skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

Abstract

Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transientmore » contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial condi¬tions for steady-state flow runs, simulations were executed to investigate the relative effects on contam¬inant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concen¬trations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the upland boundary fluxes 1) had little impact on regional flow directions and 2) accelerated contaminant transport. Although contaminant concentrations have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher upland fluxes caused increases in concentration, but these concentrations never exceeded the DWS. No significant effects on contaminant concentrations were identified at the Core Zone, Columbia River, or buffer zone area separating these two compliance boundaries. When lateral recharge at the upland boundaries was increased, more mass was transported out of the aquifer and discharged into the Columbia River. These concentrations, however, were diluted with respect to the Base Case, where no potential leakage from the proposed reservoir was considered.« less

Authors:
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
939604
Report Number(s):
PNNL-16272
400406000; TRN: US200823%%382
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; AQUIFERS; BUFFERS; COLUMBIA RIVER; COMPLIANCE; DILUTION; DRINKING WATER; IODINE 129; METRICS; PLUMES; RADIOISOTOPES; TECHNETIUM 99; TRANSIENTS; TRANSPORT; TRITIUM; URANIUM 238; US BUREAU OF RECLAMATION; WATER TABLES; groundwater flow; contaminant transport; Black Rock, numerical modeling

Citation Formats

Freedman, Vicky L. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport. United States: N. p., 2007. Web. doi:10.2172/939604.
Freedman, Vicky L. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport. United States. https://doi.org/10.2172/939604
Freedman, Vicky L. 2007. "Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport". United States. https://doi.org/10.2172/939604. https://www.osti.gov/servlets/purl/939604.
@article{osti_939604,
title = {Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport},
author = {Freedman, Vicky L},
abstractNote = {Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial condi¬tions for steady-state flow runs, simulations were executed to investigate the relative effects on contam¬inant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concen¬trations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the upland boundary fluxes 1) had little impact on regional flow directions and 2) accelerated contaminant transport. Although contaminant concentrations have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher upland fluxes caused increases in concentration, but these concentrations never exceeded the DWS. No significant effects on contaminant concentrations were identified at the Core Zone, Columbia River, or buffer zone area separating these two compliance boundaries. When lateral recharge at the upland boundaries was increased, more mass was transported out of the aquifer and discharged into the Columbia River. These concentrations, however, were diluted with respect to the Base Case, where no potential leakage from the proposed reservoir was considered.},
doi = {10.2172/939604},
url = {https://www.osti.gov/biblio/939604}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 09 00:00:00 EST 2007},
month = {Fri Mar 09 00:00:00 EST 2007}
}