skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling the Madden Julian Oscillation

Book ·
OSTI ID:900440

The MJO has long been an aspect of the global climate that has provided a tough test for the climate modelling community. Since the 1980s there have been numerous studies of the simulation of the MJO in atmospheric general circulation models (GCMs), ranging from Hayashi and Golder (1986, 1988) and Lau and Lau (1986), through to more recent studies such as Wang and Schlesinger (1999) and Wu et al. (2002). Of course, attempts to reproduce the MJO in climate models have proceeded in parallel with developments in our understanding of what the MJO is and what drives it. In fact, many advances in understanding the MJO have come through modeling studies. In particular, failure of climate models to simulate various aspects of the MJO has prompted investigations into the mechanisms that are important to its initiation and maintenance, leading to improvements both in our understanding of, and ability to simulate, the MJO. The initial focus of this chapter will be on modeling the MJO during northern winter, when it is characterized as a predominantly eastward propagating mode and is most readily seen in observations. Aspects of the simulation of the MJO will be discussed in the context of its sensitivity to the formulation of the atmospheric model, and the increasing evidence that it may be a coupled ocean-atmosphere phenomenon. Later, we will discuss the challenges regarding the simulation of boreal summer intraseasonal variability, which is more complex since it is a combination of the eastward propagating MJO and the northward propagation of the tropical convergence zone. Finally some concluding remarks on future directions in modeling the MJO and its relationship with other timescales of variability in the tropics will be made.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
900440
Report Number(s):
UCRL-BOOK-204349; TRN: US200711%%133
Country of Publication:
United States
Language:
English