skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Composition of high fission product wastes resulting from future reprocessing of commercial nuclear fuels

Technical Report ·
DOI:https://doi.org/10.2172/5557857· OSTI ID:5557857

Pacific Northwest Laboratory studies, aimed at defining appropriate glass compositions for future disposal of high-level wastes, have developed composition ranges for the waste that will likely result during reprocessing of Light Water Reactor (LWR) and Liquid Metal Reactor (LMR) fuels. The purpose of these studies was to provide baseline waste characterizations for possible future commercial high-level waste so that waste immobilization technologies (e.g., vitrification) can be studied. Ranges in waste composition are emphasized because the waste will vary with time as different fuels are reprocesses, because choice of process chemicals is nuclear, and because fuel burnups will vary. Consequently, composition ranges are based on trends in fuel reprocessing procedures and on achievable burnups in operating reactors. In addition to the fission product and actinide elements, which are the primary hazardous materials in the waste, likely composition ranges are given for inert elements that may be present in the waste. These other elements may be present because of being present in the fuel, because of being added as process chemical during reprocessing, because of being added during equipment decontamination, or because of corrosion of plant equipment and/or fuel element cladding. This report includes a discussion of the chemicals added in variation of the PUREX process, which is likely to remain the favored reprocessing technique for commercial nuclear fuels. Consideration is also given to a pyrochemical process proposed for the reprocessing of some LMR fuels.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
5557857
Report Number(s):
PNL-5830; ON: DE86014820
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products. Original copy available until stock is exhausted
Country of Publication:
United States
Language:
English