mo Properties of s Dilute Hard- e Bose te
Ref. Phys. Rev. 112, 1419

According to statistical mechanics, all the thermodynamic
functions can be obtained once we get the partition function of

the system. This partition function Q is defined by

Q = 5 e~ PE(mE) (11.1)

my%

where P = 1/KT and K is the Boltzmann constant and T the absolute
temperature. Here "m" denotes the set Dy Myy ooo for different
combinations of occupations. The values of the mkss are subject

always to the condition

(1/N) l>:::" m = 1-%- (11.2)

Now introduce the partial partition ction, Q (%) defined by
Q(5)=F e~ AE(mS) (11.3)

where the sum over m is subjected to condition (11.2). We have

now, in partial partition sum

Q= {:_l Q (¥) (11.4)

Substitution of the energy eigenvalue into the partial
partition function leads to

Q(5) =L o~ PEG(8) ~Prmewy

= o~ PELE) § e'pﬁmkwk (11.5)
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where EO(E) is given by eq. (10.9), the m 's are subject to con-

dition (11.2) and @, 1is defined by

T
w, = (k* + 16ma pEk°) (11.6)

Next, let us introduce the function
R (M) = Z o™ PEO (11.7)
m
where m, is subject to the condition

PN = M (11.8)
< Mk

We may introduce another function Q,the generating function

for Q, defined by

© M
Q=Y ¢ R (M) (11.9)
M=0

where { 1s a complex number. Now we can write
Q=X e PZBVk y 2P (11.10)
m
without condition on the mts, or

-1
G=Ta-g e P %) (11.11)

Now we shall be interested only in £nQ and especially in
the limit ¥—o00. In this case only one term in the sum (11.9)
predominates the logarithm of the sum. Thus, we have the
.asymptotic approximation of (11.9):
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in Q = Ma{ + In RN (11.12)

where M denotes the value of M of the dominating term.

Differentiation of (11.12) with respect to M yields immedi-
ately

a
lnZ + — InR(R) =0 (11.13)
am

On the other hand, with (11.11) into the left side of (11.12),

we get

- Zk: in (1 -Ze'pwk) =M ng + In R(M) (11.14)

Differentiating the last equation with respect to Anf we

obtain o
Lo~ P 4 aM
PN = M + [Qn{ + = In R(M)] —
k 1 - z e-pwk dM anZ
which is simplified, by means of (11.13), to
_ e P%%
= - 11.15
E 1-4e P% ( )
Now we may list all the formulae
i) Free energy F =~ kTin @ (11.16)

i11) Logarithm of the

partition function: in Q= [fn R
iii) The partial partition (11.17)
function: UE) = e” PEO(g) R[N(l"§)]

(11.18)
1v) fn R (M) = - 2%( fn (1-2e~P9%) =M nZ (11.19)
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(here we droppéd the bar over M for simplycity of notation)

ge-@wk
) M= X (11.20)
v k 1-LeP%
where
@ =k (k2 + 16rape)? (11.21)

and M (i.e. f) is obviously the most probabl{ total number of

excitations in the system.

The above equations (11.16) - (11.21) allow for a computation
of F. We are not going into the exposition of the detailed calcula

tionss instead let us discuss some of the results of the calculation:

i) The T-p plot

We find the transition curve as

AT /KT = 1.342 + 2(2.612)% (a/A) + 0[(a/2)/?)

and
AP, = 2.612 + 0 (a/a)
where the subscript c¢ denotes the transition point, and A the thermal

De Broglie wavelength (4v/kT)é.

p
? 7 Dilute Bose gas with
/ hard-sphere interaction

/
/f‘—L~__ Free Bose gas

A J
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i1) The p - V diagram

4
vt // discontinuity: (:b% cond -(%—g gas =~ 8rap
L isotherm for the free Bose gas

dilute Bose gas with hard sphere
interaction

Q/N ) a/m

§12. Two-Fluid Motion Ref.: Phys. Rev. 113, 1406

a) Galilean Transformation

Taking the system of a dilute Bose hard spheres and using
a Galilean transformation to such a system we can get a new eigen-
state in which there is a macroscopic occupation of a single-parti-

cle state with X # O.

Let the transformation be defined by a relative velocity
¥V, and the primed stand for the system in which condensation occurs
at X = 0 while the unprimed notation stand for the system in

which condensation occurs at -E-=-E; (# 0).

Thus, in the laboratory system (unprimed system) of

coordinates T?S £ O » the total momentum of the system is

—

P = (mass). v + Pt (12.1)

and the energy is
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E=% (magg) voe + ¥ 2770 +

,,*¥-energy in the moving system. (12.2)

By previous convention: (particle mass) = ¥ thus

P = +R -+ = mqa‘. (12.3)
q

where q is the momentum of the phonons with respect to the moving
systemy and the primed summation denotes the exclusion of q=0

as before.

Now, the energy from (12.2) can be written as

N 2 , = ' -
= ——— ° +
B=% (F)vE+7 i
+ 4mapN [1 + (1 -E)Z] + Z'mq (q4+ l61rap&q2) .
q
(12.4)
By setting (remember that the particle mass is taken to be

)3

Tz’s = v (12.5)

we can rewrite the expressions as

—

P = Nfs + é:' mq?{ (12.6)
E=NKkS+ & m (Zk .q*w) + 4raph [1 + (1-8)% ] (12.7)
e
(VE) ='m = 1-% (12.8)
. d
4 2.}
w = (g% + léraptq”) (12.9)

q
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We can also write (12.6) as
- - -— L]
P= Ntk  +N (1-8) Kk + E. m, q

= N§E, + X' mg (T + K (12.10)
q

b) The Quantum Numbers 5, Bg , k§_

These parameters %€ , m _, k, are not absolute quantum

numbers due to the fact that, fo: instance, phonons may decay or
scatter among themselves. They are good quantum numbers only if
these effects are small enough to be treated as small perturba-
tions. Among these three quantum numbers, however, ?; is most
stable and in this sense we might consider it as a quasi-quantum
number (though 1t 1s evidently physically not absolute). m, is
the most unstable one since it 1s affected easily by decays or
collisions. § i1s rather stable, being subject to alterations
only if a finite fraction of phonons suffer decays or recombi=-

nations.

¢) Quasl equilibrium Distribution

This calculations is based on the assumption that conden
sation occurs at E'# 0. The previous results are summarized in
(12.7) to (12.10), Now we are interested to know that if N, {1,
?;, P, T are fist given then what will be the values of m, € and
F after a long time.

First,y, we have
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tnq-= [ tn q (%, T;ss’ ?)]max. werot. § (12.11)

where
—)
Q (5, B, F)= o PE(Smky) (12.12)

subject to the conditions:

4 (12.13)

Next, we define

- -B3Xm w
R (M,8) = & e REmqy (12.14)
where M and S are defined by
i ym_ = M (12.15)
g ¢
and
*m. § = 8 (12.16)
q ¢
Introduce the function % defined by
? 1! ] ] 1
G Egg'ﬁzmq”q ;7 TMg 5 D% g LWy R0,
AT y z
(12.17)
or
- (w - -i;o-d))
Q=17 -l e 1 ) (12.18)

= 5, ‘ (12.19)
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Taking the logarithm of (12.17) and neglecting small contri-

butions except for the term maximized with respeect to M and g(this
will be denoted by M) one obtains

1a®= [t r 8 + 1 nt+psal, (12.20)

which, under maximization, results in the following conditions

tn g + 2 fnRWM,S) = o0 (12.21)

oM

and

BT + = InR(ME) = 0 (12.22)

28
By taking the logarithm of (12.18) and equating it to (12.20)

we get |

- '3 (w - —an) — -
- Xin [1-;e q J = [Qn R(M,S) +an§-ps.u]
q . M
(12.23)
Partial differentiation of (12.23) with respect to fn ¢
leads to , _@(wq - 3.3)
e
T pemy - M R0-Y
1 -ge (12.24)
which gives the most probable number of total phonons off Cthe

condensation.

On the other hand, a partial differentiation of (12.23)
with respect to W 1leads to
- B (w ~1.3)
e q

z —=Torsy 4= S=FP-FEK
ql-éeﬁ(wq. o.q S
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which gives the most probable total momentum of the phonon clouds.
Obviously, now we are able to compute ¢ and W by means of (12.24)

. and (12.25) once € ;5 P, X, are given.

d) Physical Picture of the distribution

From (12.24) we can define the average value of excita-

tions as

“'p(w = _ﬁ’o—q’)
s 2o 6)
By = L eReg - T (12.2

where { and W are determined by means of (12.24) and (12.25)
while § is in turn determined through a maximization of (12.20).

The dependence of fz'iq on k = Tf*-'i?s gives the number of
excitations with momentum ¥ in the laboratory system. This distri
bution is spherically symmetrical around k =k_ if u = 0.

s
kz A
mmem asymmetrical due
0 ':‘;:,?.:-~."“\/ to the U.q part
) '//"f B ’:'_
point of condensation (fﬂ:’s)
>
ky
kx K - space in laboratory system

Let us now look into a simple situation in which uy and

‘ u, are zeroj thus we can plot the following curves:
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ux‘?} Q&mm i,

}4f/ very large uy

P

x

The minimum of these curves gives the point at which iq reaches
a maximum, which should be at q = O. The curve for very large

u, is thus unphysical. The following restriction is necessary

7] < (161rapt;)* (12.27)

e) Two-Fluid Motion
We have seen that for a quasi-stationary state there

are two degrees of freedom described by T and _153 which are a-
nalogous to a two-fluid motion. For instance, P= 0, corre=
sponds to a liquid with no total momentum but for such a system
T:; may not be equal to zero. The relationship with two fluid

motion is as follows:

Superfluid: Py = (/L) NE (12.28

Normal fluid: e, = (1/£1) N (1-%) (12.29)

and

o = Ps?s * P ky
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vy = st .

i —lp —
= + .

‘V'n Vs u

Therefore the transport phenomena may also be studied through this
defined system.

f) Superfluidity
Now, without a detailed description, two physical concepts
can be derived from the two-fluid model. For instance, let us im-~
agine that a particle is being dragged through the system originally
at T =0 with no phonon excitations. The liquid after excitation

has a momentum and energy given by

P = &« mk_lz exclted state
k
BE =
T M
Now, this external particle ground state
suffers a loss of momentum and en Excitation due to

dragging of a particle
ergy given by

—

8P =- “m k
k%

We have

b2l > = m, (16rap)? K] Y (167ap)? 183
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or 8E
BEL raprt
|6P]

thus
Vext > (l6vap)%

For excitation to become possible. Obviously. the situsi-on is
analogous to Serenkov radiation which is possible only wren the
external particle has a velocity larger than a c—mitical vel ccity.
In our case, the fluid becomes frictionless to the particie below
the critical velocity (16wap)%. This argument was originally due

to Landau.

g) Infinite Heat Conductivity

The concept of infinite heat conductivity means that heat
transfer is possible even in the absence of a temperature c¢iffer-
ence. BExperimentally this obtains for liquid He below the A-point.
In the quasi-~equilibrium state we are considering, if we set P = 0
and E; #'O, then we have a relative motion of the super and normal

fluids.

Evidently all the entropy is contained in the phonon
cloud (normal fluid) thus giving rise to the possibility of a
motionless (?'= 0) isothermal entropy flux which offers a natural

explanation of suchk a phenomenon.

h) Second Sound

The addition of one more degree of freedom gives rise

to the fact of two sound velocities: the first sound and the sec~
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ond sound. Mathematically, it 1s a consequence of the existence
of two different roots of the quadratic equation determining the

sound velocity.

§13. General treatment of an interacting system with Bose sta-

tisties. Ref.: Phys. Rev. 113, 1165
116, 25

117, 12
117, 22
117, 897

a) Motivation
EB4 and He3 exhibit slightly different thermodynamical

behaviours. Fig. 13.1 represents schematically the phase diagram

4

for He®, showing the exist-

ence of two liquid phases.

A
P At the saturated vapour pres

Solld sure, the transition from liq-

uid helium I to liquid helium II
Liquid
L He I

LiquidgA-c Another feature is that at 0°K,
He I Gas 4

i ~A=point He
7P S

T (°K) HeJ does not exhibit a

occurs at approximately 2.17°K.

exists as a liquid.

A transition though it has

Fig. 13.1 been investigated down to

0.1°K. Other characteristics are similar to those of He4. Now,
since the interatomic forces are almost the same for He3 as for

4

He™, the potential energy is practically the same for identical

configurations. We would expect the difference in mass to intro-
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duce only quantitative but not qualitative differences in the be

haviours of H93 and He4. The absence of A transition in He3 and .

4

the presence of it in He™ must then arise from the statistics. -

It is our aim to show this by dealing first with the problem
of the thermodynamical behaviour of a system of interacting parti-
cles with Boltzmann statistics, i.e. arbitrary statistics, and
trace afterwards the effect of imposing a definite statisties. In
other words, the actual problem is to be split in a part independent

of statistics and a part which depends on statistics.

b) Details of the treatment

Boltzmann statistics

We shall follow the Ursell - Kahn - Uhlenbeck development.
Introduce the density matrix:

<1" 2" o e o0 N"WN‘l, 2 LI N>:——:—<l', 2,, LRGN ] N'le- pH‘l, Z LI 2 N>

(13.1)

where

—

r] = (xl, Y2 zl), etc.

Il

We define a sequence of functions Uk s the arguments of
which involve the coordinates of { particles and which have the
property that they vanish rapidly when any interparticle distance
in the group of § particles approaches infinity, by the follow~

ing relations:

<1'lwyl1>= <1'ly >
<i12'lw,l1 2= <a'lugl>  2'lugl) +<1'2 i 2> o
'2'3'lugl1 2 s>l &lnl> 'l
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® +<1'uyl1d <2'3'lv,lz 33+ (2'lugle) 131U, 13

-

L] t | N B |
<3003 <120u,l1 2>+ 123105 1235
and so on. <1'lw1|1> is clearly the free particle distribution
function. Consider now <1'2'lw211 2% :+ if the two particles
are very far apart, we are left with the product of free particle
distribution functions, hence U2 approaches zero. The U functions
exhibit explicitly the effect of the interactions.
The general expression can be seen to be
WN - Z Z [fUl se U].‘) EUZ ) UZ)’ s oo (UN) ]o

my D . N,
oy oo oy

ng =n
% relates to all possible ways of assigning particle coordinates
to the arguments of the U functions.
The partition function is by definition:

= S, Wy - (13.4)

Introducing the grand partition function

Q= > (un D zV g (13.5)
N=0
it is well known that
pQ/kT = {n Q (13.6)
alnqQ
o o= ot (13.7)
d{nz

. One can eliminate the parameter 2Z between these two equations

and obtain the pressure as a function of the density.



76
In terms of the U functions:
N

s — | Sp(U, ) |® 13,
Hp 01 (91)™m, ) [spcoe]"s (13-8)

Uy

The coefficient N!/({ )™ my} gives the statistical weight of
any particular arrangement of the N particles in my clusters of

L particles each. We have then:

0
Q= =2 T, o1 (6P TRU/QDR my )

ngz = N

or

e

o0
G= Z2my T (sp 0y /(™ my)

O

my =

28]
= °° L m
= m% L, (2% se grar)®e cvmy D

and switching sum and product:

?
Q= 2H=1 exp[ZSp UE/“]
bl
= exp EL Z* Sp Up/1| (13.9)

it follows from this; (1%.6) and (13.7)

P o
L s~ 2zt sp /L) (1%.10)
kT 1=l

o
P=NA = (1) 5 ezlsp U, /11 (13.11)




77
The above mathematical development 1s not entirely rigor
ousy mainlyin the interchange of sum and product.' However, we can
assert that these equations are cour.uct for small positive values
of Z, which represent the case of low density, i.e. the gaseous
state. In a more rigorous treatment, we have to confine the sys-
tem in a box of volume {1, carry out the calculations and then
pass to limit Q—~o0o. Note that, as Uy 1s a function of the rela
tive coordinates of f particles, when we perform all but one of

the integrals in

I =j'¥'* (l eso 2) U£ y’(l 0002) d-I d—é es e d—i’

all variables in the integrand are exhausted, and the last inte-

gral yields only the volume () , i.e.

I =D.H'* (1 ... 2)0p ¥(1 ..o ) a2 ... dl
(13.12)
Substituting in egs. (1%.10) and (13.11) above, p and p are seen
te be independent of Q. and finite in the limit L—o0o if Z is small.

c) Boge statistics
The development 1s the same as in the Boltzmann

case, except that the partition function is defined now as:

Qf =Nl I e FE (13.13)
S.5

The factor N! is introduced for convenience, and S.S. means that

the sum is performed over the symmetrical states only. Then


http://I3.ll
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<1', Z" ose N"W%I l’ 2’ LR N N)E

= ' ' t -PE *
—N!S%’Y,i (1 ,Zooo N)e %i (1’2, eeoo0 N)
(13.14)
Taking the diagonal element and integrating over all coordinates,
we get:

Sp wg = qg (13.15)

The grand partition function is:

S _ N .S
Q" = 1%62 Q¥'F! (13.16)
Also

p5Q/kT = ta QS (13.17)

s
N 1 2Q
QO 2 Jmz

Again we can define some functions S by:

<1’ Bl 1y =1l 1

1’2" S| 2y = <o) (2'leBl2) + <12 oSl ey -
(13.19)

etec. and proceed to obtain results analogous to the Boltzmann

case.

Schematically our procedure has been the following:

Wy — U2~—> P Boltzmann statisties
1] S Uy S_,pS Bose statistics

wh .gmA_ A Fermi statistics
}



79
®

The problems that arise now are how to compute the U ! fune
- tions from the interactions and how to relate to each other the

different W's. We shall consider the second question.

d) BRelatio between Bose statisties and Boltzmann
statisticg.

We have

1 ! ! By - *
<l ’2 ? oooN IwNS‘].’Z ...N> L4 N!SZ.é y'l(l"o-o.NL_) ‘PE Y’i(loo.N)
and

- *
1,2, ...N']WNI:L,Z cesd= 2, 3"1(1'...N')e pE Yy (1eaaN)
all ste. \

In the second equation, permute the primed coordinates and sum

over all permutations:

PZ' P'<1',2'...N'|WN| 1,2 vee B> =

.—.:% [%, P'y@'...8) e PE y1 ... W)

From the sum, separate out the symmetrical states.
have ¢

Clearly we
for symmetrical states g." P'P= RV

for the other states %’; P'YJ =0

(13.20)
The program to follow 1s then:

S S ()
. Ul—+ w‘!—»w2 —-—»UE —> P
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The Fermi case can be related to the Boltzmann case in the
same way, with a convenient definition of the W% and ©U%, ana

the program would be

U—W—> wg‘l_»tr2

{ L

A A

—3D

The Uy contain all dynamical features without involving
statistics. For the computation of the U,g_ we refer to the first
papers quoted at the begining of this section:

Examples:
U; =W, =U,° = w5 from the definitions.

In momentum representation:

('l B k>

2
- gk
= Syxr

!
k |0,k
CE o> (13.21)

and in coordinate representation:

Z -5 —>-+'
(X'IU]_IJC) = (V)T e~Pk olke (X=x1)

=% 2
g A e~ BZ‘EJ"p (13.22)

A Q=00
where A= (41rp)%. ' This 1s a Gaussian distribution. For B= 0,
the width of the dlstribution is zero, and as g increases it
spreads out. One can think of it as a diffusion problemk(keep in
mind that =0 means T = ® ).

§14. D epresentation of the gra artition function

a) Numbered Primary Diagrams
We want to express the U° in terms of the U.
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Recall that:

Al 1> = <a'lggli)y o ?
. (14.1)
(1'2 |w211 2>= (1' |U1|l><2 |U1l2> + (1'2 |U2|1 2>

(Placec ' Bl12 gy = Bp'ca’2s w2 . p(1e.2)

'Sy = i
a2t 2) = <11 fly 2'1nfl2)y + 'zl vl 2)

-
P 8 & S 0 5 5 9S00SS O P E OO LSNP OSSN ER OSSO EROC OSSO *

(14.3)

Using (14.2) we can write:
L I | ' ] | I
ra'wBliz)y = <a'lyli)y <2'lyla)y + <a'z2'l,li2)

+ 2" oyl Ca'lugley o+ <2'1'lu,l 1 2)
Comparing with (14.3), we conclude, as <1'|U;]1) = < 1'|U15|1> .
ete. that:

<1'2'19811 2) = C2'mli) <1'luyley + <12 |u,l1 2>+

+{2'1'|u,l1 2>
In the same way the other U° are found in terms of the U's. The
computation is simplified by introducing a diagram representation
e.g.: 1'
[}
Ity $
1 1
1 =
| I ]
{12 ltlall 2 = >
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and so on.

Then every Wy, is a sum of groups of such diagrams. For instance
1

1'2's' 123 1 2 x 2’5
= + + eeee *
RERIERED OB ¢ X
123 12 3 1 23 123
WBS contains all terms in W3 plus the ones obtained by permuta-

tions of the primed numbers.

Comparing the W3S thus obtained with the corresponding
expression as given by eq. (14.3), we obtain the graphical ex-
pression of UBS. The rule is to strike out from WBS all terms
in which, when we make l'== 1, 2'= 2y etc.y the dependence on
some of the coordinates 1s completely factored out. For simplici

ty we omit the arrows from now on.

11213l 3!1121 1'2 3l
We will strike out *** but not +* * 3 * X but not
T' 3)'(1' 12 3 123 123
sy etc. Then:
l = 3 1t 91 ~t ot 11 4t [Py t {al ot tnl ot
312 231 23 1 21 3 312 321
s .
AT D SR D R D CI
123 ‘1'2'3 12 3 123 12 3 12 3
+ + 5 other terms obtained by permutations
123

Let us introduce

<1'2'... n'mll S P'¢1'2 e Uil 2.0 0>  (14.4)
| S I |
e.g. 12 123 cirele

+ 5 others =<1'2'3'|T|1 2 3>= X *'“;?ﬁ?;ad ot

123 1253



With hese new graphs, we have:

31 2
2‘1‘ 3' yrtif 2y 2 r2 3 12 3 221 3
%X %X“ ;X ’%X’% ’% ’
12 3 12 3 23 1 23 1 31 2 31 2
123

As we are inte‘ested in the case l' =1, 2' = 2y seey we indicate

this by connec ing lines with same indices:

O O ®Q3 tooot

These are the numbered imary diagrams.

b) Unnumbered ry diagr

As we are going to integrate over all coordinates,
it is clear that several graphs give the same contributions,
s
such as ZQB and 3Q2 . Since in the expression for M Q ,

we are summing over all dlagrams, the total contribution of such
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similar diagrams can be represented by a diagram without indices

with an appropriate factor. These will be called the unnumbered

primary diagrams. It can be proved that:

Theorem
S
in Q@ = 2 (all unnumbered primary diagrams) (14.5)

In the computations, an unnumbered primary diagram is

defined to contain

i) a factor z for each line; I lines =z,
i1) a factor T for each junction,
ii1) a factor 1/S where S is the symmetry number
known from the theory of graphs).

S 1s the number of identical graphs within the totality
obtained by all possible permutations of the indices in the origin

al one.

To acquaint ourselves with the above statements, we write

the first few diagram explicitly:

maQS= &) + +©+....+
(a)
+ + c3<j:> F oueee. + (14.6)
(d;

(a) — (z/D)[<1|Ty 11> a1



(b)— (z%/2) [ alTyl1) (1iTyle)> a1 a2

(e)— (2%/3) [ {2lry11) <3Imyl2) <1Tyl3> a1 ez a3
(— (Z7/2)[ {12 |T,l1 2> a1 a2

(e)— (2%/1) [ <2ITI3> (1 3IT,l2 3> a1 d2 a3
(£)— (2%/6)[ <12 3|T|123> 4l a2 d3

e¢) Contracted dia
Since (cf. eq. (13.21)).

2
<x'lpl k> = 8, o7FE (14.7)

it is simpler to carry out the computations in momentum space,
and we shall do so. Consider (14.6): the contribution of the

first row diagrams 1is:

2 2 2
2z e PE 4+ ¢ (2%2) e7PE 4 211:(23/3) e 3K, =
k

X
= - 1o (1 - 2 o~ BE%)

To represent more schematically the following rows of
diagrams, we define:
!

|
(k) = » = + + + eeee =
"’ | } $

2 2
7 + 2% o~PE 4 23 2Pk = (14.8)

2
=7/(1 -2 ePK)

The motivation of this is that, for any given row, successive

dlagrams are obtained from the first just by interpolating
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junctions ‘IH_ in any of the lines. The set of diagramg of the

second row is represented now by

< A
( )X ) .
\ - ?

—

the set of the third by

,-\
‘A
€.
(

O,
\ of

These are the gontracted diagrams. To each of these is

attached a symmetry factor, to be computed in the same way as

$ and so on.

before, now with respect to the dotted lines. It can be checked
that the symmetry factor takes into account correctly the individu

al symmetry factors attached to the previous diagrams.

The introduction of the contracted dlagrams is equivalent
to having summed all T, terms, so that only the Té,fﬂ5, ces TE=

main.

§15. Formulation in terms of average occupation numbers

The motivation of this 1is an extension of the previous de-

velopment. Further sums can be performed. For instance, consider

the following graph with the cut indicated:

< k
/a—( \\ o~
\

o ')( )(\ )
k

Nay ~ 7 -’
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On the right of the cut, because of momentum conservation one has
the same momentum on the two lines that cross the cut. This right

side can be thought as a sort of = propagator.

L3

We can sum over all such portions, l.e. portions which
vyield an outgoing momentum equal to the ingoing. To indicate this,
we define:

L 4
‘k’ ~ 4\

4 - /
" - N «/ A* +-.oo
(k) = +‘§J+§;++ *\r
|

— e e e

ey

(15.1)
with the ¢orresponding symmetry factor (same definition). Some
example of contributions are (for the definition of m(k) see eq.
(14.8)).

k — (k)

»“‘yk' — 22(k) %ﬁkktfpatkw)

S

:h.

Ky e 2
kl&‘f;: 3 ¥ %2_1;3 B(k) < Xq k5T, |k ,> <o | T [ieqles>

=
-9-&99\—:— - ———

8
It can be proved that M(k) has a direct physical meaning:

Theorem:
If o> 1s the average occupation number in momentum

state k 1in the grand canonical ensemble, then

1 s
{m> = i (12%/11) i_l;z---kg l<k ky Kpeeody g |Up° )k Jyeedey o>

k fixed (15.2)
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Summing over k, both sides yleld the total number of partiecles.

One can further prove the

Theorem:
<> = Mk)Z -1 (15.3)
vhere 7 = e~ P/ 3 p: chemical potential.

Steps to express InQ° in terms of M(k)

(1)
|
1
= ,{\ +
|
!

where

K(k) = >O * {)p (15.4)

Explicitly:
—> I‘{Z.'<k K0k k> M(k)

ST .
Cg@ —> % k1k2<k k1k2|T3lk ky ky> M(kqIM(k,)
which is only the summation of the proper part of the diagram.

Then:
M =m + mKM (15.5)

which gives the expansion
M=m+ mKm + mEKmKm +

+ all irreducible diagrams with % lines
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seeee (15.6)

| A
=+ 0
| A

Irreducible diagrams: diagrams which, when two different lines

— -

are cut, do not split themselves into disconnected fragments.

(}(:,SQ : this figure shows a reducible diagram.

(11) Define
P = Z (all irreducible diagrams with % lines without

external lines)
k k! N
ky
(a) (b) (e)
(a) — $3<x kK Dlk k> M(k) M(k!)
(b) = (V/8)X<ks Ky I Tl k> (ko k| Tolkz X,

x M(ky) M(kp) M(kg) M(k,)

(e)— (I/6) Z <12 3|'I’3|1 23> M(1) M(2) M(3)

It can be proved the

8§
SM(k)

= K(k) (15.8)

Theoren

tn Q" = Z[ n [mk)/z] - My/m(e) + 1] + P
(15.9) -
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where - {3 kz
m(k) =2/(1 ~-2Ze ) (15.10)

and TP 1is given by (15.7).

Main point for the proof of this theorem: 1if we differen-
tiate both sides of the equation with respect to h:Z, we obtain

Z<Ln> = T [Mk)/z - 1]
which 1s clearly correct.
Use is made of eq. (15.6).

This theorem can be generalized into a variational princi-
ple:
Theorem (Variational Principle)

Consider

2
7 = £{ia(Mk)/z) - Mx)/z + MK~ PE+ 1} +P

as a functional of M (for fixed Z). We seek the maximum of q

with respect to variations of M.

2
LA /M - 1/2 + e PE 4+ g (15.11)

§M
where use is made of eq. (15.8).

Equating to zeroy we get M = m + m K M. Therefore the
grand partition function is a stationnary value of § . It can
be proved that it is in fact a maximum by taking the second varia
tion.

In this way the thermodynamical problem is formulated in
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terms of a variational principle.

§16. Comparison with the physical situation

The grand partition function 1s expressed in terms of M, Z
and P (eq. (15.9)). P , as given by eq. (15.7)y involves the
T functions which contain no statistics: it depends only on
the dynamics of the system.

For certain T and Z, M(k) has singularities in its de-
pendence on ky i.es at k = 0 M—>00. Bose-Linstein transition
obtains when the variational principle leads to a M(k) that becomes
singular at k = 0.

For the real He4 system the phase diagram 1s as i1llustrated.
The results above lead to the expecta-
p tion that
Along AB M(k) = finite on both sides
Along AC M(0Q) = infinite on both sides
= infinite on liquid side

Along OA M(O){
= finite on gas side






