skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transition Form Factor from CLAS

Conference ·

The excitation of nucleon resonances in electromagnetic interaction has long been studied. The study of resonances helps us to understand the long- and short- range structures of the nucleon and its excited states in terms of quark confinement. While the existing data of the low-lying resonances are consistent with the well-studied SU(6) circle times operator O(3) constituent quark model classification, many open questions still remain. Exclusive electro-production is one of the best ways to investigate nucleon resonances. The exclusive electro-production process View the MathML source was measured in the photon virtuality range Q2 = 1.7 â 4.5 GeV2 and the invariant mass range for the n?+ system of W = 1.15 â 1.7 GeV using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive ?+ production from protons with nearly full coverage in the azimuthal and polar angles of the n?+ center-of-mass system. The n?+ channel has particular sensitivity t

Research Organization:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-060R23177
OSTI ID:
956318
Report Number(s):
JLAB-PHY-08-906; DOE/OR/23177-0646; TRN: US1004996
Resource Relation:
Journal Volume: 186; Conference: Talk compiled for QCD 08
Country of Publication:
United States
Language:
English