skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Separation of gas mixtures by thermoacoustic waves.

Conference ·
OSTI ID:975502

Imposing sound on a binary gas mixture in a duct separates the two gases along the acoustic-propagation axis. Mole-fraction differences as large as 10% and separation fluxes as high as 0.001 M-squared c, where M is Mach number and c is sound speed, are easily observed. We describe the accidental discovery of this phenomenon in a helium-xenon mixture, subsequent experiments with a helium-argon mixture, and theoretical developments. The phenomenon occurs because a thin layer of the gas adjacent to the wall is immobilized by viscosity while the rest of the gas moves back and forth with the wave, and the heat capacity of the wall holds this thin layer of the gas at constant temperature while the rest of the gas experiences temperature oscillations due to the wave's oscillating pressure. The oscillating temperature gradient causes the light and heavy atoms in the gas to take turns diffusing into and out of the immobilized layer, so that the oscillating motion of the wave outside the immobilized layer tends to carry light-enriched gas in one direction and heavy-enriched gas in the opposite direction. Experiment and theory are in very good agreement for the initial separation fluxes and the saturation mole-fraction differences.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
OSTI ID:
975502
Report Number(s):
LA-UR-01-3040; TRN: US201018%%691
Resource Relation:
Conference: Submitted to: 17th International Congress on Acoustics, September 2-7, 2001, Rome, Italy.
Country of Publication:
United States
Language:
English