skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE LIFETIME OF BACTERIAL MESSENGER RNA

Journal Article · · Journal of Molecular Biology
OSTI ID:932534

Puromycin, an inhibitor of protein synthesis, appears to act as an inhibitor at additional sites during the induction of {beta}-galactosidase synthesis. No inhibition of the reactions proceeding during the first 20 seconds of induction was observed, but puromycin seems to prevent the accumulation of messenger RNA during the period between 20 seconds and the first appearance of enzyme activity after 3 minutes. When cells from a stationary culture are placed in fresh medium containing inducer for {beta}-galactosidase, growth, as represented by increase in turbidity and by total protein synthesis, starts within 30 seconds. By contrast, {beta}-galactosidase synthesis is greatly delayed compared with induction during exponential growth. Two other inducible enzymes show similar lags, but malic dehydrogenase, which requires no external inducer, shows no lag. The lags are not due to catabolite repression phenomena. They cannot be reduced by pretreatment of the culture with inducer, or by supplementing the fresh medium with amino acids or nucleotides. The lag is also demonstrated by an i{sup -} mutant constitutive for {beta}-galactosidase synthesis. An inhibitor of RNA synthesis, 6-azauracil, preferentially inhibits {beta}-galactosidase synthesis compared with growth in both inducible and constitutive strains. It is suggested that these observations, together with many reports in the literature that inducible enzyme synthesis is more sensitive than total growth to some inhibitors and adverse growth conditions, can be explained by supposing that messenger RNA for normally inducible enzymes is biologically more labile than that for normally constitutive proteins. The implications of this hypothesis for the achievement of cell differentiation by genetic regulation of enzyme synthesis are briefly discussed.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USAEC
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
932534
Report Number(s):
UCRL-11854; JMOBAK; TRN: US200813%%104
Journal Information:
Journal of Molecular Biology, Vol. 0, Issue 0; Related Information: Journal Publication Date: 0; ISSN 0022-2836
Country of Publication:
United States
Language:
English