skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material

Technical Report ·
DOI:https://doi.org/10.2172/891857· OSTI ID:891857

Material was provided by Dr. Weiren Chou, FNAL. Both mildly-activated used, and new sections of stainless steel (type 316L) beam chamber were measured. Centimeter-sized coupons were cleanly dry-cut from the large flat surface (called ''flat side'' in the plots) and from the ID end (inside diameter of the ring, in the case of the used material) and narrow end (in the case of the new material). The unused material was ultra-soniced in acetone (to remove storage residue), then rinsed with ethanol and blown dry with filtered N{sub 2}-gas, to simulate new chamber installation final rinse. Used material was installed, as cut. Surface chemistry was measured using x-ray photoelectron spectroscopy (sometimes called ''ESCA''). With this technique, soft x-rays (1486 eV) illuminate the sample, penetrating into the surface ten microns. Photoelectrons are generated from energy levels of the constituent compounds/elements present. Those electrons, within 5 nm or so of the surface, escape without energy loss and preserve valence information about the atomic levels from which they were generated. An electron energy analyzer, of good energy resolution, measures the photoelectron energy, thereby yielding both valence (chemical) information and relative atomic abundances in the top 5 nm of surface. Using appropriate sensitivity factors, these intensities are converted to a semi-quantitative (surface atom %) concentration in the analyzed layer. As a benchmark, the limit for carbon contamination on vacuum components for UHV use at SLAC is 50 at%. That corresponds to about 8-10 monolayers of elemental carbon. XPS does not detect hydrogen because it has no electrons after bonding. Generally, hydrides do not show evidence of ''chemical shift'' of the binding energy of the metal lines.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
891857
Report Number(s):
SLAC-TN-06-031; TRN: US200622%%426
Country of Publication:
United States
Language:
English