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ABSTRACT

The breakdown of Bjorken scaling in asymptotically free

gauge theories of the strong interactions is explored for its

implications on the large  q2  behavior of nucleon form factors.

Duality arguments of Bloom and Gilman suggest a connection between

the form factors and the threshold properties of the deep inelastic

structure functions.  The latter are addressed directly in an

analysis of asymptotically free theories; and through the duality

connection we are then led to statements about the form factors.

For very large  q2  the form factors are predicted to fall faster

than any inverse power of  q2  .  For the more modest range of

q2  reached in existing experiments the agreement with data is

fairly good, though this may well be fortuitous.  Extrapolations

beyond this range are presented.
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In a recent paperl by one of us (D.J.G.) the breakdown of Bjorken

scaling was investigated in the context of asymptotically free gauge theories

of the strong interactions.2,3  An asymptotic extrapolation formula was obtained

that expresses the deep inelastic structure function  F2(w,q2)  at one value

of  q2  in terms of the function  F2(w,q'2)  at another value,  q'2 , of the

,2momentum transfer variable - provided both  q2  and q are large enough

to be in the "asymptotic" region.   It was shown that deviations from scaling

are expected to be especially large in the vicinity of threshold
U.

(w E (2v+m2)/q2 = 1).4  Here we wish to explore the consequences which this

breakdown of scaling would suggest for a related topic:  the q2  dependence

of elastic and transition form factors of nucleons.

First, let us recall some results from Ref. 1. One starts with the

asymptotic relation2,5 for the moments of the structure function  vW2 = mF2 :
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where the  CN  are unspecified constants and  w  is an unspecified scale

25parameter. The exponents A  are related to the calculable ' anomalous

dimensions of the dominant operators of spin  N+2  in the Wilson expansion

for a product of currents.  With
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one now derives the asymptotic extrapolation formula
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asymptotic region, i.e., where the effective "coupling constant B(t')  is

3.
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Equation (2) is supposed to become exact when  t  and  t'  are in the

sufficiently'small compared to unity.

As written, Eq. (1) represents the situation that would obtain if

there were a single operator which controls the asymptotic behavior of the

th                                                  6N moment. In fact there are several such operators (singlets of normal            A

and abnormal parity, as well as a non-singlet). In general, for any given

N , these have different anomalous dimensions, so the right side of Eq. (1)

sliuuld be replaced by a corresponding sum of contributions from the several

operators. However, we are interested here in the behavior of the structure

function  F2  near the threshold, at  w=1.  This is governed by the

moments of large  N ; and it turns out that the anomalous dimensions of the

various operators all have the same limiting behavior for large  N     There-

fore, the single term on the right side of Eq. (1) represents the net effect

at large  N . In this limit one has

T'···
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where  G  is determined by the structure of the strong gauge group and by

the quark representation under the group. If the strong gauge .group is

SU(3)' , and if the theory contains three quark triplets, then one finds
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that  G = 2/27 . This is the numerical value that we shall adopt for later

numerical purposes.

Suppose that the reference structure function, at  t' , has the

following behavior near threshold:

Fa (63>t')  .v Cw_\)1 60-'1· (5)

Then the structure function at  t > t'  has itself the rather simple

threshold behavior given by

Fll'O,t) l Fric.a,e) --"   G.0(4.,-)- (»Q<: ,AJ-'1 t r(d.+1 +P) (6)

where

P  =   4 6 .4, 1  .                            · (7)t'

The threshold property expressed by Eq. (5) seems in fact to obtain

(with  d= 3)     in  the q'2 region relevant  to the SLAC-MIT experiments.

Accepting this, we now wish to consider the implications of Eq. (6) for

the question of nucleon electromagnetic form factors. Consider the contri-

bution to the structure function F2  coming from some resonance of mass  Mr

For simplicity we take the width to be infinitely narrow.  This contribution

is

11"=      1,6,10,  Scv-14),                              (8)
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where  vr =    (Mr2-m2+q2) '  This equation defines the electromagnetic

transition form factor connecting the nucleon and the resonance. If the

"resonance" in question is the nucleon itself (M 2=m2), then we are dealing

with the diagonal electric and magnetic form factors and

(f  =    G; + (f/'lm')GM') iII,(f/4„1,)].       c„

Accepting that the second term dominates the first term in the numerator of

Eq.    (9) - at large      q'    ,   we   have

61  -=       62    (1+    O (1199)·                       (9,12-4 02

with  M- >M  ,i t now follows from positivity that
or

(1+  4.elf*

d w    Fl  (3'. u )      >        (34(1*)· (10)

1  '   ell;

As  q2 + 00 , the integration is restricted to the threshold region of  w  ,

and we may therefore adopt  Eq.(6) for F2(q2,w) .  In this way we find

-                        , 2 <696  /1/&02)   / So \0(+I+P
62(gz)  <  con,+ant t-

1 - i-)
c       t'     1                     r   c   a.6  +71        \      11

, J    (11)

,2
where  so = M02-m2 .  Notice that the parameters d  and q depend on

the choice of reference structure function, according to Eq.(5).  As Eq. (6)

shows  d  increases with  q'2
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In deriving Eq. (10) we have assumed that the limit   q2 + m   is
1

uniform in  w, even in the vicinity of threshold„ w z l t 0(-2)·  This
q

2   1
could be false   if the corrections   to   Eq. (1),   whi ch   are of order      (En  12)-

appear with coefficients that increase sufficiently rapidly for large  N

(faster than En N). In the present paper we assume that the corrections.to

Eq.(1) do not have such rapidly growing coefficients; or if they do, that

this nevertheless does not destroy the uniformity of the large  q2  limit

7
near threshold. Accepting this, we see for asymptotically free gauge

theories that the nuclear elastic and transition form factors must fall

faster than any inverse power of  q2  as  q2 + 00 ; indeed, faster than

(q2)-2GEngnq2

Returning to the arguments leading to Eq.(11), we observe that a more

predictive result can be obtained if we invoke the notion of local duality,

8
as advocated for electroproduction by Bloom and Gilman. In this context

duality means that the resonant, or the elastic, contribution is some

constant fraction, independent of  q2 , of the structure function, even as

q2 + ..  Consider for example the·nucleon contribution itself. Duality

implies  that  the two sides  of Eq. (10) are proportional  to each other at  all

q2 , where  M02  should be chosen to render the proportionality constant

as close to unity as possible.  From the SLAC-MIT data, Bloom and Gilman 8

find that   s  =(1.23 Gev)2  is the best choice. Using this version of

Eq. (10) , both at  q2  and  q'2  one finds, for the nucleon magnetic form

factor

-2 .696
67,4 ( 9      ./       / .441 i:2,4, \ p (6"1_      C  $0   46        1   1621   \,i. i-               A.

6 Aco,z) l  61  .,0,)       rid.:,p)  l-  j     <  14   j         .        (12)MD,



.

7.

provided both  q'   and q are large enough. The same formula holds for

transition form factors to resonances. As noted earlier,  all the revelant

twist-two operators have the same anomalous dimensions for large  N ,

irrespective of isospin and cther quantum numbers. It follows that the

asymptotic extrapolation formula of Eq.(12) holds separately for the nucleon

isovector and isoscalar magnetic form factors and similarly for the correspon-

ding axial vector form factors.

The analysis given above  can be repeated for the longitudinal structure

function FL(q2,w), which receives contributions  from the nucleon electric

form factor  GE(q2) ..  In asymptotically free theories of the type discussed

in Ref. 2 the moments of  FL  are asymptotically smaller by one power of

log q2/y2  than the corresponding moments of  F2 .  Moreover, the  N  depen-

dence of the ratios of the coefficients can be explicitly computed.'  Using

.      the results thus obtained, and combining this with an analysis of the sort

described in Ref. 1, one finds near threshold (w+1) that
FL/F2 + (1-w) (tnq2/U2)-1.

On the basis of the duality qrguments employed here one now finds that

GE2/GM2 +
(Enq2/u2) as  q 2 +0.  Thus the "scaling"of electric and magnetic form

-1

factors (to within logarithms) emerges as a prediEtion of asymptotically free

theories based on spin one-half constituents.

Beyond  the  maj or uniformity and duality assumptions  that  have  gone  into

Eq.  (12) , there are several* practical delicacies that arise in any attempt to

use this equation for the regions of  q2  that are presently accessible .to

experiment. We hare to start at some reference q where the structure,2

function  F2(w,q'2) is known in the vicinity of  w=1; and we have to

suppose that q is large enough to be regarded as asymptotic. It is an,2

open question whether present experiments have penetrated this asymptotic

- 8
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region. Certainly the present evidence is too sparse to determine, for

Eq.(5), whether the exponent  d  is varying with  q2  over the limited range

covered.  To be sure, Eqns.(6) and (7) suggest that d should not vary

10rapidly with  q2  and we shall accept the experimental result, d=3,a s

applying to  any   q'2   in the region of a few (Gev)2  .   From Eq. (12) we see

for any limited range in the vicinity of the reference q , that the form
,2

-d-1factor variation with  q2  comes chiefly from the factor (42) on the

right-hand side of the equation.  With  d=3  Lhis implies GM - (q2)-2- ,

which is the celebrated dipole behavior - in rough agreement with experiment

up  to    q2- few   (Gev) 2   .     In this region actually, the behavior  is  more

accurately represented by

-1

with·  q02 = 0.71(Gev)2 .  This departure from Eq.(12), together with the other

departure of order (q2) represented by the approximation in going from
-1

Eq.(9) to Eq.(9'), might well arise from higher order corrections to Eq.(5);

d+1
i.e., from a next term of order (w-1) Indeed the successful duality

fits of Bloom and Gilman suggest that this is so.  For practical purposes

we incorporate these effects into Eq.(12) by replacing the factor  (q'2/q2)d+1

with the factor  (q'2+qo )   /(q2+qo ) d=3.  For  q2> q,2>> q02 ,2 d+l 2 d+l

this amounts to a correction of order  (q2)-1.

Apart from the choice of a reference q'2 , Eq.(12) contains the

parameters  G, P , and sl The first is specified by the gauge group

and its quark content. For present purposes, as mentioned earlier, we shall              

take  G = 2/27 , corresponding to  SU(3)'  and three quark triplets.  As

e

for the parameter  s   , this does not enter sensltively into Eq.(12), since
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2 _  ,2the function  P  vanishes at  q -q and increases only very slowly as

q2  increases beyond q .  We adopt for  s   the Bloom-Gilman value noted
,2

previously. Finally, there is the choice to be made of the scale parameter

u  .  If the reference q that we choose is supposed to be sufficiently,2

asymptotic, then we must certainly suppose that  1·12 << q,2 .  We have

considered several cases to illustrate how the form factor predictions vary

,2with the choices of q and  U2 .  The solid curves in Fig. 1 show the

results for  q'2 =5, with  F2 = 0.5  and  1.0 [the units are (Gev)2].  The

solid curves in Fig. 2 correspond to  q'2 = 10 , P2 = 0.5  and  2.0 .  Both

11
figures also display the experimental points.

Of course if our whole speculative analysis is right, if we know the

correct scale parameter w , and if we know the correct exponent parameter

d(q'2) , then the results should not depend on the choice of q'2  - if it is

sufficiently asymptotic.    This  is a large collection  of  "ifs".    In  fact,  as

the curves of Figs. 1 and 2 show, the two choices  q'2 = 5  and  9'2 = 10

indeed do not produce markedly different results,  Similarly the sensitivity

to the scale parameter  U  seems to be only moderate. That the various curves

show some resemblance to the existing data is dnother matter. Especially at

the larger values of  q2  the error flags are not negligible, and anyhow, the

rough agreement with the curves may well be fortuitous.

What is qualitatively significant is the experimental indication  of
1  12

a fall off below the dipole formula at large q- . If Bjorken scaling holds

exactly, then the Bloom-Gilman analysis suggests that  GM  should fall exactly          1

like   (q2)-2.   The more rapid fall off observed to set in around  q2 85 5

would then imply either a failure of the duality arguments, or a breakdown

of  exact Bj orken scaling. It is this latter interpretation that we have

adopted here, in the context of asymptotically free gauge theories.  The
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interesting circumstance arises that one can get at a possible breakdown

of exact scaling indirectly, through the elastic form factor;  as  well  as

directly, through the deep inelastic structure functions. The breakdown

effects are magnified for the form factor, as one sees by comparing the

q2  dependence of Eqns. (6) and (12).  It is clearly worthwhile to

pursue both approaches,  out  to the largest possible values  of    q 2  .

g
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Figure Captions

1.  The quantity (ltq2/q02)GM2(q2)/GM2(0) , q02 = 0.71(Gev)2 ,
as a function of  q2  , for the choice of reference point

q,2 = 5 (Gev)2 .  The upper curve corresponds to scale parameter

u2 = 0.5(Gev)2 ; the lower curve to  02 = 1.0(Gev)2  0  The data

points are from Reference 11.

2.  The quantity  (1-1-(12/q 2)2G 2((12)/G 2(0) , (102 = 0.71 (Gev)2 ,
as a function of  q2 , for the choice of reference point  q'2 = 10 (Gev)2 .

The upper curve corresponds to  U2 = 0.5 (Gev)2 ;  the lower curve

to  U2 = 2.0 (Gev)2

*
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