UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

LEGAL NOTICE
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Has any interest or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights;

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employees of such contractors, in the extent that such employees or contractors of the Commission, or employees of such contractor prepare, disseminate, or provide access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

LRL 25-INCH BUBBLE CHAMBER

Luis W. Alvarez, J. D. Gwos, Frank Barrera, Glenn Eckman, Jim Shand, R. Watt, Duane Norgren, and H. P. Hernandez

July 8, 1964

This document is PUBLICLY RELEASABLE
Authorizing Official
Date: 08/16/2020
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LRL 25-INCH BUBBLE CHAMBER*†

Luis W. Alvarez, J. D. Gow, Frank Barrera, Glenn Eckman, Jim Shand, R. Watt, Duane Norgren, and H. P. Hernandez

Lawrence Radiation Laboratory
University of California
Berkeley, California

(Presented by Sulamith Goldhaber)

July 8, 1964

I. INTRODUCTION

The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system. At present the chamber operates twice per Bevatron pulse. The general features of the chamber construction are shown in Figs. 1 and 2. The chamber is ten inches deep at the narrowest point. The magnet is of conventional water cooled design and in present operation produces a vertical field of 18.5 kgauss. With suitable generators it has produced a field of 22.8 kgauss. The most important new features are discussed below:

A. Expansion System

Unique to this chamber is a movable top window which serves as the piston for the liquid expansion system and as an optical condenser lens. The system operates through a pressure multiplier driven by helium gas. The pressure

* This paper is based on Report No. UCRL-11381.
† Work sponsored by the U. S. Atomic Energy Commission.
= Deceased.
multiplier incorporates a gas spring which serves the following purposes:

1. To absorb the impact on expansion.
2. To provide adjustment for control of the expansion pressure.
3. To store much of the expansion energy (~80%). This feature is of importance for rapid cycling of the chamber.

B. Optical System

The optical system is shown in Fig. 3. The principal features are axial placement of the light source, the aspheric condenser and a generous stereo base (one half of the object distance). The aspheric condenser lens system is believed to be several times more efficient than any installed in earlier bubble chambers of this size. A scattering angle of 12° gives good uniformity of illumination in depth so that individual light sources for each stereo view are unnecessary.

The design of the camera was largely determined by the requirements of rapid pulsing. The camera utilizes a system of differential film drive cam tans and an internally sensed programmed electric clutch. High speed vacuum plastens were developed to clamp the film during exposure. The camera provides reference marks for the Flying Spot Digitizer and takes three stereo views on one 46 mm unperforated film.

C. Performance

The chamber has been operated filled with both hydrogen and deuterium. The Bevatron at present can produce two rapid beam ejections per pulse, and of the 700,000 pictures taken to date in hydrogen, 265,000 have been taken in this double pulse mode. Limitations on double pulsing are imposed at
present only by the requirement of compatibility when several experiments are simultaneously in operation at the Bevatron. At present the two pulses are separated by 275 msec. The picture quality is comparable on each of the two independently-controlled expansions.

FIGURE CAPTIONS

Fig. 1. The 25-inch bubble chamber and magnet.

Fig. 2. Detail of the 25-inch bubble chamber.

Fig. 3. Optical system of the 25-inch bubble chamber.

Fig. 4. First pulse 25-inch bubble chamber photograph.

Fig. 5. Second pulse 25-inch bubble chamber photograph.
Figure 3.

- Sylvania Super Truflector view lamp
- Xenon flashlamps E.G.G. FX-51
 Normal loading approx 300 watt-sec (total)
- Crown glass light window
- Aspheric condenser lens
- Condenser window
- Bubble
- Chamber precision window
- Precision quartz window
- View port (quartz)
- Stereo objective, 90 mm
 Schneider Super Angulon
 operating at f/32
- 46 mm. film
- First-surface precision mirror
Figure 4.

Figure 5.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.