skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phases of Augmented Hadronic Light-Front Wave Functions

Journal Article · · Submitted to Physics Letters B

It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of the valence Fock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
972254
Report Number(s):
SLAC-PUB-13874; arXiv:1001.1163; TRN: US1001992
Journal Information:
Submitted to Physics Letters B, Journal Name: Submitted to Physics Letters B
Country of Publication:
United States
Language:
English