skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochromic Windows: Process and Fabrication Improvements for Lower Total Costs

Technical Report ·
DOI:https://doi.org/10.2172/993475· OSTI ID:993475

The overall goal with respect to the U.S. Department of Energy (DOE) is to achieve significant national energy savings through maximized penetration of EC windows into existing markets so that the largest cumulative energy reduction can be realized. The speed with which EC windows can be introduced and replace current IGU's (and current glazings) is clearly a strong function of cost. Therefore, the aim of this project was to investigate possible improvements to the SageGlass{reg_sign} EC glazing products to facilitate both process and fabrication improvements resulting in lower overall costs. The project was split into four major areas dealing with improvements to the electrochromic layer, the capping layer, defect elimination and general product improvements. Significant advancements have been made in each of the four areas. These can be summarized as follows: (1) Plasma assisted deposition for the electrochromic layer was pursued, and several improvements made to the technology for producing a plasma beam were made. Functional EC devices were produced using the new technology, but there are still questions to be answered regarding the intrinsic properties of the electrochromic films produced by this method. (2) The capping layer work was successfully implemented into the existing SageGlass{reg_sign} product, thereby providing a higher level of transparency and somewhat lower reflectivity than the 'standard' product. (3) Defect elimination is an ongoing effort, but this project spurred some major defect reduction programs, which led to significant improvements in yield, with all the implicit benefits afforded. In particular, major advances were made in the development of a new bus bar application process aimed at reducing the numbers of 'shorts' developed in the finished product, as well as making dramatic improvements in the methods used for tempering the glass, which had previously been seen to produce a defect which appeared as a pinhole. (4) Improvements have also been made to the overall product to enhance the appearance and market acceptability. These include: (i) increasing the active electrochromic area to enable window manufacturers to install the SageGlass{reg_sign} IGU's into a variety of different framing systems, (ii) implementing a Pb free solder system for the electrical interconnections, (iii) development of a wire routing scheme to allow installation of SageGlass{reg_sign} units into a variety of different framing systems. This project has advanced the development of electrochromic glazing significantly, thereby advancing the introduction of the product and all the benefits of such a technology.

Research Organization:
Sage Electrochromics, Incorporated
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-03NT41952
OSTI ID:
993475
Country of Publication:
United States
Language:
English