skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DETECTING AND QUANTIFYING REDUCTIVE DECHLORINATION DURING MONITORED NATURAL ATTENUATION AT THE SAVANNAH RIVER CBRP SITE

Technical Report ·
DOI:https://doi.org/10.2172/897536· OSTI ID:897536

Various attenuation mechanisms control the destruction, stabilization, and/or removal of contaminants from contaminated subsurface systems. Measuring the rates of the controlling attenuation mechanisms is a key to employing mass balance as a means to evaluate and monitor the expansion, stability and subsequent shrinkage of a contaminant plume. A team of researchers investigated the use of push-pull tests for measuring reductive dechlorination rates in situ at sites with low chlorinated solvent concentrations (<1 ppm). The field research also examined the synergistic use of a suite of geochemical and microbial assays. Previous push-pull tests applied to environmental remediation objectives focused on general hydrological characterization or on designing bioremediation systems by examining the response of the subsurface to stimulation. In this research, the push-pull technique was tested to determine its ''low-range'' sensitivity and uncertainty. Can these tests quantify relatively low attenuation rates representative of natural attenuation? The results of this research indicate that push-pull testing will be useful for measurement of in situ reductive dechlorination rates for chlorinated solvents at ''Monitored Natural Attenuation'' (MNA) sites. Further, using principal component analysis and other techniques, the research confirmed the usefulness of multiple lines of evidence in site characterization and in upscaling measurements made in individual wells--especially for sites where there is a geochemical gradient or varying geochemical regimes within the contaminant plume.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-96SR18500
OSTI ID:
897536
Report Number(s):
WSRC-STI-2006-00340; TRN: US200705%%107
Country of Publication:
United States
Language:
English