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ABSTRACT 
The role of instantons in the breakdown of chiral U(N) 

symmetry is studied in a two dimensional model. Chiral U(l) 
is always destroyed by the axial vector anomaly. For N=2 
chiral SU(N) is also spontaneously broken yielding massive 
fermions and three (decoupled) Goldstone bosons. For N ̂  3 
the fermions remain massless. Realistic four dimensional 
theories are believed to behave in a similar way but the 
critical N above which the fermions cease to be massive is 
not known in four dimensions. 
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This reporl was prepared as an account of work 
sponsored by the United States Government. Neither 
the United States nor the United States Energy 
Research and Development Administration, nor any of 
their employees, nor any of their contractors 
subcontractors, or their employees, makes any 
warranty, express or Implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infringe privately owned rights. 

I. INTRODUCTION AND SUMMARY OF RESULTS 
1-4 It has recently been discovered that gauge theories 

exhibit the peculiar phenomenon of tunneling between distinct 
vacuum states via the instanton mechanism. The existence of 
this effect means that the standard perturbation theory vacu­
um is not really a vacuum state (cluster will be lost). The 
correct vacuum (9-vacuum) is constructed by an appropriate 

3,4 superposition of naive perturbation theory vacua. Although 
previous arguments have been more kinematic than dynamic in 

3 nature, we have been able to identify a number of interesting 
ways in which the 8-vacua will have qualitatively new properties. 

By far the most interesting of these qualitative features 
arises when massless fermions are present. Then a vacuum tun­
neling event automatically produces fermion pairs of non-zero 
chirality (hence the breaking of chiral U(l) invariance by the 
instanton) and would appear to suppress pure vacuum tunneling. 
However, a tunneling followed by an anti-tunneling (to absorb the 
pair) is not forbidden but does have an amplitude which falls 
off (due to the massless fermion propagators) as a power of the 
separation between the two events. In short, the massless 
fermions produce a strong long-range correlation, or effective 
potential, between instantons. It is therefore necessary to 
ask whether the qualitative properties of the vacuum are not 
quite different from what we found in the more general case 
where the instantons do not interact.significantly. 
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The answer to this question is both yes ard no, and to 
obtain a clear idea of what is going on it is necessary to go 
somewhat beyond the rather kinematical weak coupling arguments 
so far developed to study this subject. Of course, sufficiently 
powerful general methods do not at the moment e*ist and we are 
obliged to turn for guidance to semi-soluble spsc-Lal cases. 

The special case which is the subject c-f this paper and 
which will turn out to be very instructive is cnarged scalar 
electrodynamics in two space time dimensions. II possesses 
instantons (Euclidean Nielsen-Oleson vortices ) £.jd, while not-
soluble, turns out to be quite manageable. In th3 absence of 
fermions, and in the weak coupling limit, the vacuum of the 
no-fermion model is accurately described as a nom-interacting 
gas of low density (particles are instantons and the chemical 
potential is the classical action of a single instanton). One 
of our main points is that when N species of massless fermion 
are added, an effective Coulomb interaction betwesn instantons 
appears and the vacuum functional becomes essentially the parti­
tion function of a Coulomb gas at temperature gaM. We then make 
use of existing statistical mechanics arguments " to show that 
the system has two quite different phases: a dielectric phase 
for large N in which the fermion remains massless: and vacuum 
tunneling effects are strongly suppressed and a conducting, or 
plasma, phase for small N in which the fermiocs acquire a 
spontaneously generated mass and vacuum tunneJin? effects are 
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not suppressed. The phase transition is such that it must have 
a four dimensional analog which could provide a four dimensional 
mechanism for breaking not just chiral U(l) but chiral SU(N). 

Actually, the phase transition uncovered in this way is 
more general "han the particular problem (massless fermions in 
two dimensional models) which called it to our attention. (It 
also occurs in a number of two dimensional problems in statis­
tical mechanics and in the one dimensional Ising model with a 
|j - j'| interaction.) Being logarithmic in nature this kind 
of phase transition is natural in a scale invariant theory such 
as four dimensional QCD. We have, in fact, already suggested 
that a phase iransition of this kind could be responsible for 
quark confinement. This will be briefly discussed at the end 
of the paper. 
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II TWO DIMENSIONAL TODEL WITHOUT FERMIONS 

The model we will use to study the phenomena mentioned 
in the Introduction is the familiar one of charged scalar electro­
dynamics in two space­time dimensions Tne Lagrangian is 

<C = 5O 0A 1 ­ 31AQ)
2 + (Dy<b)* (D̂ qi) ­ V(,J>%) 2 1 

where D <f> = (3 ­leA )<|> and V(tJ>*<f>) = ­y2*** + |(<t>%)2 with both 
u and A taken positive The minimum of the potential V is not 
unique as long as u > 0 (it occurs for any ^ such that | cf> | = <|> = 
/u

2
/A) and one has the usual degenerate vacuum­spontaneoas sym­

metry breaking problem The standard treatment assumes that by 
a choice of gauge, one can bring any relevant field configuration 
to a form which is a small perturbation on <}> = t)> everywhere Then 
an examination of the small perturbations about this vacuum shows 
that of the two degrees of freedom of ^, one is a bona­fj.de mas­
sive scalar while the other is a would­be Goldstone boson which, 
by the Higgs mechanism, combines with the electric field degree 
of freedom to create a massive "photon" of mass v - etj>_ These 
two particles are manifestly neutral and one usually concludes 
that there is no way of introducing charged sources into the 
system because the long­range Coulomb interaction is screened 
(since the "photon" is massive) 

However, as we have recently learned from the study of 
the topology of gauge theory vacua, one must consider field con­
figurations which cannot be brought to the form $ = $_ by a 
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non­singular gauge transformation This is best understood b> 
considering the vacuum functional integral of the theory in 
two dimensional Euclidean, spacetime The requirement of finite 
action imposes only the constraint that on the circle at infinity 
I* | = <}>_ and Adx A = — — (in a gauge when A r=0, for instance, 

this implies that A
e ­ ̂  . * ­ *oe1

"
8 f o r l a r

6
e r ) T n e f l n l t e 

action field configurations thus fall into topologically district 
classes indexed by n and it turns out that to construct a true 
vacuum functional it is necessary to add together the contribu­
tions of all possible classes with phases e (a fixed but ar­
bitrary) 

The basic configuration out of which we construct every­
thing else is the minimum energy configuration in the n = +1 
sector It is not too hard to see that this is just the Nielsen­
Olesen vortex, thought of as an instanton in 2 dimensional 
Euclidean space rather than as a soliton in 2+1 dimensional 
Minkowski spacetime The vortex solution has a region, which 
may be centered anywhere, of radius ~u in which 30A, ­ 3,A_. = 
E f 0 and | <f> \ f (J,. Outside this core region, r)> and A approach 
vacuum values exponentially rapidly (in Landau gauge, if the 

A 1
 E x 

vortex is centered at x = 0 ij> ­ 4>0e A ~ — _— ) and the 
u
2 x 

total action of the configuration is S„ ­ ■'y­ There is also an 
anti instanton with opposite sign for A Since the region of 
non­vacuum field is well­localized it is easy to construct ap­
proximate solutions of an> desired n b> superposing n instantons 
at locations x and n = n ­ n+ anti instantons at locations x ~ 
so long as all separations are large compared to v The method 
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of superposition is just to add the instanton vector potentials 
n
+ + +

 n
­

(A = J A (x­x. ) + T A (x­x.)) and to construct $ outside the 
vortex cores according to |4>|= <t>n. n <f> = 0. This is equivalent 

rX
 V 

to <(i(x) = I(I0 exp i dx^A , the integral being taken along any 
0

 V f 

path avoiding vortex cores. Since A dxyA is a multiple of 2n 
this leads to no ambiguity. 

It is then easy to construct a reasonable approximation 
to the true vacuum functional by summing over all such configu­
rations and doing Gaussian functional integration over small 
perturbations about them. Up to exponentially small corrections 
the action of n widely separated instantons is just nS­ and the 
6­vacuum functional is well approximated by 

n n nA + n 
­ ■ " ­ ­ s0­

<e |e |e> ■ A I ­ o ^ - ^ e 
V
0 

+ 
i9(n+­n_) 
e 

(2.2) 

The x. integrations are taken over a finite but large volume 
L ­T and VQ is a normalization factor of order u ~ summarizing 
the result of doing the small fluctuation integral about the 
multi­instanton configuration. Apart from the phase factor 
i6(n+­ n_) 

e this is nothing other than the grand canonical en­
semble expression for the partition function of non­interacting 
particles of chemical potential S0 per particle. The partition 
function of a non­interacting gas is trivial to evaluate and 
one finds 

L 

r • 
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V '
S
0 

^- 2 cos 8 e 
<e|e"

HT
|9> = e ° , (2.3) 

the most probable configurations being those where the mean 
­1 "S

0 
instanton density is approximately V­ e 

Now that vacuum topologies have been properly accounted 
for, there are some important qualitative features of the physics 
of the model which differ from expectations based on naive per­
turbation theory. First of all, in the standard perturbation 
treatment, there is a sense in which the scalar field has a 
non­zero vacuum expectation value =<t>n: although <(> is gauge 
variant, one can find a gauge in which, up to small quantum 
fluctuations, I(I = QQ. Once one has properly taken account of 
transitions between different vacuum topologies by summing over 
the instantons, it becomes clear that the only possible vacuum 
expectation value for <t> is zero. The magnitude of $ is $» 
essentially everywhere, but the phase varies randomly in a way 
which cannat be undone by a nonsingular gauge transformation when 
one averagss over instanton positions. In the present context, 
however, nDthing of physical interest depends on the vacuum ex­
pectation value of <4> (the heavy photon mass is proportional to 

* 2 
<<(i ((>>, whinh quantity is still approximately equal to <t>Q ). On 
the other h£_nd. the assertion. based on naive perturbation theory, that 
the system cannot support a long­range Coulomb field and that any 
charge introduced into the system must be completely screened 
appears to be falsified by the proper inclusion of instantons. 
Indeed, the distinguishing feature of a 6­vacuum is that it is i 
a state in which the expectation of E = 3­A, ­ 3iA0 is non­zero. 
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In the non-interacting plasma approximation of the previous 
"S0 -1 paragraph, one finds explicitly <E> = -2 sin 3e Vn . 

Since such an electric field must have a non-zero source, it is 
manifestly possible to introduce incompletely screened charges 
into the system. 

A particularly revealing way of discussing this question 
is to calculate the energy of two widely separated charges +Q 
in a 6 vacuum. By the well-known argument of Wilson this amounts 
to calculating the 6-vacuum expectation value of exp{iQ | dxuA ) , 
the closed loop being of dimensions large compared to the charac­
teristic lengths of the system. But this just amounts to the 
construction of a system in a 6 vacuum outside the loop and in a 
6+ 2TT I* vacuum (recall that e is the charge carried by the Higgs 
field) inside the loop. Since the 0-vacuum is characterized by 
an energy per unit volume, the energy of the loop is proportional 
to the area of loop, which corresponds by Wilson's argument to 
a linear or confining potential between external charges Q which 
are non-integral multiples of e. Note that if Q is an integral 
multiple of e, the energy is zero because the vacuum energy is 
periodic in 6 with period 2TT. Indeed, any external source whose 
charge is a multiple of the charge carried by t)> can obviously be 
screened by the formation of neutral bound states. Note also 
that the field set up by non-integer Q (which is a sign of in­
complete screening) is a purely quantum effect since E is pro­
portional to e - e~ ' . Therefore, even though classical 
arguments would indicate that any Q is completely screened, the 
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qualitative nature of the screening process is changed by 
the quantum mechanical vacuum tunneling process. 
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3. MASSLESS FERMIONS 

For the reasons outlined in the Introduction we would now like to 

add to the system just described N identical species of massless fermion, 

coupled only to the gauge field 
N _ 

A<Z=Z1 Ji. v^fa - ieA )i|i . . (3.1) 
i n i (i ji i 

The vacuum functional integral is now 

< 0 | e " H T | 0 > = /DA e " S ( A , [ D e t ( A ) ] N (3.2) 

where Det (A ) is the functional determinant of the operator v (9 -ieA ) 
| j . 1JL u 

and Det (A ) appears raised to the N power because we have N independ­

ent species of fermion. We still expect the important A configurations to 

be (at least for weak coupling) superpositions of multiple instantons and 

anti-instantons, but we expect the properties of the vacuum functional it­

self to be quite different because of nontrivial dependence of the determ­

inant of Y(3-ieA) on instanton locations. Thus our major problem is to 

evaluate Det (A ). 

Before turning to that problem we should comment briefly on the 

symmetry properties of the system. Formally, the N identical massless 

fermions support a global U(N)®U(N) symmetry. We will see that in 

certain cases there is spontaneous generation of fermion mass which would 

normally, because of the spontaneous breaking of the chiral symmetry, 

lead to Goldstone bosons. Since massless bosons are forbidden in two 

dimensions such mass generation would seerr. to be forbidden by general 

principles. The resolution of this paradox is provided by the peculiarly 
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two-dimensional possibility of bosonization of Fermi fields. Each ip. 

may be written as the exponential of a massless Boson <b . and the total 

current 2 J 4> Y i> may be shown to be a function only of the normalized 
i i \± i 

field i N 

7N"L5I *L = * • 

N 

The other N-l fermion degrees of freedom, independent of 2_A <f>., re­

main free and massless even in the presence of A and provide a basis 

for the symmetry SU(N) x SU(N). The remaining chiral symmetry is just 

U(l) and corresponds to the freedom to translate * :* — $ + a. The chiral 

anomaly automatically reduces this continuous symmetry to a discrete 

translation group which for N > 1, is enough to forbid a fermion mass term. 

The point is that the effective determinant interaction generated by the an­

omaly can easily be seen to depend only on $ and to have the explicit form 

cos VirN $. This now supports only the discrete translation symmetry 

$ —» $ + 2 vV 7— for integer n. Since a mass term would have the form 

cos iAr 9, this discrete symmetry suffices, for N > 1, to forbid a mass . 

The spontaneous symmetry breaking we shall find is a breakdown only of 

a discrete chiral symmetry and generates no Goldstone bosons. 

Let us turn now to the evaluation of Det (A ). For a sufficiently 
M-

well-behaved A , Det (A ) has an obvious graphical expansion, illustra-

ted in Fig. L. For massless fermions in two dimensions the four--and 

higher--point current correlation functions vanish identically. (This-is 

why the Schwinger model is soluble.) Therefore 
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The current two­point function, if we include the anomaly term needed 

to guarantee current conservation, has the value 

G = - g 6 (x) - - ^ 8 3 i n x2 . (3.4) 
4ir 

If we adopt the gauge 8­A =0, only the delta function term contributes, 

and we have the simple explicit result 

An immediate consequence of this result concerns the relative 

contribution of the different topological classes of A mentioned in Sec­

tion 2. Recall that except in the n = 0 class, A must fall off as r for 

large r { 2irn = <p dx­A} . Therefore for n f 0, J d x A must diverge 

logarithmically and Det (A) must vanish. This is the two­dimensional 

2 

analog of ' t Hooft1 s discovery that massless fermions have a zero eigen­

value in a topologically non­trivial gauge field configuration and therefore 

vanishing determinant. It signifies the suppression of vacuum tunnelling 

as an asymptotic process (though not as an intermediate process with fin­

ite lifetime) and tells us that in computing the vacuum­to­vacuum ampli­

tude we need only include n = 0 configurations (equal number of instantons 

and anti instantons). 

For such configurations we shall adopt the vector field trial func­

tion 

A (x) = . E , (A
(0 , ,

(x-x.
+
)-A

(0 )
(x-x.")) (3.6) 

|JL I = 1 (1 I J! I 

where*\A is the Nielsen­Olesen vortex solution in the 3­ A = 0 gauge. 
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In this gauge we may of course write A = e d (b with d> = —in r̂ i 
6 6 ' n n t > l / e w 

outside the vortex core, V (ed)) = p, p = 0 outside the vortex core 

and fd xp = 1. Then as long as no vortex cores overlap, the quantity 

e
2
r 2 2 

— J d xA is identical to the two­dimensional Coulomb energy of n char­

ges + 1 at locations x. and n charges ­1 at locations x. . Explicitly, 

e / - 2 2 v* 2 + - V* 2 + + 2 v* 2 - - 2 
— / d x A = Li i n n (x. -x. )-Zy.<n|i (x. -x. ) -L/.ln[i (x. -x. ) 
Zir ■> n iTj w i i i > j w i j i > j w i j 

= U ({x. + }.{x."} (3.7) 
c i J 

^ n WAI "
U rt*-

+
> , < « . " ) ) ■ 

, DetiA) , c i 1 i /­. QI 
[
5 ^ 5 T

1 = e •
 (3

-
8) 

Having evaluated the fermion determinant we may now integrate 

over the relevant gauge field configurations to construct the vacuum func­

tional itself. As in the no­fermion case, we expect that we need only in­

tegrate over the locations of instantons and anti instantons as well as 

summing over their number (keeping net instanton number equal to zero). 

The result for the 6­vacuum energy is, for N massless fermions 

H T _ n d2x.+ n d2x.T"S0"|2n ­NU ({x + h U } ) 
< . , . ­ H T | e > a ? j ¥ _ ! r l r _ t [ ^ . | e c t 1 i . 

L ­1 (3. 9) 

Of course since n - n there is no longer any explicit dependence on 6. 

Also, we never allow vortex cores to overlap in integrating over x~ . 

More importantly, we see that if in the no fermion case, the vacuum is 

essentially a grand canonical ensemble of non­interacting particles with 
1 ~

s
o 

chemical potential V e . N species of massless fermion convert the 

system into a two­dimensional Coulomb gas with the same chemical pot­

ential. but a temperature Pq = N. We will see that the qualitative 
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features of the system can be very different from the N = 0 case and that 

phase transitions in this classical statistical mechanical system lead to 

drastic changes in the qualitative physics. 

Consider for instance a nearby instanton anti instanton pair at lo­

cations x and y. As long as they are far from all other instantons we will 

have 

e c a [ (i (x-y) ] . (3. 10) 

In other words, the larger N, the more strongly the Instantons and anti 

instantons will clump together in pairs whose mean separation is the or­

der of the vortex core size. Outside each pair, since its net topological 

charge is zero, the vacuum is indistinguishable from the standard pertur­

bation theory vacuum and the previously discussed qualitative effects of 

vacuum tunnelling are suppressed. Another way of saying this is that, 

because of the interactions between instanton and ant. instanton, each 

vacuum tunnelling event is immediately followed by a. anti tunnelling 

which cancels out any physical effects of either event. In order for the 

effects of tunnelling to be felt the correlation between tunnelling and anti 

tunnelling should not be too close. We reduce the correlation by decreas­

ing N (increasing T) and the key question is whether a. phase transition to 

a phase in which instantons and anti instantons are essentially decorrela-

ted occurs for a physically useful value of N (N > 1). 
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4. EQUIVALENT GRAPHICAL METHODS 

The classical two-dimensional Coulomb gas may of course be 

studied directly in order to determine the location and nature of its 

phase transitions. We shall find it convenient to first pass by another 

route which makes use of the fact that for us, only integer values of N 

are relevant. In that case we can find an equivalent graphical represen­

tation for the partition function which makes explicit the notion that each 

instanton is. because of the chiral anomaly, the source of massless 

fermions in a state of non-zero chirality. The resulting graphical rules 

will give us a useful intuitive preview of the subject of phase transitions 

and will allow us to see in advance what new physics ar ises at a phase 

transition.-

Recall that we found that the fermion determinant in the vector po­

tential corresponding to n instantons and n anti instantons at locations { x. } 

and { x. } was just exp[ -U ({ x. } , { x. } )] . Given the explicit form of 

U as a sum of logarithms we may easily show that for n instantons and 

n anti instantons 

fir <xL
+- x y i f i j - <x.- -x-)2"j 

(u V exp[ -U ] = ^L J J L i > ' J J . (4.1) 
w c r— + - 2i | II. (V-v 

- i . j -

It is well-known from studies of the Thirring model and other two-

dimensional models with massless fermions that this rational function 

of coordinate differences can be reexpressed in a form that has a simple 

interpretation in terms of fermion Feynman graphs. To construct frhi's 
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expans ion , it is bes t to in t roduce the notion of a " c y c l e " , an o r d e r e d set 

of 2m points (x. x. x. x. . . . x . x. ) which is thought of a s invar -
i . i . i , i , i i 
1 1 2 2 m m 

iant under cycl ic p e r m u t a t i o n . The e n t i r e set of 2n points can be decom­

posed in a n u m b e r of ways into a p roduc t of c y c l e s . To each cycle we 

a s s i g n a value by the ru le 
(x. X. X. . . . X . X. ) = (x. x . ) (x . x . ) . . . (x. x . ) (x. X. ) 

I I I I I I I I I , I I I I 1 1 2 m m 1 1 1 2 m m m l 

( x V ) = +* (x 'x + ) = + 1 . » (4-2> 

z - z (z - z ) 

w h e r e z (x) is a complex n u m b e r cons t ruc t ed out of the two-vec to r x a c ­

cord ing to z(x) = x +ix . To a given decompos i t ion of the 2n points into 

a p roduc t of cyc les we a s s i g n a value equal to the p roduc t of the values 

of each c y c l e . Then the t h e o r e m is that the ra t iona l function (|i ) exp[-U 1 

is equal to the s u m over a l l pos s ib l e decompos i t ions into cyc les of the 2n 

poin ts { x. }, { x. } (values being a s s igned to each cycle decompos i t ion as 

above) . 

It is p e r h a p s helpful to consul t F ig . 1 where this t h e o r e m is s ta ted 

p i c to r i a l l y for the ca se n = 2. It is not too ha rd to r ecogn ize the vacuum 
_ d+Y5) 

d i a g r a m s for mul t ip l e i n s e r t i o n s of i(i —- I(J (cor responding to the x ) 
- ( 1-V + -

and ip— ip ( co r respond ing to the x ). The o r i en ted p r o p a g a t o r s (x x ) 

and (x x ) a r e nothing m o r e than the Euc l idean ro ta ted and Y , p ro jec ted 

m a s s l e s s f e r m i o n p r o p a g a t o r s . We will u s e this g r aph ica l i n t e rp re t a t i on 

of the p a r t i t i o n function to cons t ruc t a p a r t i c u l a r l y useful i n t e rp re t a t i on 

of the € o u l o m b gas at the spec ia l t e m p e r a t u r e s c o r r e s p o n d i n g to in teger 

N. 
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Cons ide r now the par t i t ion function for N = 1. The decompos i t i on 

t h e o r e m jus t d e s c r i b e d may be used d i r ec t ly : We have to i n t eg ra t e ove r 

the 2n coord ina te s { x., x.} and then sum over n. At the s a m e t i m e we have 
i i 

in p r inc ip le to r e m e m b e r the cutoff in s t ruc t ion that forbids any coo rd ina t e 

difference to be l e s s than twice the vo r t ex r a d i u s . The c h e m i c a l po ten t ia l 

and a s s o c i a t e d no rma l i za t i on fac to r s in Eq. (3. 9) give a weight 

( 3 i - l , S o \ - 1 

(i V e I ~ In e j to each of the v e r t i c e s labe l led by x. and the 
va r ious t e r m s in the pa r t i t i on function expans ion have an obvious i n t e r p r e -

/ S 0 . - l _ (1±Y 5 ) 

ta t ion as mul t ip le i n se r t i ons of the v e r t i c e s | n V e I \\i — — ip o n 

f e rmion loops . These o p e r a t o r i n se r t i ons s u m m a r i z e the effect of the in­

s tanton on the s y s t e m and we see expl ic i t ly in the c a s e N = 1 that the in­

s tanton (anti instanton) is r ep laced by an effective in t e rac t ion 

||i. V e J ip I " I i|/[ |i V e M i4»| ——I IJJ which is p r e c i s e l y the s o r t 

of ch i r a l invar iance b reak ing t e r m found by ' t Hooft in four d i m e n s i o n s . 

It should be noted that the technique for cons t ruc t ing th is effective i n t e r ­

act ion in four d imens ions which r e l i e s on finding n o r m a l i z a b l e z e r o en­

e rgy solut ions of the Dirac equat ion would not work h e r e : Although z e r o 

ene rgy solut ions can be found, they a r e not n o r m a l i z a b l e and t h e r e is no 

c l e a r way of deciding on the c o r r e c t n o r m a l i z a t i o n . 

With this s imple g raph ica l i n t e rp r e t a t i on of the N = 1 p a r t i t i o n 

function it is ea sy to recognize that it is j u s t the exponent ia l of the con­

nected loop g r a p h s cons t ruc t ed acco rd ing to the s a m e ru l e s (Fig. 2). 

But the sum of the connected g r a p h s is obviously jus-t the expans ion in 

powers of m a s s of the vacuum loop g raph for a free fe rmion of m a s s 
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operator F(q )[|x V e (where F(q ) is a momentum space trans­

form of the position space cutoff instruction used in integrating over 
+ 2 2 

x. : F(0) = 1, F(oo) = 0 and F passes from 1 to zero roughly at q = (i ). 

Due to the cutoff, the loop integral, otherwise logarithmically divergent, 

is convergent, and there are no divergence difficulties in defining the 

partition function. More importantly, the fermion clearly behaves as if 
/ so> -1 

it has acquired a mass hi V e | , and all correlation lengths must 
1 W ' S0 

be finite and roughly of the order \i V e , large insofar as S is large, 

but finite. For a temperature corresponding to N = 1. the Coulomb gas 

must therefore be in the plasma phase with a finite screening length of S0 the order of u V„e . On the other hand, for large N, as argued be-w 0 ° ° 

fore, the system must be in a dielectric phase, with infinite screening 

length, and there must be some intermediate value of N at which a 

phase transition occurs. 

Insofar as the plasma phase is associated with a non zero, spon­
taneously generated fermion mass , m , we should find that as we in­
crease N from N = 1, m „ should decrease and at some critical value, N , 

F c 

should vanish. For integer N greater than 1 the graphical treatment of 

the partition function is significantly different from the discussion we 

have just given. Consider first the case N = 2. For a given set of in­

stantons and anti Instantons we need the graphical expansion of 

[ (i exp{-U ({ x }.{x })] (i.e. its expansion as £. sum of products 

of fermion propagators). The general rule is easily 2xtracted frcm the 

particular example of Fig. 1. The square of that sum of graphs is 
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displayed schematically in Fig. 3 and is clearly the sum of vacuum 

graphs constructed out of quadrilinear vertices UJ (1+Y )JJ ip (l+y,)'!' 7 

for the instantons and vp (1 --y )4J IK (1-Y,)III ? for anti instantons. To 

construct the full partition function, it is necessary to weight each 

(i S i - 1 

u V\e I and sum over numbers and locations of in-w 0 ) 
stantons as before. 

The partition function is again the exponential of the sum of con­
nected graphs constructed out of these new vertices. Some of the possible 
structures are displayed in Fig. 4. Now, of course, the connected 

graphs have a rather complicated structure, and in particular cannot 

be interpreted as generating a fermion mass in any obvious way. This 

is in line with our discussion of the chiral symmetry properties of the 

effective fermion interaction generated by the instantons: Although it 

"breaks" the continuous chiral symmetry, it leaves unbroken a dis­

crete symmetry which suffices to exclude a fermion mass operator. How­

ever we still may ask whether this formal discrete symmetry is not spon­

taneously broken, and a fermion mass generated in a non-perturbative 

fashion. 

The simplest, and probably reasonably accurate approximation 

to the integral equation for the fermion mass operator is shown in Fig. 5 

where the l .h. s. is the mass operator, the internal line on the r . h . s. is 

the full fermion propagator including the mass operator, and the vertex 

is the instanton-generated effective fermion interaction. The resulting 

integral equation is 

mF(p) M e ' ^ / A "Yfr> 2F(P2F2q) <*-3> 
(2ir) q +m (q ) 
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5. RENORMALIZATION GROUP METHODS 

N e e d l e s s to say , the two-d imens iona l Coulomb gas has been 

s tudied in tens ive ly on its own m e r i t s by the s t a t i s t i c a l m e c h a n i c s com­

muni ty and we should be able to verify the p i c tu re we have developed in 

Sect ion IV by c o m p a r i s o n with known r e s u l t s . In th is connect ion we find 

the work of Koster l i tz m o s t helpful and in th is sec t ion we would l ike to 

p a r a p h r a s e h i s r e s u l t s on the t w o - d i m e n s i o n a l Coulomb gas in a way 

which will , we hope, give weight to the p i c tu re we ex t r ac t ed from c rude 

d i a g r a m m a t i c a r g u m e n t s . 

The Coulomb g a s pa r t i t ion function has the explici t form 

p Q ^ ^ . i n p ^ l 2 

Z = S - ^ K 2 n / " [ f d 2 x . e (5.1) 

" (nl) T l 

w h e r e K is the chemica l potent ia l , e .= + accord ing to the sign of the c h a r g e 

loca ted at x. , and the in tegra t ions a r e c a r r i e d out within a l a r g e volume 

V with the i n s t ruc t ion that a c i r c l e of r ad ius T a round each c h a r g e is 

exc luded. Fo r us pQ = N, K = V e and T ~ n , the instanton r a d ­

i u s . On d imens iona l g rounds alone we m a y say that Z = Z f - r , T K, N) = 
V - - T 

Z f - ^ . K , N). The quanti ty K is the d i m e n s i o n l e s s chemica l potent ia l , and 
-so 

in ou r c a s e e s sen t i a l l y equal to e . Thus , va ry ing T, holding K, N 

fixed, is the s a m e a s vary ing V and should cause no change in in tens ive 

quan t i t i e s such a s m (assuming the re to be a t h e r m o d y n a m i c l imi t ) . 

On the o the r hand, Kos le r l i t z h a s e s t ab l i shed r e s c a l i n g equa t ions , valid 

for s m a l l chemica l potent ia l , which show that s m a l l changes in r m a y 

be r e p l a c e d by smal l changes in the p a r a m e t e r s K and N. For quan t i t i e s 
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w h e r e £ is a p u r e n u m b e r of o r d e r 1 and we have included the cutoff 

function F(p) F(q) in the defini t ion of the v e r t e x . The s t r u c t u r e of the 

equation is such that m (p) = m • F(p) and m is e i t he r z e r o (of no 

in t e re s t ) or sa t i s f i e s 

, " S 0 f d 2 q FZ(q) 
J 2 2 2 2 

(2n) q + m p F (q) 

(In) q + m F 

Because of the in f ra red d i v e r g e n c e a s m -» 0, it is c l e a r that th is equa-

- So 
tion h a s a solut ion with m „ ~ u exp(-£ e ). In o the r w o r d s , for N = 2, 

F w 

t h e r e is a solut ion with n o n - z e r o (although except ional ly sma l l ) spon t ane ­

ously g e n e r a t e d f e rmion m a s s and the s y s t e m is s t i l l in the p l a s m a p h a s e 

with finite c o r r e l a t i o n l e n g t h s . On the o the r hand, the e x t r e m e s m a l l n e s s 

of m sugges t s that we a r e n e a r the c r i t i c a l point w h e r e m van i shes and 

tha t for N = 3 o r g r e a t e r we should not be ab le to find a solut ion w i t h m / 0 

Indeed, for N = 3, the s a m e c rude app rox ima t ion to the i n t eg ra l 

equat ion for the m a s s o p e r a t o r y ie lds the s y s t e m p i c tu red in F i g . 6. 

P r o c e e d i n g in the s a m e way as above, we obtain the equat ion 

H w L (2n) q + m F F (q)-1 

Under the a s s u m p t i o n that m /(i is s m a l l , th is b e c o m e s , a p p r o x i m a t e l y 

m m ' 2 

e 
/ m F mF\ 

1 ~ w 1 0 g ^ w J ' 
which man i fes t ly does not have a solut ion when Sn » 1, which is the ba s i c 

val idi ty c r i t e r i o n for a l l the a p p r o x i m a t i o n s we have been m a k i n g . So. for 

N = 3 (and by ex tens ion for any N>3) we have m =0 and the s y s t e m is no 

longer in the p l a s m a p h a s e . 
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l ike m which a r e independent of j , the r e s c a l i n g equat ions the re fo re 

define t r a j e c t o r i e s in K, N space along which t he se quant i t i es a r e con­

s t an t . 

Kos le r l i t z 1 r e s c a l i n g equat ions a r e eas i ly s ta ted in t e r m s of the 

p a r a m e t e r s y = 4irK, x = N-2 (they a r e val id only for y « 1 and t = tm) 

dx 2 x + 2 2 
d ' * (5.2) 
dy_ 

d l = " y X • 

T h e s e equat ions have a fixed point at x = y = 0 and s t anda rd r e n o r m a l i z a 

t ion g roup l o r e sugges t s that the t r a j e c t o r y pass ing through the fixed 

point is a s s o c i a t e d with a phase t r a n s i t i o n . We a l r e a d y expect a phase 

t r a n s i t i o n a s s o c i a t e d with the vanishing of the spontaneously g e n e r a t e d 

f e rmion m a s s s o m e w h e r e n e a r N = 2, and the impor tan t ques t ion is how 

N depends on dens i ty . In the immed ia t e neighborhood of the fixed 

point we may r ep l ace the r e sca l i ng equat ions by 

dx 2 dy ,- , . 
T t - - v ^ = -yx . (5.3) 

2 2 
The solut ion of this s y s t e m which p a s s e s through x = y = 0 is x - y = 0 
and we find that 

N . = 2 + 4irK > 2 . (5.4) 
c r i t v ' 

The c r i t i c a l value of N is p r e c i s e l y 2 for z e r o dens i ty , but for s m a l l 
-S 

K ( ~ e ),N is s l ightly l a r g e r than 2 and the phys ica l ly i n t e r e s t i n g 

value N = 2 l i e s in the p l a s m a r e g i m e , which is one of the impor tan t 

th ings we wanted to show. 
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We may a l so get an i m p r e s s i o n of how the spontaneous ly g e n e r ­

ated fermion m a s s v a r i e s with N from the following a r g u m e n t . For 

N < 2 (x < 0) and y « 1 (small densi ty) we can eas i ly show that to f i r s t 

o r d e r in y . the solution of the t r a j e c t o r y equat ions is 

-x 
x ( T ) = x Q y(T) = y 0 ( ^ ) ° . (5.5) 

On dimensiDnal g rounds the spontaneously gene ra t ed fe rmion m a s s m u s t 

have the functional form m = — $ (x, y) . Along a t r a j e c t o r y m m u s t 

be independent of T. Thus 

7*vyo '̂X° V ' v V ( 5 - 6 > 
or 

* ( x , y ) = 0 (x) y " 1 , / x . (5.7) 

The in t e re s t ing thing about th is is that it t e l l s us how the spontaneous ly 

g e n e r a t e d m a s s depends on the chemica l potent ia l for varying N. Fo r 

+1 " s o 
N = 1 (x = ll we s ee that m c»(y) a e exact ly a s specif ied by our d ia ­

g r a m m a t i c a r g u m e n t . Fo r N = 2 we cannot use the above f o r m u l a s s ince 

we a r e c lose to the c r i t i c a l point . The H a r t r e e - F o c k r e s u l t that at N = 2, 

log m a e , is not u n r e a s o n a b l e , s ince , acco rd ing to (5.7) a s N a p p r o a c h -
F -s 

es 2, m van i shes as a h ighe r and h ighe r power of e . On the o the r hand 

r e s c a l i n g a r g u m e n t s do not s e e m to be powerful enough to p r o v e the p r e c i s e 

fo rm of the H a r t r e e - F o c k r e s u l t . 

In sum, the r e s c a l i n g a r g u m e n t of K o s t e r l i t z shows that t h e r e is a 

phase t r a n s i t i o n at N s l ight ly g r e a t e r than 2. (The s e p a r a t i o n f rom 2 de ­

c r e a s e s w ; th d e c r e a s i n g d e n s i t y . ) For N > N 
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the fermion mass is zero (dielectric phase of the gas) while for N < N 
c r i t 

the spontaneously generated fermion mass is non-zero (plasma phase. 

finite correlation lengths), and varies with N in a manner consistent with 

the findings of our diagrammatic calculations. 
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6. CONCLUSIONS AND SPECULATIONS 

Let us now summarize the results of our discussion before at­

tempting to speculate on their meaning for more physically relevant the­

ories. Our first achievement" was to extract explicitly the basic effective 

interaction between the instanton and the massless fermions. Just as in 

four dimensions, the instanton necessarily creates massless fermion 

pairs of non-zero chiralsty (as many pairs as there are flavors of ferm­

ion). The technique of evaluating this vertex by finding zero-energy solu? 

tions of the Dirac equation doesn't work in two dimensions (thezero en­

ergy solution exists, but it is not normalizable) and we must resort to 

special trickery. This then allows us to construct graphical rules for 

the vacuum functional and establish that it is identical to the partition 

function of the classical Coulomb gas at special temperatures. 

From the structure of the partition function it is clear that adding 

massless fermions to the original Higgs model changes the physics of 

the instanton gas representation of the vacuum quite drastically. With­

out fermions, the instantons behave as statistically independent non-

interacting particles. With massless fermions there are strong forces 

between instantons and anti instantons and in the large -N limit one must 

expect instantons to be tightly bound to anti instantons in pairs . Outside 

such a pair the fields are tnose of a non-instanton vacuum, and for all 

practical purposes, the instantons have no effect on the system. For 

physical effects of the instanton to manifest themselves some finite frac­

tion of the bound pairs must "ionize." Since the binding potential is 
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logarithmic (and therefore rises without limit) ionization per se is not 

possible, but by increasing the temperature (decreasing N) one causes 

the mean separation of the pairs to increase and one may expect that at 

some critical N, the instantons become sufficiently uncorrelated to re­

establish significant physical effects. 

As a sign of this phase transition, we focus on the mass of the 

fermion. The fermions are added to the system with zero mass but the 

possibility remains that spontaneous breaking of chiral symmetry may 

cause m to be non-zero. If m / 0, then the long range correlations 

between instantons and anti instantons which suppressed their effects on 

the physics go away. For m / 0 all correlations a re short range, and 

the instantons reappear as a significant dynamical variable. By a com­

bination of diagrammatic and statistical mechanical arguments we find 

that indeed, for N = 1 and N = 2,m is non-zero and the original chiral 

symmetry of the theory is violated spontaneously. For N = 1, this sym­

metry breaking is identical to that arising from the chiral anomaly via 

the instanton, while for N = 2 it is a purely dynamical phenomenon hap­

pening on top of the anomaly. It signifies that despite their binding by 

an infinite range potential, the instanton pairs have partially ionized and 

their constituents behave in an uncorrelated fashion. For N > 2 this 

does not happen: The fermion mass is zero. 

The existence of two regimes in the number of fermion flavors--

one like the no-fermion case because the instantons are in an uncorrela­

ted plasma phase, the other like old fashioned perturbation theory 
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because the instantons are so tightly bound to anti instantons that it is 

as if there were no instantons at all is of interest in its own right in 

order to understand the physics of the two-dimensional gauge theory. 

More interesting are the suggestions it makes about various aspects of 

four-dimensional gauge theories. Consider for instance the question of 

spontaneous breaking of chiral SU(N) flavor in four dimensions. With 

K massless fermion flavors, the chiral anomaly only breaks the chiral 

U(l). leaving a chiral SU(N) and leaving open the possibility that dynam­

ical effects further break this down to ordinary SU(N). In the "dilute 

instanton gas" approximation, the diagrammatic picture is nearly iden­

tical to that presented in Section IV. For N =1, the fermion directly ac­

quires a mass from the anomaly. For N » 1.clearly the instantons and 

anti instantons will be tightly bound in pairs, there will be no surviving 

effects of instantons and m will be zero. Somewhere in between there 

clearly must be a phase transition. If it happens for N > 2, then there 

will be at least one case (N = 2) in which the instantons not only solve 

the U(l) problem, but are responsible for the dynamics of ordinary chiral 

symmetry breaking. In four dimensions we would expect Goldstone bos­

ons which do not decouple. However, the four-dimensional instanton gas 

plus fermion system is not equivalent to anything as simple.as the Coulomb 

gas and we do not have a quick way of estimating N . . 
° crit 

Finally we note that the key feature behind the phase transition 

discussed above is not the dimensionality of space but that the potentials 

are logarithmic. In an earl ier paper we pointed out that in four dimensions 
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an instanton can split into two half instantons (merons) at a cost in action 

which is proportional to the logarithm of the distance between the merons 

at small coupling (low temperature). The merons are permanently pair-

wise bound into instantons. However because the potential is only logarith-
coupling 

mic it is likely that at moderate or large/fhigh temperature) there will be a 

phase transition in which the merons become free, and the quarks become 

confined. Whatever its intrinsic mer i ts , the theory studied here is an in­

teresting model for the phase transition which we believe to be responsible 

for the dynamics of confinement in four dimensions. 
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FIGURE CAPTIONS 

Fig. 1: Graphical expansion of the fermion determinant for an external 

vector potential. The wavy line stands for the specified external 

field and the loop is constructed out of free mas,aless fermion 

propagators. 

Fig. 2: Graphical interpretation of the contribution of t^o instantons and 

two anti­instantons to the partition function in tre case of one 

flavor. 

Fig. 3: Resummation of the partition function for one f.avor. 

Fig. 4: Graphical interpretation of the two instanton­tvrD anti­instanton 

conbribution to the partition function for two flsii'ors. 

Fig. 5: Resummation of the partition function for two flavors. , 

Fig. 6: Graphical expression of the Hartree­Fock equal ion for two flavors. 

Fig. 7: Hartree Fock equation for three flavors. 
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