skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of transition states and radicals by negative ion photodetachment

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/10158344· OSTI ID:10158344
 [1]
  1. Univ. of California, Berkeley, CA (United States)

Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY- anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY → XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH2NO2 by photoelectron spectroscopy of CH2NO2-, determining the electron affinity of CH2NO2, gaining insight on the bonding of the 2B1 ground state and observing the 2A2 excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH2NO2 at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
10158344
Report Number(s):
LBL-31878; ON: DE92017011
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: Dec 1991
Country of Publication:
United States
Language:
English