skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

Journal Article · · Physical Review. B, Condensed Matter and Materials Physics
OSTI ID:960941

The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
960941
Report Number(s):
LA-UR-08-06666; LA-UR-08-6666; TRN: US201008%%846
Journal Information:
Physical Review. B, Condensed Matter and Materials Physics, Journal Name: Physical Review. B, Condensed Matter and Materials Physics; ISSN 1098-0121
Country of Publication:
United States
Language:
English