skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extending the cereus group genomics to putative food-bornepathogens of different toxicity

Journal Article · · Chemico-Biological Interactions
OSTI ID:928768

The cereus group represents sporulating soil bacteriacontaining pathogenic strains which may cause diarrheic or emetic foodpoisoning outbreaks. Multiple locus sequence typing revealed a presencein natural samples of these bacteria of about thirty clonal complexes.Application of genomic methods to this group was however biased due tothe major interest for representatives closely related to B. anthracis.Albeit the most important food-borne pathogens were not yet defined,existing dataindicate that they are scattered all over the phylogenetictree. The preliminary analysis of the sequences of three genomesdiscussed in this paper narrows down the gaps in our knowledge of thecereus group. The strain NVH391-98 is a rare but particularly severefood-borne pathogen. Sequencing revealed that the strain must be arepresentative of a novel bacterial species, for which the name Bacilluscytotoxis is proposed. This strain has a reduced genome size compared toother cereus group strains. Genome analysis revealed absence of sigma Bfactor and the presence of genes encoding diarrheic Nhe toxin, notdetected earlier. The strain B. cereus F837/76 represents a clonalcomplex close to that of B. anthracis. Including F837/76, three such B.cereus strains had been sequenced. Alignment of genomes suggests that B.anthracis is their common ancestor. Since such strains often emerge fromclinical cases, they merit a special attention. The third strain, KBAB4,is a typical psychrotrophe characteristic to unbiased soil communities.Phylogenic studies show that in nature it is the most active group interms of gene exchange. Genomic sequence revealed high presence ofextra-chromosomal genetic material (about 530 kb) that may account forthis phenomenon. Genes coding Nhe-like toxin were found on a big plasmidin this strain. This may indicate a potential mechanism of toxicityspread from the psychrotrophic strain community. The results of thisgenomic work and ecological compartments of different strains incite toconsider a necessity of creating prophylactic vaccines against bacteriaclosely related to NVH391-98 and F837/76. Presumably developing of suchvaccines can be based on the properties of non-pathogenic strains such asKBAB4 or ATCC14579 reported here or earlier. By comparing the proteincoding genes of strains being sequenced in this project to others weestimate the shared proteome in the cereus group to be 3,000?b200 genesand the total proteome to be 20-25,000 genes.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director. Office of Science. Biological andEnvironmental Research
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
928768
Report Number(s):
LBNL-61525; CBINA8; R&D Project: 626882; BnR: KP1103010; TRN: US200811%%319
Journal Information:
Chemico-Biological Interactions, Vol. 171, Issue 2; Related Information: Journal Publication Date: 01/30/2008; ISSN 0009-2797
Country of Publication:
United States
Language:
English