skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estancia Basin dynamic water budget.

Abstract

The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflowmore » from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by making adjustments to recharge and outflow that were within the parameters uncertainties. Although results of this calibrated model imply that there may be more water remaining in the aquifer than the Estancia Water Plan estimates, this answer is only another possible result in a range of answers that are based on large parameter uncertainties.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
919123
Report Number(s):
SAND2004-1796
TRN: US200825%%189
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; AGRICULTURE; AQUIFERS; ENGINEERS; EVAPORATION; GROUNDWATER RECHARGE; LAKES; NEW MEXICO; STORAGE; SURFACE WATERS; WATER; WATER USE; Groundwater.; Water consumption; New Mexico.; Water banking; Water conservation; Water balance (Hydrology)

Citation Formats

Thomas, Richard P. Estancia Basin dynamic water budget.. United States: N. p., 2004. Web. doi:10.2172/919123.
Thomas, Richard P. Estancia Basin dynamic water budget.. United States. https://doi.org/10.2172/919123
Thomas, Richard P. 2004. "Estancia Basin dynamic water budget.". United States. https://doi.org/10.2172/919123. https://www.osti.gov/servlets/purl/919123.
@article{osti_919123,
title = {Estancia Basin dynamic water budget.},
author = {Thomas, Richard P},
abstractNote = {The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by making adjustments to recharge and outflow that were within the parameters uncertainties. Although results of this calibrated model imply that there may be more water remaining in the aquifer than the Estancia Water Plan estimates, this answer is only another possible result in a range of answers that are based on large parameter uncertainties.},
doi = {10.2172/919123},
url = {https://www.osti.gov/biblio/919123}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Sep 01 00:00:00 EDT 2004},
month = {Wed Sep 01 00:00:00 EDT 2004}
}